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Abstract

The traveling salesperson problem (TSP) is an NP-Hard prob-
lem that computers find difficult to solve. Humans are sur-
prisingly good at solving the TSP, with solutions within 10%
of optimal for problems with up to 100 points, constructed in
time linear with the number of points. We propose that hu-
mans solve the TSP by initially clustering the points and then
connecting them first within and then between clusters. In this
study, 67 participants first clustered 40 stimuli and then solved
them as TSPs. Strikingly, participants’ TSP solutions perfectly
followed their clusters for 52% of the stimuli. Further, partic-
ipants’ TSP solutions were more congruent with their clusters
for stimuli with statistically higher levels of clustered structure.
This provides strong evidence for the clustering proposal. Ran-
dom TSP solutions, however, showed no such congruence to
cluster structure. These findings suggest that clustering might
be a fundamental ability for human reasoning about graph-
theoretic algorithmic problems.

Keywords: traveling salesperson problem; clustering; prob-
lem solving; computational complexity; computational think-
ing

Introduction

The traveling salesperson problem (TSP), one of the most
well-studied optimization problems of computer science, is
an NP-hard problem that is difficult for computers to solve.
Solving a TSP for a given a set of points involves finding
the shortest tour that visits each point once and returns to the
starting point. The difficulty of the TSP increases exponen-
tially with the number of points, leading to a combinatorial
explosion of time and space costs when solving large prob-
lems. Efficient solutions to TSPs have wide applicability for
a variety of fields such as package delivery, transportation,
DNA sequencing, and the development of semiconductors,
making it an important problem to understand.

Humans routinely face and (approximately) solve prob-
lems that are difficult for computers, but humans’ processes
are not yet well understood. Therefore, understanding how
humans solve the TSP could provide more general insights
into the heuristics they use and the constraints they place
on hard problems to make them more tractable, leading to a
richer computational theory of human problem solving (Van
Rooijj et al., 2012).

Humans have been found to be surprisingly good at solv-

ing the TSP, with fast solution times that increase linearly 124
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with the number of points (Graham et al., 2000). People can
solve TSPs of up to 100 points while staying within 10% of
the optimal solution (Dry et al., 2006). A study by van Rooij
et al. (2006) showed that even 7-year-old children can solve
TSPs with decent performance, and the quality of TSP solu-
tions increased with participants’ age to adulthood. Together,
these findings suggest that perceptual processing may be one
capacity used to solve TSPs, and increased analytical pro-
cessing in adults improves TSP performance. Macgregor et
al. (2000) presented a computational model of humans’ TSP
performance suggesting that their problem solving is guided
by the convex hull (the “border” of a problem, i.e., the small-
est shape that contains all of its points). They proposed that
people generally select points on the convex hull, while pick-
ing up more interior points along the way. The model per-
formed better at predicting the length of human TSP solutions
compared to the naive nearest neighbor algorithm, where the
closest available point is chosen next.

However, there are some limitations to this approach.
Problems with more points on the convex hull should be eas-
ier according to this model, but humans sometimes judge
them as more difficult (Dry & Fontaine, 2014). Additionally,
model fit was evaluated based on the difference between tour
lengths generated by the model vs. humans, which may be
too coarse a metric because qualitatively different solutions
for a TSP instance can have similar tour lengths. Perhaps the
greatest challenge to this model is that the worst-case time
complexity of computing the convex hull of a set of n points
is O(nlogn) for problems on the plane, a greater complexity
than the linear time humans usually take.

Here, we consider a different proposal: that people solve
TSPs by first clustering their points. This decomposes a
larger problem into a set of smaller problems. Next, they
choose an initial cluster and a starting point within, then
connect the points in the cluster. This is efficient because
clustered points are, by definition, fewer and closer together.
When they finish connecting the points in a cluster, they jump
to the next cluster and repeat this process. They continue un-
til all points within all clusters are connected, finally finish-
ing at the starting point in the initial cluster. We are not the
first to propose that people use clustering to guide the solu-
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tion of TSPs. Graham et al. (2000) outline their “Pyramid”
model, inspired the by the hierarchical structure and paral-
lel processing of the human visual system, which produces
tours of lengths similar to those human participants. How-
ever, like Macgregor et al. (2000), the specific tours generated
by their model do not necessarily resemble human solutions
of the same TSPs. Kong and Schunn (2007) offer a model that
uses the K-Means clustering algorithm to implement a strat-
egy similar to that of the Graham et al. (2000) model, and
which achieves high path correlations with human solutions
for the TSP.

A major limitation of clustering-based models of human
TSP performance is that human clustering of dot arrays had
not been rigorously studied until very recently. This was an
important gap, as it was unclear whether humans possess a
stable clustering ability which can in turn serve as the basis
for the efficient solution of TSP problems. Recent work in our
lab has shown that people are highly reliable at clustering dot
arrays, suggesting a stable algorithm (Marupudi et al., 2020).
Participants were asked to cluster the same stimulus twice at
different time points. We found remarkable stability in per-
formance: They tended to include the same points in the same
clusters on both occasions. This reliability varied by how sta-
tistically clustered (vs. dispersed ) the stimulus was: More
clustered stimuli were more reliably clustered than more dis-
persed stimuli. We subsequently found a similar trend in the
reliability of human TSP solutions, with more reliable TSP
paths for clustered vs. dispersed stimuli (Marupudi et al.,
2021). Finding reliability in both clustering and TSP per-
formance is consistent with the use of clustering as a step in
solving TSP instances.

The current study builds on prior work from our lab and
from other investigations of clustering as foundational to TSP
problem solving. Importantly, this is the first study to directly
tie the cluster performance and the TSP performance of a par-
ticular individual on a particular stimulus. Participants saw
each stimulus twice, once as a clustering problem and once
as a TSP problem. We analyzed whether their TSP solu-
tions followed the contours of their clustering solutions. In
addition to this structural alignment, we also looked for evi-
dence of a clustering mechanism in the temporal dynamics of
TSP problem solving. Specifically, we predicted that people
would take longer to connect points in different clusters than
points in the same cluster (after controlling for differences in
the lengths of inter-cluster versus intra-cluster connections).
Finally, we compared the clustering and TSP solution pro-
cesses of humans against a novel set of baselines: randomly
generated clusters, K-Means generated clusters, and solutions
generated by optimal TSP solver programs.

Methods
Participants

Sixty-seven undergraduate students at a large public univer-
sity in the Midwest U.S. completed the study. Participants
were given 1 hour to complete the study (Median = 44.7 min.)
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and were compensated with a $15 gift card. The study was
approved by the local IRB.

Design

Both the Clustering and TSP tasks followed a 5 x 2 within-
subjects design. The factors were Number of Points (10, 15,
20, 25, 30) and Cluster Structure (clustered, dispersed), var-
ied orthogonally. Four stimuli were generated for each of the
ten cells of the design, as described next. For the Clustering
task, we recorded each participant’s clusters for each stimu-
lus, i.e., the cluster membership of each point. For the TSP
task, we recorded each participant’s tour for each stimulus,
i.e., the sequence of edges, as well as the time to construct
each edge. These measurements were the basis for the de-
pendent variables we analyzed, as described below.

Materials

Stimuli were generated randomly using a uniform distribu-
tion across a two-dimensional 800 x 500 pixel canvas, and
were then filtered for having the desired amount of Cluster
Structure. We used the Z-score index of the amount of cluster
structure in a stimulus. This includes the variance and edge
effect estimates provided by Donnelly (1978), defined as:

,_ d-E(d)

Var(d)
d is the nearest neighbor distance:
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E(d;) is the expected value of the nearest neighbor distance
for random patterns where A is the area and B is the perimeter
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Finally, Var(d) is defined as:

See Donnelly (1978) and Ripley (1979) for more information
on the Z-score index, its definition, and the constants in the
formulae above.

We made alterations to the Z-score index to account for
margins in the stimuli. These were necessary because the
metric was not originally designed for guiding the design of
experimental materials. Pilot testing showed that participants
ignored the whitespace around the perimeter of a stimulus.
This made the raw Z-score index inaccurate when randomly
generated points happened to result in sizable margins on the
canvas. To control for this, we calculated the Z-score index
for stimuli after first removing the whitespace margins.

Then, for each level of the Number of Points factor (i.e.,
10, 15, 20, 25, and 30 points), we generated images with the

B

N

- A
Var(d) = 0'070ﬁ +0.037B



Clusterec_l .

Dispersed

Figure 1: Examples of clustered (Z-score: 1.009) and dis-
persed (Z score: —2.003) instances.

specified number of points positioned randomly on the two-
dimensional 800 x 500 pixel canvas. We then randomly se-
lected four images with corrected Z-score index values in the
range 1.00 £ 0.05 as the clustered stimuli, and four images
with values in the range -2 = 0.05 as the dispersed stimuli.
We chose these ranges based on pilot testing, with the goal
to select clustered stimuli that did not appear obviously clus-
tered when viewed in isolation, but for which their cluster
structure became clearer when they were directly contrasted
with the dispersed stimuli (see Figure 1). This resulted in 40
unique stimuli for participants to view in both the Clustering
and TSP tasks.

Procedure

Participants first clustered all 40 stimuli, presented in a ran-
dom order, using a custom plugin implemented in jsPsych
(De Leeuw, 2015). For each stimulus, participants were
asked to draw an enclosing circle around each set of points
that formed a cluster. Points turned blue when participants
enclosed them in a cluster. If a point was included in mul-
tiple enclosures, it was uniquely assigned to the first clus-
ter. Participants were prohibited from drawing a single clus-
ter around all points, and they could not undo clusters once
drawn. A trial ended when all of the points had been en-
closed in a cluster. We recorded the cluster membership of
each point, the number of clusters drawn, and the timestamp
to draw each cluster.

Participants then completed an unrelated math task as a dis-
tractor task for 5 minutes (calculating the value of factorial
expressions like 8 X 7x6x5x4x3x2x1).

Finally, participants saw the same 40 stimuli again, in a
new random order, but this time presented as TSP problems.
Half the stimuli were flipped horizontally and vertically from
their orientation during the Clustering task. They solved each
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Figure 2: Prevalence of perfectly congruent trials (Cluster de-
viance = () among clustered and dispersed stimuli.

problem using a custom jsPsych plugin by clicking on each
point in the tour, in order. Following each click, the point
turned blue, and an edge was drawn in blue from the previous
point to the clicked point. Thus, the tour was shown to partic-
ipants as they constructed it. The trial ended after participants
selected the last remaining point. Again, they could not undo
their selections. We collected timestamps for each clicking of
a point, and also recorded their overall tours.

Results
Quantifying Cluster Deviance and Congruence

To quantify how different participants’ TSP solutions were
from their clusterings of the same stimulus, we created a mea-
sure of cluster deviance. Our initial metric first calculated the
number of cluster transitions, i.e., the number of times a par-
ticipant’s TSP tour crossed from a point in one cluster to an-
other cluster, based on the clusters they individually defined
for the same stimulus earlier. By definition, the minimum
number of cluster transitions is the number of clusters the
participant had drawn, and it occurs only when a participant’s
TSP tour perfectly respects their own clustering. To anchor
this measure at 0, we subtracted off the number of clusters
the participant had drawn. Thus, a value of 0 indicates min-
imal cluster deviance (i.e., maximal congruence), and higher
values indicate increasing cluster deviance (i.e., decreasing
congruence).

A problem with this metric is that its maximal possi-
ble value increases with the number of points (and thus the
number of possible deviant transitions), making comparisons
across stimuli difficult. We therefore normalized this “raw”
metric by dividing by the maximal deviation score for a stim-
ulus. This produced the final cluster deviance metric:

t—c

n—c

where ¢ is the number of cross-cluster transitions in TSP, ¢
is the number of clusters, and # is the total number of points.
This metric ranges from O (perfect congruence between a TSP
solution and a clustering) to 1 (maximum deviance).
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Figure 3: Relationship between Number Of Points and per-
centage of perfectly congruent Human Clusters-TSP pairs.
The pairs maintain surprisingly high levels of perfect congru-
ence for all numbers of points presented to participants, with
statistically clustered stimuli showing more cases of perfect
congruence.

Correspondence Between TSP Tours and Clustering
Solutions

Our major prediction is that people’s TSP solutions will fol-
low their clusterings of the same stimuli. We first looked at
the overall distribution of cluster deviance scores across all
participants and all stimuli plotted separately for the clustered
versus dispersed stimuli. Cluster deviance scores were very
low. Remarkably, for 52% of all stimuli, the cluster deviance
was 0, signaling perfect congruence between an individual’s
TSP solution and clustering. As predicted, congruence was
worse for the dispersed stimuli than for the clustered stimuli.
For the former, for 75% of the stimuli, the cluster deviance
was less than 0.125; for the latter, for 75% of the stimuli, the
cluster deviance was less than 0.0714.

To statistically evaluate these results, we counted the num-
ber of perfectly congruent TSP-clustering pairs and the num-
ber of deviant pairs, separately for the clustered versus dis-
persed stimuli (Figure 2). We found that clustered stimuli had
significantly more perfect pairs compared to dispersed stimuli
(¢*(1) = 64.63, p < 0.001). This is consistent with our pro-
posal that people solve TSP problems by first clustering the
points. Since previous work (Marupudi et al., 2021) showed
that clustering is less reliable for more dispersed stimuli, there
is a greater probability that it produces a different result when
applied first during the clustering task and then during the
TSP task, resulting in fewer perfect congruence scores. Nev-
ertheless, it should be noted that participants’ TSP solutions
still maintained a high level of congruency with their clus-
terings of dispersed stimuli in an absolute sense: 43% of the
dispersed stimuli resulted in perfect congruence scores.

To explore the impact of increasing numbers of points,
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Figure 4: Reaction time per point during participant TSP so-
lutions, controlled for motor ability using Fitts’ Law, as a
function of whether the point clicked was within or between
a participant’s clusters.

we plotted the number of perfectly congruent TSP-clustering
pairs as a function of this variable; see Figure 3. We see
that perfect congruence drops sharply for dispersed stimuli
between 10 and 15 points. By contrast, perfect congruence
for clustered stimuli mostly remains above 50% of trials for
the entire range of n explored in the current study.

Temporal Dynamics of TSP Problem Solving

Our proposal is that participants solve the TSP by first clus-
tering the stimulus, connecting the points within the initial
cluster, then connecting to a point in the next cluster, and re-
peating the process. This leads to the prediction that connect-
ing the points within a cluster should be faster than connect-
ing points between clusters, as the participants have already
identified the current cluster as their focus. By contrast, con-
necting to a point in the next cluster should be slower because
it requires first choosing the next cluster among the clusters
that remain, and then shifting one’s focus.

To validate this prediction, we looked at the amount of
time spent by participants connecting points within clusters
versus between clusters. However, there is a confound be-
tween the cognitive proposal above and the physical structure
of the stimuli: By definition, points within the same clus-
ter are physically closer to each other than points in different
clusters. Therefore, a time difference might reflect not a cog-
nitive process but rather the physics of movement.

To control for this possible confound, we first fit a Fitts’
law model for each participant, predicting the time they
would take to move from the current point to the next point
(i.e., to connect them) as a function of (1) the distance of
the movement and (2) the size of the next point. This ac-
counted for the motor movement component of their times.
We then collected the residuals and fit a linear mixed effects
model predicting them from the cognitive variables of inter-
est: whether a connection was made within or or between
clusters, whether the stimulus was clustered or dispersed, and
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Figure 5: Distributions of cluster deviance across Number Of Points and statistical Cluster Structure. Cluster deviances com-
puted between human cluster-TSP pairs shown in blue in each panel, compared against Human Clusters-Random TSP (top),
Human Clusters-Optimal TSP (middle), and K-Means Clusters-Human TSP (bottom). Deviance values close to 0 indicate more
TSP solution conformity with clusters. Random TSPs and K-Means clusters compared to human counterparts are more deviant
compared to the Human Clusters-Human TSP baseline while optimal TSP solutions are less deviant from human clusters for

dispersed stimuli than human TSP solutions themselves.

an interaction between the two. Finally, we added all pre-
dictors (including the intercept) as random effects for each
participant to account for individual differences. The model
provided evidence (r = 4.010, p < 0.0001) that participants
took 50+ ms longer to connect points in different clusters than
points within the same cluster; see Figure 4. This is evidence
that the cluster structure of TSP problems governs the tempo-
ral dynamics of incremental tour generation.

Comparison of Human Performance to Formal
Models

We found that 52% of human TSP solutions correspond per-
fectly with their clusterings (Figure 2). This seems to be a
remarkably high percentage, and thus strong support for our
clustering proposal — but is it? Comparison to a ‘null hy-
pothesis’ helps to clarify this finding. We derived one by
computing the deviance scores between human clusterings
and randomly generated TSP solutions. The first and sec-
ond rows of Figure 5 show the distribution of these scores
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separately for the clustered and dispersed stimuli. It is im-
mediately clear that the random TSPs diverged greatly from
the human clusterings, with almost no pairs showing perfect
congruence. This contrasts strongly with the cluster deviance
scores computed over the human clusterings and human TSP
solutions.

We then considered another approach to quantify the good-
ness of human TSP performance. Traditionally, this has been
stated as “humans generate tours that are within X% of the
minimum length”. We can also evaluate their goodness rel-
ative to our clustering proposal, by evaluating whether the
clusterings people generate are consistent with optimal TSP
tours for the same stimuli. To do so, we computed the cluster
deviance between a participant’s clustering of a given stimu-
lus and the optimal TSP tour as given by the Concorde solver
(Applegate et al., 2006). The results are shown in the third
and fourth rows of Figure 5. Note that the distribution of
cluster deviances, computed separately for the clustered and
the dispersed stimuli, is comparable to the human data. In-



terestingly, we see that the optimal TSP solution tracks the
participants’ initial clusters for dispersed stimuli more closely
than the participants’ TSPs for dispersed stimuli themselves.

One hypothesis for this result could be that people re-
cluster the stimulus after connecting the points within each
cluster, and the variability in this process might lead to rela-
tively suboptimal TSPs. This would also explain why it took
people longer to select points between clusters compared to
within clusters. Incremental clustering in this fashion would
lack the attention to “global” detail that whole stimulus clus-
tering would entail, and could have led to poorer quality clus-
ters (and TSPs) as a result. This strategy can be adaptive;
it prevents people from having to remember their “global”
clusters, as they could recalculate clusters quickly when they
need them. This result could also indicate the presence of al-
ternate strategies followed by participants when they cluster
dispersed stimuli.

We also evaluated human near-optimality from the con-
verse directon by asking whether participants’ TSP solutions
deviated from clusters not generated by the participants them-
selves, but by the statistical algorithm K-Means (Lloyd, 1982;
Pedregosa et al., 2011). For each participant and each stimu-
lus, we used the number of clusters the participants identified
as the input value K to K-Means, generated a clustering, and
computed its deviation from the TSP solution the participant
generated for the same stimulus. The distributions of these
cluster deviances is shown in the fifth and sixth rows of Fig-
ure 5 separately for the clustered stimuli and the dispersed
stimuli. Here, we see more deviation from statistical optimal-
ity. When comparing the K-means clusters with participants’
TSP solutions, we find that they are not as congruent with
the TSPs as the participants’ clusters are. Perfect congruence
drops off more sharply for both disperse and clustered stim-
uli, while human-human Cluster-TSPs maintain high levels
of congruence even at 30 points.

Discussion

Previous studies of human solutions of the traveling salesper-
son problem have largely tried to infer strategies using the
optimality of the TSP solutions they generate and the time
they take to do so, with the exception of Kong and Schunn
(2007). Posited strategies include the convex-hull hypothesis
(Macgregor et al., 2000), the avoidance of crossings heuristic
(Van Rooij et al., 2003), and the clustering hypotheses (Gra-
ham et al., 2000; Kong & Schunn, 2007). In this study, we
took a more systematic approach to investigating the cluster-
ing hypothesis, showing that the clusters a participant sees in
a stimulus strongly structure their TSP solution for the same
stimulus.

The current research built on our prior work which showed
that participants’ clusterings and their TSP solutions are re-
liable when completed at different time points for the same
stimulus (Marupudi et al., 2021; Marupudi et al., 2020).
The reliabilities were generally high regardless of the clus-
ter structure of the stimulus, though they were higher for
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statistically clustered stimuli compared to dispersed stimuli.
Increasing the number of points reduced reliability for dis-
persed stimuli but not for clustered stimuli. These findings
provided indirect evidence suggesting that participants might
have a stable clustering ability, and may use it to solve TSP
problems.

The current study provides more direct evidence for this
proposal. We found remarkable convergence between par-
ticipants’ clusters and their TSP solutions on the same stim-
uli. 52% of participants’ TSP solutions were perfectly con-
gruent with their clusterings of the same stimuli. This was
true even for the dispersed stimuli, with a 43% rate of perfect
congruence. In accordance with patterns observed in past re-
search, we found that increasing the number of points results
in a decrease in perfect congruence for the dispersed stim-
uli, although relativly high congruence is maintained for the
clustered stimuli. Finding the same patterns in clustering re-
liablity, TSP reliability, and clustering-TSP congruence sug-
gests use of the same clustering mechanism in all three cases.

Additionally, we compared human-made clusters with ran-
domly generated TSP solutions and with (algorithmically
generated) optimal TSP solutions, and we compared human
TSP solutions with K-Means-generated clusters. These com-
parisons led to interesting insights about the optimality of
the strategies adopted by participants. Strikingly, optimal
TSPs followed participants’ clusters more closely than their
own TSPs did on dispersed stimuli. On the other hand, K-
Means-generated clusters performed poorly at predicting par-
ticipants’ TSP solutions compared to participants’ own clus-
ters. This could be because K-Means, as a clustering algo-
rithm, does not generally model human clustering, even af-
ter providing the value of K from the participants’ cluster-
ings. This could also imply that people’s clusterings are well-
suited for TSP-like tasks, perhaps because humans routinely
use clustering in daily life to plan and solve problems, e.g.,
when performing multiple errands in a part of town that is
new to them.

This study raises important questions about strategy use
during TSP problem solving. When participants diverge from
their originally drawn clusters, it is unclear if this is due to the
unreliabilty of clustering, or whether this is evidence for use
of a different, non-clustering strategy. Eye-tracking studies
and computational models may provide insight here. Vari-
ance in strategy use could also point to individual differences.
Vickers et al. (2001) presented evidence of stable individual
differences in the quality of TSP solutions that participants
provide. Further research can investigate whether these dif-
ferences arise due to differences in strategy use or due to vari-
ability in clustering ability (or both).

Clustering, a form of unsupervised learning, has also been
implicated in category learning (Broker et al., 2022) and lan-
guage learning (Swingley, 2005). Here, we find evidence that
it might be an important ability for computational thinking
more generally and for reasoning about graph-theoretic prob-
lems, such as the TSP in particular.
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