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Step Length Estimation for Blind Walkers

Fatemeh Elyasi1 and Roberto Manduchi1

University of California, Santa Cruz, USA {felyasi,manduchi}@ucsc.edu

Keywords: Wayfinding, Odometry, Navigation, Pedestrian Dead Reckoning.

Abstract. Wayfinding systems using inertial data recorded from a smart-
phone carried by the walker have great potential for increasing mobility
independence of blind pedestrians. Pedestrian dead-reckoning (PDR) al-
gorithms for localization require estimation of the step length of the
walker. Prior work has shown that step length can be reliably predicted
by processing the inertial data recorded by the smartphone with a sim-
ple machine learning algorithm. However, this prior work only considered
sighted walkers, whose gait may be different from that of blind walkers
using a long cane or a dog guide. In this work, we show that a step length
estimation network trained on data from sighted walkers performs poorly
when tested on blind walkers, and that retraining with data from blind
walkers can dramatically increase the accuracy of step length prediction.

1 Introduction

Independent wayfinding can be challenging for people who are blind. While GPS
localization can be very helpful in outdoor environments, GPS cannot be used
inside buildings, and thus different mechanisms for localization and wayfinding
need to be relied upon. In this work we focus on inertial sensing for localiza-
tion. Inertial sensors (accelerometers and gyros) are contained in any standard
smartphone. Data from these sensors can be used by pedestrian dead-reckoning
(PDR) algorithms to estimate the user’s location given a known starting point.
One important advantage of inertial navigation is that it doesn’t require an ex-
ternal infrastructure, as is the case, for example, for wayfinding systems based
on Bluetooth Low Energy (BLE) beacons. Compared to vision-based systems,
inertial sensing has the advantage that it does not require the user to hold the
smartphone such that the camera gets a clear view of the environment. Users
can conveniently keep their smartphone in their pocket, and be tracked by the
system as they move around.

Standard PDR algorithms use inertial data to count the number of steps
taken by the user, and to determine the walking direction. By multiplying the
number of steps by each step’s length, the distance traversed in a certain period of
time can be determined. This approach, however, assumes that the length of each
step be known in advance. This requires a prior calibration phase, during which
the “natural” step length of the user is computed. However, even after calibration,
it is quite possible that the user may not maintain a constant step length. For
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example, walkers may take shorter steps when they are unsure of where they
are going, or when negotiating an obstacle. In these cases, the odometry system
would make localization errors and consequently provide wrong directions.

In prior work [4], Elyasi et al. presented a machine learning algorithm to
estimate the length of each step taken by a walker, based on the same inertial
data that is used by the smartphone-based PDR algorithm. This algorithm,
which employs an LSTM recurrent network, was originally tested on sighted
walkers, and was shown to produce rather accurate results. In this contribution,
we present a study in which tested a similar algorithm on 7 blind walkers (5
using a long cane and 2 using a dog guide). Note that the gait of a blind walker
using a cane is typically different from that of a sighted walker, and it is also
different from that of walkers using a dog guide. It is thus important that the
step length prediction system be tested with data from walkers from the same
communities the wayfinding is designed for.

2 State of the Art

Inertial-based wayfinding systems for blind travelers were described in [12, 1]. In
particular, [1] proposed online estimation of step length in the context of Par-
ticle Filtering. Traditional methods for step length estimation were based, for
example, on the relationship between the step length and the difference of max
and min values of the vertical acceleration within the step [15]. Other methods
used the magnitude of acceleration [7] or its local variance [9]. [3, 11] used a
combination of the user’s step frequency and height. More recent approaches
are based on machine learning. For example [6] used stacked autoencoders to
learn valuable features from accelerometer and gyro data through stacked au-
toencoders, while [16] used deep belief networks. StepNet [8] uses a combination
of high-level features with a convolutional neural network (CNN)-based. Wand
et al. [14], used a combination of LSTM and autoencoder model. Elyasi et al. fed
data from accelerometer and gyro to an LSTM followed by a fully convolutional
layer.

3 Methodology

Our goal was to verify whether the algorithm of [4], applied to inertial data from
a smartphone carried by blind users, could produce reliable step length measure-
ments for our blind participants. This algorithm proceeds as follows. First, the
recorded time series of inertial data is segmented into “steps”, defined as the
interval of time between two consecutive heel strikes from opposite feet. Heel
strikes where computed using the algorithm of [10]. Then, from the data within
a step period, a step length is inferred using an LSTM-based algorithm. This
network was trained using ground-truth data recorded from foot-mounted sen-
sors (Xsens DOT IMU packages, each tied to either shoe using an elastic band).
As well known [5], zero-velocity updates can be applied to data from foot-level
sensors for precise dead-reckoning. We applied the ZUPT algorithm [5], along
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with HDR correction [2] to reduce gyro drift, to the data from the foot sensors
to reconstruct the trajectory of the users’ motion. From this, we computed the
ground-truth length of each step, which was used in the loss function considered
when training the step length measurement network from smartphone data. For
more details, please refer to [4].

We recruited seven blind participants for this test (4 female, 3 male). Two
participants (P1 and P7) used a dog guide, while the others used a long cane. The
participants’ ages raged from 53 to 76. Each participant walked with an iPhone
12, which was used to record inertial data. tucked in a pants pocket. In addition,
they were equipped with the two foot sensors mentioned earlier. Each participant
walked for 292 meters through the corridors of a building. While walking, they
kept the data-collecting iPhone in their back pocket. The histogram of ground-
truth recorded step lengths is shown in Fig. 1, together with the histogram of
step lengths recorded in the experiment with sighted participants described in [4]

Fig. 1. Distribution of stride lengths for all blind participants in our study (orange
bars), shown alongside the stride length distribution for the data set of sighted partic-
ipants in [4] (purple bars).

We considered four different training modalities for training the LSTM algo-
rithm of [4]:

– Train on Sighted (TS): In this modality, we used the original model of [4],
which was trained on data from sighted walkers, and tested it on the data
collected from all 7 blind participants.

– Train in Community (TC): In this case, each walker using a long cane was
tested with a system trained from all the 6 other walkers long cane users.
Likewise, each walker with a dog guide was tested with a system trained on
data from the other dog guide user.

– Train on Blind (TB): Each blind participant was tested with a system trained
on data from all other blind participants (regardless of whether they used a
long cane or a dog guide).
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– Train on All (TA): Each blind participant was tested with a system trained
on all sighted participants, as well as all other blind participants.

Note that TC, TB and TA use the “leave-one-person-out modality”. In all cases,
data from a certain walker was never used for training the network tested on
that user.

4 Results

We processed the data recorded from the participants’ iPhone to estimate each
individual step length, then compared the results with the ground-truth step
lengths from the foot-level sensors. Figs. 2 and 3 show examples of estimated step
lengths plotted against their ground-truth values for different training modali-
ties. In these plots, the red line represents the locus of zero error estimations.

(a): P1, TS : GD (Esr = 0.355) (b): P1, TC : GD (Esr = 0.15)

(c): P1, TA : GD (Esr = 0.15) (d): P1, TB : GD (Esr = 0.09)

Fig. 2. Examples of step length prediction for P1 (a dog guide user) for different
Training/Test modalities, plotted against their ground truth values.

To quantify the step length errors (difference between estimated and ground
truth values), we e used the error metrics defined in [4], which are summarized
in the following.
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(a): P3, TS : LC (Esr = 0.19) (b): P3, TC : LC (Esr = 0.10)

(c): P3, TA : LC (Esr = 0.11) (d): P3, TB : LC (Esr = 0.11)

Fig. 3. Examples of step length prediction for P3 (a long cane user) for different
Training/Test modalities, plotted against their ground truth values.
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and σ2 is the variance

of the set of ground truth step lengths {l̂i}.

In these formulas, l̂i represents the ground truth length of the i-th step in the test
set for a certain participant, while li is the step length predicted by the LSTM
system. Ed is the relative distance error, which is an appropriate measure for
long paths where step-to-step error fluctuations tend to cancel out. Es represents
the average absolute error at each step. Esr normalizes errors with the ground
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truth step length. R2 (often called “coefficient of determination”) is a number
that is equal to 1 only in case of zero error, and is less than 1 otherwise. A
negative R2 means that the prediction {li} gives a worse RMSE than using a
constant value equal to the average step length.

The average errors are reported in Tab. 1 for the participants using a long
cane, and in Tab. 2 for the participants using a dog guide.

Table 1: Error metrics computed for all Training/Test modalities for long cane
users.

Ed Es (m) Esr R2

TS 0.14± 0.10 0.09± 0.03 0.29± 0.11 −0.95± 0.96

TC 0.02± 0.01 0.05± 0.01 0.14± 0.03 0.48± 0.08

TB 0.03± 0.02 0.05± 0.01 0.14± 0.03 0.43± 0.12

TA 0.02± 0.01 0.05± 0.01 0.15± 0.03 0.44± 0.03

Table 2: Error metrics computed for all Training/Test modalities for guide dog
users.

Ed Es (m) Esr R2

TS 0.19± 0.18 0.14± 0.01 0.353± 0.03 −3.79± 4.64

TC 0.18± 0.10 0.11± 0.07 0.23± 0.11 −0.75± 0.03

TB 0.07± 0.10 0.07± 0.04 0.15± 0.08 0.25± 0.07

TA 0.07± 0.08 0.07± 0.01 0.17± 0.02 −0.22± 0.94

5 Discussion

The main goal of this test was to evaluate whether a step length measurement
system trained on sighted walkers would work well for blind walkers using a long
cane or a dog guide, or retraining was in order. We hypothesized that the gait
of blind walkers could be different from that of sighted walkers, motivating our
research question. The results presented in Tabs. 1 and 2 show that the largest
errors were observed when the network was trained with sighted walkers, while
better values were obtained when data from blind walkers were included in the
training set. Indeed, when the system was trained solely with data from sighted
users, the value of R2 was negative for both long cane and dog guide users,
meaning that using a constant value equal to the average step length for each
user would give a lower mean square error than using the prediction from the
system. This can also be seen qualitatively in Fig. 2 (a) and Fig. 3 (a), which
show a large spread of step length predictions for the same ground-truth value.

We note that for dog guide users, the TC modality resulted in a negative
value for R2. This is likely because in this case the system was only trained with
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data from only one other user (since there were only two dog guide users in our
set of participants). The best results are obtained with the TB modality, where
for each participant, data from all other blind participants was considered.

6 Conclusions

Step length estimation is a critical component of a PDR system used for local-
ization and wayfinding in indoor environments. Prior work showed the feasibility
of recurrent neural networks for step length estimation from inertial data. How-
ever, this algorithm was only tested with sighted walkers. Our study has shown
that, with proper training, a similar architecture can be used successfully for
blind walkers, and can thus be integrated in a complete inertial-based wayfind-
ing system. In future work, we will integrate a properly trained step length
measurement system in the indoor wayfinding and backtracking app described
in [13].
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