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Abstract 

We present a connectionist model of false memories called 
the Associative Self-Organizing Network (ASON) model. 
Four mechanisms underlying the Constructive Memory 
Framework (CMF) guide the design of the ASON model, a 
connectionist operationalisation of the CMF. Simulation 
studies of experiments in the DRM paradigm reveal the 
ASON model to exhibit false memories. In addition, the 
effects of Mean Backward Associative Strength and output 
order on the probability of false recall are simulated. We 
conclude that the ASON model is capable of simulating and 
explaining the main findings on false memories.  

Introduction 
Memory is fallible. Every day people are confronted with 
the shortcomings of their memory, when forgetting things 
such as -for example- the phone number of a good friend, 
the title of a book, or the location of their car keys. Memory 
can also fail in another way; instead of forgetting things that 
did happen, people may remember events that never took 
place. These memories can be just as realistic as memories 
of real events. Such memories of never-happened episodes 
are called commission errors or false memories. False 
memories may occur in different situations and their 
severity can range from attributing a memory to the wrong 
source to confabulating a complete event (Parkin, 1997).  

Various studies suggest that false memories are not 
simply random errors (Gallo & Roediger, 2002; Schwartz et 
al., 1998). Instead, they appear to be an inevitable 
consequence of the dynamics of human memory (Schacter 
et al., 1998). False memories are considered to arise from 
the very same mechanisms that underlie veridical recall and 
recognition of true memories. More specifically, we 
hypothesize that false memories result from the way in 
which memory representations are stored, processed, and 
retrieved.  

Our approach is to investigate the occurrence of false 
memories in a connectionist model called the Associative 
Self-Organizing Network (ASON) model. The ASON 
model is made up of two associatively connected self-
organizing maps, for storing and representing stimuli and 
the contexts in which they occur. Although the scientific 
literature on false memories is abundant (e.g. Gallo & 
Roediger, 2002; Johnson et al., 1993; Schacter et al., 1998), 
to our knowledge, no connectionist model of false memories 
has yet been proposed.  

The outline of the remainder of this paper is as follows. In 
the next section we discuss the theoretical background. 
Then, we present the Associative Self-Organizing Network 
as a model of false memories. In addition, three simulations 
are described. Finally, we discuss the results and conclude 
upon the approach. 

Theoretical Background 
The common view of memory is that of a (re)constructive 
process (Roediger & McDermott, 1995; Schacter et al., 
1998). This means that memories, rather than being literal 
reproductions of past events, are considered to be 
reconstructions that are susceptible to a variety of distorting 
factors.  In this view, memories are distorted by schemes, 
attribution processes, prior knowledge, assumptions, and so 
forth. This makes it almost impossible to draw a clear 
boundary between true and false memories in real life 
situations. For this reason, our study focuses solely on false 
memories occurring in the experimental setting of the 
Deese-Roediger-McDermott (DRM) paradigm. A false 
memory is formalized as a recollection of a stimulus that is 
ascribed to the experimental context, whereas it was not 
presented during the experiment. Below, we describe the 
DRM paradigm in more detail. 

The DRM Paradigm 
In order to investigate false memories experimentally, 
Roediger and McDermott (1995) developed the DRM 
paradigm, which was a variation of a design originally used 
by Deese (1959). The experimental set up is as follows. 
Subjects are presented with lists of twelve or fifteen words 
that are the strongest associates of a “critical lure”; a target 
word which is not presented. Immediately following the 
presentation of a list, subjects are instructed to recall as 
many of the list items as possible and to mention only those 
words of which they are certain that they appeared on the 
list. Despite this instruction, subjects are about equally 
likely to recall the critical lure as the other items on the list 
(Roediger & McDermott, 1995). After completion of the 
experiment, which usually involves the presentation of 
multiple lists, recognition performance of items on all the 
lists is tested. It is found that subjects identify the critical 
lure as being a list item as often as or more often than words 
that were actually presented (Roediger & McDermott, 

 1375



1995). These results have been widely replicated, using 
various lists and different variations on the basic paradigm.  

The propensity to elicit false recall and false recognition 
of the critical item varies widely with the type of list used.  
Roediger et al. (2001) investigated the causes of this 
variability and found that the strongest predictor of false 
recall of the critical lure was a variable called Mean 
Backward Associative Strength (MBAS). MBAS is defined 
as the average probability that a list item elicits the critical 
item as its associate. Roediger et al. found that MBAS 
correlates positively with both false recall (r = + .70) and 
false recognition (r = +. 43) of the critical lure.  

The ASON model is inspired by the Constructive 
Memory Framework of Schacter et al. (1998). In the 
following section this framework is discussed in detail. 

The Constructive Memory Framework 
Many different theories exist that address the topics of 
memory formation, source monitoring or reality monitoring 
and false memories (e.g. Gallo & Roediger, 2002; Johnson 
et al., 1993; Reyna & Brainerd, 1995). The general 
assumption underlying these different theories is that 
memory is constructive. This is also the central assumption 
of the Constructive Memory Framework (CMF) (Schacter et 
al., 1998). CMF proposes four mechanisms that are involved 
in a constructive memory system.  

First, according to CMF, episodic memories can be 
viewed as patterns of features, with different features 
representing different aspects of the episode. The 
constituent features of a memory representation are 
distributed widely across different parts of the brain. 
Forming an episodic memory involves binding together an 
arbitrary configuration of information from different sources 
(visual, auditory, affective, semantic etcetera) about a 
specific episode into a unitary whole (O'Reilly & Rudy, 
2001; Rolls & Treves, 1998; Schacter et al., 1998). This 
process is called feature binding.  

Second, each episode activates a unique representation 
that can easily be discriminated from memories of similar 
events. Even if different memories overlap extensively, the 
memory system is able to retrieve the unique characteristics 
of each particular episode, rather than retaining only the 
general similarities or gist (Reyna & Brainerd, 1995). This 
requires a process called pattern separation (Schacter et al., 
1998). 

Third, retrieval of memories involves a process of pattern 
completion. At retrieval, a small part of the original memory 
is used as a retrieval cue. The subset of features representing 
this part of the memory is activated. Activation spreads 
from the activated features to the rest of the constituent 
features that represent that experience, and the complete 
memory is reconstructed.  

Fourth, once a memory is reconstructed, it must be 
decided whether the retrieved information constitutes a real 
memory or is derived from internally generated information, 
such as thoughts or fantasies. This process is called reality 
monitoring. Source monitoring is a broader concept and 

refers to determining the source of a retrieved memory. 
According to Source Monitoring Theory (Johnson et al., 
1993), memories from different sources have different 
qualitative characteristics. Source monitoring decisions 
capitalize on these differences. When the source monitoring 
mechanism fails, source amnesia occurs. One is then able to 
remember specific information, but unable to recall the 
source of this memory.  

The four mechanisms of the Constructive Memory 
Framework lead to the notion that false memories result 
from a combination of two factors: (1) memories from 
different sources (e.g. internal and external) may form 
overlapping representations, and (2) the source monitoring 
mechanism fails to distinguish between those 
representations.  

The activation/monitoring framework, (Gallo & Roediger, 
2002; Roediger et al., 2001) explains variations in the 
probability of false remembering in the DRM paradigm in 
terms of the two factors. According to this framework, two 
processes, activation and monitoring, take place during the 
encoding and retrieval of memories. Although activation 
occurs mostly at the encoding stage and monitoring mostly 
at the retrieval stage, both processes are at work during both 
encoding and retrieval. The activation/monitoring 
framework assumes that the presentation of some items can 
activate entire knowledge structures or schemata. As a 
consequence, non-presented items can be activated because 
they are strongly associated with the presented items (i.e., 
they are part of the same knowledge structure). The 
activation may be the result of conscious, deliberate 
association, or of automatic and unconscious spreading 
activation. In the case of the DRM paradigm, activation 
spreads from the list items to related or associated concepts. 
The critical lure receives much activation because this item 
is strongly associated to each of the presented list items. 
This assumption is supported by the high correlation 
between MBAS and false remembering of the critical lure. 
The stronger the association between the list items and the 
critical word, the stronger the activation of this critical word 
due to automatic or deliberate spreading of activation.  

Summarizing, false remembering of the critical lure 
occurs when the monitoring process fails to correctly 
attribute its activation to an internal source and the critical 
lure is falsely ascribed to the learning context. This 
monitoring process is analogous to the source monitoring or 
reality monitoring mechanism proposed by Johnson et al. 
(1993).  

Implementing CMF in a Connectionist Network 
The CMF acted as a guideline for the design of the ASON 
model. The four mechanisms of the CMF translate into the 
following four desired abilities of the ASON model.  

(1) Ability to form episodic memories, whereby each 
episode leaves a unique, distinctive trace that is easily 
distinguishable from memories of similar episodes 
(i.e., demonstrate feature binding and pattern 
separation).  
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(2) Ability to retrieve or reconstruct a complete 
representation when cued with only a small part of the 
original memory (i.e., exhibit pattern completion).  

(3) Ability to spread activation among related or 
associated concepts.  

(4) Ability to monitor memory using a mechanism that 
decides upon the trueness of each retrieved 
representation.    

 
We incorporate the four abilities in the ASON model as 

follows.  
(1/2) Feature binding and pattern completion. Feature 
binding is accomplished by using an associative network, or 
more specifically, an auto-associator. An auto-associator 
typically consists of one fully-connected layer. The 
network’s task usually is to produce an output that is similar 
to its input. When an input pattern is presented, the 
network’s connection weights are changed according to a 
Hebbian learning algorithm. Connections between 
simultaneously active neurons are strengthened, whereas 
connections between non co-active neurons are weakened. 
In this way, the network is able to associate co-occurring 
input elements. In addition, the auto-associator is able to 
completely reconstruct a stored pattern, when provided with 
only a small part of that pattern. In other words, it can also 
perform pattern completion (McLeod et al., 1998).    
(1/3) Pattern separation and spreading activation. In an 
auto-associative network, pattern separation is obtained by 
using sparsely distributed representations. A competitive 
network can be used to transform densely distributed input 
patterns into more sparse, separated patterns which can be 
processed by an auto-associator without suffering from 
interference. A specific kind of competitive network is the 
Kohonen network or self-organizing network (Haykin, 
1999). For our purposes, the self-organizing network has 
two important advantages over a standard competitive 
network. First, the self-organizing network creates a 
topological map of the input space (Haykin, 1999). A 
distributed, multidimensional input is transformed into a 
localist representation. The self-organizing principle ensures 
that the information regarding relations or similarities 
among input patterns is not lost in this transformation. By 
creating a topological map of the input space, the similarity 
between two input patterns is reflected in the lateral distance 
between the two neurons representing them. This is a 
biologically plausible way of representing information. 
There is evidence that at least lower level sensory 
representations are organized topologically (Haykin, 1999). 
However, it is still uncertain whether semantic information 
in higher association areas is represented in a topological 
way as well.  A second important characteristic of a self-
organizing network is that there is spreading of activation 
among neighboring neurons. When a specific neuron in the 
network is excited, activation spreads to its neighbors. The 
degree of spreading activation is a function of the distance 
between the excited neuron and its neighbor. The nearest 
neighbors receive the most activation, and activation 

decreases with increasing distance. Since the neighbors of 
the winning neuron represent concepts resembling the input 
pattern, there is spreading activation between related 
concepts. In this way the network resembles a semantic, or 
conceptual map. It is generally assumed that much of our 
knowledge is indeed stored in the form of semantic maps or 
knowledge structures.  
(4) Memory monitoring. A memory monitor mechanism 
may be implemented in the form of a module that modulates 
the response thresholds or connection weights of neurons in 
the associative layer.   

In the next section the incorporation of the ASON model 
is described in detail. 

The Associative Self-Organizing Network 
The ASON model, shown in figure 1, receives two different 
types of input; context input and stimulus input. Input is first 
processed by the input/output layer of the model. This layer 
is made up of two unconnected parts. One part processes 
contextual information, the other part deals with stimulus 
information. Both parts of the input/output layer have I 
neurons. The input of the model is formed by 
multidimensional binary patterns. In those patterns, each bit 
represents the presence or absence of a specific feature by 
which the stimulus (item) or context is characterized. The 
input patterns therefore reflect conceptual representations of 
different stimuli and contexts. 
 

 
 

Figure 1: Schematic drawing of the Associative Self-
Organizing Network. Each input pattern corresponds to one 

winning neuron in the hidden layer. Simultaneous 
presentation of a stimulus input and a context input causes 
an increase in the connection strength between the hidden 

neurons representing that stimulus and context, respectively. 
 

Information is propagated from the input/output layer to 
the hidden layer. The hidden layer consists of two self-
organizing maps. These maps are organized as two-
dimensional lattices, each having N × N neurons. The part 
of the hidden layer that represents stimuli is henceforth 
called the stimulus hidden layer. The neurons making up 
this layer are called stimulus neurons. The other part of the 
hidden layer is called the context hidden layer and the 
constituent neurons are called context neurons. Both hidden 
layers are fully connected to each other via two-directional 
modifiable associative connections.  
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The Four Processing Stages 
The processing of information in the ASON model proceeds 
in four stages: (i) the initialization stage, (ii) the topological-
mapping stage, (iii) the learning stage, and (iv) the 
performance stage. Below, we discuss each of these stages 
in detail.  

In the initialization stage, the connection weights between 
the input/output layer and the hidden layers, and those 
between both hidden layers are set to small random values.  

In the topological-mapping stage, contexts and stimuli are 
presented to the input layer of the network and, using the 
Kohonen learning algorithm or SOM algorithm (Haykin, 
1999), a topological organization in the hidden layers is 
created: semantically related concepts (overlapping input 
patterns) are represented by neurons that lie close to one 
another in the two-dimensional grid that makes up the 
hidden layer. In addition, associations are formed between 
stimuli and contexts. Whenever a particular stimulus co-
occurs with a particular context, there is simultaneous 
activation of the winning context neuron and the winning 
stimulus neuron. Following an associative learning 
algorithm, the (associative) connection between these two 
hidden neurons is strengthened. Simply said, the stimulus is 
coupled to the context. 

The learning stage simulates the learning phase of the 
DRM task. It refers to the presentation of the list items. 
During this stage, a number of stimuli are presented in one 
specific context -the learning context- and associations 
between the presented stimuli (the list items) and this 
context are formed. Due to spreading of activation, not only 
the connections between the winning context neuron and the 
winning stimulus neurons are strengthened, but also those 
between the context neuron and the neighbors of the 
winning stimulus neuron. The connections between the 
context neuron and even further neighbors of the winning 
stimulus neuron are actually decreased.  

During the performance stage, the network can either 
perform a recall task or a recognition task. When 
performing a recall task, a context input is presented to the 
network as a recall cue. The winning context neuron in the 
hidden layer is determined and activation is propagated 
forwards through the associative connections towards the 
stimulus hidden layer. The stimulus neuron that is most 
strongly associated to the winning context neuron is 
activated and propagates its activation to the stimulus 
input/output layer. The weights of the connections between 
the winning stimulus neuron and the input/output layer have 
changed during the topological-mapping stage so that they 
have come to resemble the input pattern to which this 
neuron responds most strongly. Therefore, propagating 
activation through these connections will result in an output 
that resembles the original input pattern to a large degree. In 
other words, reconstruction of the stimulus that is most 
strongly associated with the presented context takes place. 
Subsequently, the connection between the winning context 
neuron and the activated stimulus neuron is ‘blocked’, the 
stimulus neuron with the second-strongest association to the 

context is determined and the next stimulus is recalled.  
Most of the time, the stimulus recalled is one that was 

actually presented during the learning stage (a list item). 
Occasionally, however, the network recalls a stimulus that 
has not been presented. In other words, it has false 
memories. Clearly, false memories occur whenever there 
exists a strong association between the non-presented 
stimulus and the context, caused by spreading activation.  

When performing a recognition task, the network is 
presented with a number of stimuli, both list items and a 
number of non-presented distractors (including the critical 
item). Based on the stimulus input, the winning stimulus 
neuron in the hidden layer is determined. The strength of the 
association between this winning stimulus neuron and the 
learning context is determined. If the strength exceeds a 
certain threshold, the stimulus is marked as a target and as a 
distractor otherwise. The decision whether to accept or 
reject a retrieved item is based on the strength of its 
association to the learning context. Raising the threshold 
reduces the probability of falsely recognizing the critical 
item, but it also decreases the hit rate. On the other hand, 
lowering the threshold leads to more hits, but also to more 
false alarms. This process is a formalization of the memory 
monitoring or source monitoring mechanism in various 
theories of memory (Gallo & Roediger, 2002; Johnson et 
al., 1993; Schacter et al., 1998).  

To evaluate the ability of the ASON model to exhibit the 
false-memory performance as observed in the DRM 
paradigm, we performed a number of simulations that are 
described in the following section.  

Simulations 
Our simulations focus on three aspects of false memories in 
the DRM paradigm: the DRM effect, the role of association 
strength and the output order effect. All simulations were 
performed with the following parameter values: I = 30 and 
N = 10. The results reported do not depend critically on 
these choices. 
 
The DRM effect The simulation of the DRM effect has two 
conditions; the DRM condition and a control condition. In 
the DRM condition, the network learns six list items that are 
semantically related to the critical lure. Their input patterns 
closely resemble the input pattern of the critical lure. In the 
control condition, the six list items are randomly chosen 
from the input set. After learning the six list items, the 
network performs a recall task. The results of the simulation 
are shown in figure 2. As is evident from the graph, the 
probability of recalling the critical lure is much higher in the 
DRM condition (P = 0.65) than in the control condition (P = 
0.05), but it is lower than the average recall rate of the list 
items (P = 0.78).  Hence, the ASON model simulates the 
DRM effect faithfully.  
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Figure 2: Probability of recalling the list items and the 
critical lure in the DRM (CL DRM) and control (CL 

Control) conditions. 
 

The effect of association False recall and recognition of the 
critical lure is affected by a number of factors. As stated in 
the introduction, the most important factor is the Mean 
Backward Associative Strength (MBAS). A stronger 
association between the list items and the critical lure is 
correlated with stronger false recognition and false recall 
effects (Roediger et al., 2001). In the Associative Self-
Organizing Network, spreading activation from the list 
items to the critical lure causes false recall and recognition 
of the latter. It is important to realize that in the ASON 
model concepts are related semantically instead of 
associatively. In contrast to what is proposed by the 
activation/monitoring framework, activation spreads along 
semantic relations rather than along associative connections. 
However, if we disregard this difference, we can define the 
Backward Associative Strength between two concepts as the 
lateral distance between the winning neurons that represent 
these concepts. The smaller the distance, the more related 
the two concepts are. In the network, the degree of 
spreading activation is a function of the distance between 
the excited neuron and its neighbor. Consequently, the 
smaller the average lateral distance between the list items 
and the critical lure, the stronger the activation of this 
critical item due to spreading activation from the list items 
will be. This stronger activation leads to a stronger 
association of the critical lure to the context, and therefore 
to an increasing likelihood of falsely recalling the critical 
lure. Figure 3a shows the results of a simulation in which 
the average lateral distance from the list items to the critical 
lure is varied. As can be seen, the probability of recalling 
the critical lure decreases sharply with increasing distance. 
The correlation between lateral distance and probability of 
recalling the critical lure is -.76. We compare our results 
with the results from a multiple regression analysis done by 
Roediger et al. (2001) where MBAS was found to be the 
strongest predictor of false recall of the critical lure (with 
the correlation between MBAS and probability of recalling 
the critical lure being +.73). Figure 3b shows the probability 
of recalling the critical lure as a function of MBAS, as 
found in the study of Roediger et al. (2001). Clearly, the 
results of the ASON model agree very well with those of 
Roediger et al. 
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Figure 3: The probability of recalling the critical lure as a 
function of (a) average lateral distance between list items 

and the critical lure: r = -.76, and (b) MBAS: r = +.73. 
 
The effect of output order In the third simulation we 
investigated the effect of output order on the probability of 
false recall. The output order effect (Schwartz et al., 1998) 
refers to the finding that the probability of a false memory 
increases with the position of items in the recall sequence.  

The output order effect can be explained by the variation 
in association strength of presented and non-presented 
stimuli. False memories occur when non-presented stimuli , 
become strongly connected to the learning context through 
the processes of spreading activation and association. The 
association strength of those stimuli to the context is usually 
smaller than that of the most strongly associated targets, but 
larger than that of the most weakly associated targets. Since 
memories are generated in the order of their association 
strength, the probability that a false memory is generated 
increases with the position in the recall sequence. In our 
third simulation, the network performed a simple recall task, 
rather than a DRM task. The network learned twenty stimuli 
in a single context. Afterwards it performed a recall task. As 
can be seen in figure 4a, the probability of a false memory is 
largest in the last quartile of the output. Figure 4b shows the 
results of Schwartz et al. (1998), in which subjects 
performed a similar task. Evidently, our results have a 
striking similarity to the experimental results of Schwartz et 
al. 
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Figure 4: Number of false positives as a function of output 
order. Results of (a) our simulations, and (b) Schwartz et al. 

(1998). 
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Discussion and Conclusion 
The ASON model demonstrates how the essential features 
of a constructive memory system, as put forward by CMF, 
can be translated into a connectionist model. Specifically, 
the ASON model incorporates the encoding processes of 
feature binding and pattern separation, as well as the 
retrieval processes of pattern completion and memory 
monitoring. In addition, it explains how spreading activation 
leads to high false memory scores for the critical lure in the 
DRM paradigm. The remaining question is to what degree 
the model’s architecture resembles that of brain structures 
that are involved in the processes of storing, retrieving and 
monitoring of memory. 

The brain structure that is considered to be responsible for 
the storage of episodic memories is the hippocampus (Rolls 
& Treves, 1998). The hippocampus is not thought to be the 
site of storage itself. Rather it is regarded as the mechanism 
that binds together the sensory features of a situation or 
episode to create a unitary representation of the experience. 
In other words, it is the structure that performs feature 
binding. The hippocampus receives, via the adjacent 
parahippocampal gyrus and entorhinal cortex, inputs from 
virtually all association areas in the neocortex. In addition, it 
gets input from the amygdala and from cholinergic and 
other regulatory systems (Rolls & Treves, 1998). It thus 
receives highly elaborated, multimodal information from 
various sensory pathways. Within the hippocampus, 
information is processed along a mainly unidirectional path, 
consisting of three major stages; the Dentate Gyrus (DG), 
the Cornu Ammonis 3 (CA3) and the Cornu Ammonis 1 
(CA1). From CA1, backprojecting pathways lead via the 
subiculum and the entorhinal cortex back to the neocortex. 

The hippocampus shares two essential characteristics with 
our model. First, there is a large degree of interconnectivity 
among neurons in the CA3 area of the hippocampus. This 
interconnectivity makes this area perfectly suited to perform 
auto-association. In fact, the idea that the CA3 area serves 
as an auto-associator that binds together the various 
elements of an episode is a core assumption in a number of 
computational models (O'Reilly & Rudy, 2001; Rolls & 
Treves, 1998). Second, the hippocampus receives a load of 
multimodal information from various cortical areas. The 
forward pathways to the hippocampus are thus characterized 
by strong convergence. It is hypothesized that these 
pathways, and the DG in particular, serve as a competitive 
network, transforming the widely distributed information in 
the cortex into more sparse, orthogonal and separated 
patterns that can be processed by the auto-associator without 
much interference (O'Reilly & Rudy, 2001).  

Instead of a standard competitive network, the ASON 
model features a self-organizing map. The specific 
characteristics of this type of network, its ability to form a 
topological map of the input and spreading activation 
among neighboring neurons, can provide an explanation of 
false memories. Specifically, according to our model, false 
memories arise when activation spreads from the list items 
to the critical lure, causing a faulty association between this 

non-presented item and the learning context. This explains 
how false memories occur in the DRM paradigm, and gives 
an account of the effect of MBAS on false recall of the 
critical lure. 

By incorporating the four mechanisms of the CMF, the 
ASON model is able to simulate the occurrence of false 
memories in the DRM paradigm and the effects of MBAS 
and output order on the probability of false recall of the 
critical item. Furthermore, its architecture is compatible 
with that of the hippocampus, the brain area that is widely 
acknowledged as being involved in the storage and retrieval 
of episodic memories. We conclude that this connectionist 
operationalisation of the CMF is able to simulate and 
explain the main findings on false memories.  
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