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Abstract 
Recent experiments (Beckers, De Houwer, Pineño, & Miller, 
2005;Beckers, Miller, De Houwer, & Urushihara, 2006) have 
shown that pretraining with unrelated cues can dramatically 
influence the performance of humans in a causal learning 
paradigm and rats in a standard Pavlovian conditioning 
paradigm. Such pretraining can make classic phenomena (e.g. 
forward and backward blocking) disappear entirely. We explain 
these phenomena by a new Bayesian theory of sequential causal 
learning. Our theory assumes that humans and rats have 
available two alternative generative models for causal learning 
with continuous outcome variables. Using model-selection 
methods, the theory predicts how the form of the pretraining 
determines which model is selected. Detailed computer 
simulations are in good agreement with experimental findings. 
Keywords: Bayesian inference; model selection; sequential 
causal learning; animal conditioning 

Introduction 
For more than two decades, researchers in both animal 
conditioning and human causal learning have identified 
significant parallels between the phenomena observed in the 
two fields (see Shanks, 2004). It has even been suggested that 
rats in conditioning paradigms learn to relate cues to 
outcomes in a manner similar to the way a scientist learns 
cause-effect relations (Rescorla, 1988). At the same time, 
there have been strong disagreements about the theoretical 
basis for both human causal learning and animal 
conditioning. On the one hand, conditioning models 
(Rescorla & Wagner, 1972) have been applied to human 
causal learning (Shanks, 1985); on the other, models of 
human causal learning have been applied to animal 
conditioning (Blaisdell, Sawa, Leising, & Waldmann, 
2006;Cheng, 1997). 

A phenomenon that has received particular attention in 
both the human and animal literatures is the blocking effect 
(Kamin, 1969). Suppose that two cues, A and X, are 
repeatedly and consistently paired with a particular outcome 
O . X will be viewed as a weaker cause of O  if A alone is 
repeatedly paired with O  either before (forward blocking) or 
after (backward blocking) pairings of the AX compound with 
O . Some evidence has suggested that blocking is less 
pronounced in humans than in rats  (De Houwer, Beckers, & 

Glautier, 2002). However, recent experiments by Beckers et 
al. (2005, 2006) indicate that apparent differences between 
humans and rats in the conditions that promote blocking may 
reflect different assumptions about the cue-reward 
relationship, rather than any basic difference in causal 
learning processes between species. For both species, Beckers 
et al. showed that different pretraining conditions using 
unrelated cues could alter the learner’s assumptions and 
thereby prevent or promote the occurrence of classic 
phenomena such as forward and backward blocking (leading 
rats to behave more like humans, and vice versa).  

The goal of this paper is to provide a computational 
explanation for these experimental findings based on 
Bayesian inference. Our theory proposes that experimental 
subjects, whether rats or humans, have available multiple 
models of cue integration appropriate for different situations 
(Waldmann, 2007; Lucas & Griffiths, 2007). From our 
computational perspective, pretraining influences the 
probability that causal learners will select a particular 
integration model during a subsequent learning session with 
different cues, and this choice in turn determines the 
magnitude of blocking effects. 

Most previous statistical theories of human causal learning 
have focused on learning from summarized contingency data 
based on binary variables (Cheng, 1997;Griffiths & 
Tenenbaum, 2005). The computational theory described here 
instead provides a trial-by-trial model of learning from 
sequential data. For nonverbal animals, there is no obvious 
way to present summarized data; often, humans also must 
learn from sequential data. In particular, sequential models 
are required to account for influences of the order of data 
presentation (Danks, Griffiths, & Tenenbaum, 2003;Dayan & 
Kakade, 2000;Shanks, 1985). A computational theory should 
enable beliefs to be dynamically updated by integrating prior 
beliefs with new observations in a trial-by-trial manner.  In 
addition, in conditioning experiments the outcomes (e.g., food 
reward) are generally continuous in nature (i.e., the 
magnitude of the reward may vary). A computational theory 
must therefore address continuous-valued as well as binary 
variables in order to integrate causal learning by humans with 
learning by other animals.   
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Bayesian Theory of Sequential Learning 
Within our theory of causal learning, each causal model 
corresponds to a different probabilistic model for generating 
the data. For continuous-valued outcomes we use a linear-
sum model (Dayan & Kakade, 2000), which has been used 
previously to explain many aspects of the blocking effect, and 
a noisy-MAX model, proposed here for the first time. The 
latter is a generalization of the noisy-OR model, which gives 
a good account of human causal learning about binary 
variables based on summarized contingency data (Cheng, 
1997;Griffiths & Tenenbaum, 2005; Lu et al, 2007). The 
choice of model depends on the type of pretraining, and is 
determined by standard Bayesian model selection. These 
expectations based on pretraining carry over to influence the 
learner’s judgments in the subsequent causal learning task, 
even though the specific cues differ from those used in the 
pretraining.  

We first introduce likelihood functions for the two different 
causal models assumed by our theory. We then describe the 
priors, the resulting full models, and model selection. Finally, 
we report simulations of experimental data and discuss how 
the present theory relates to others.  

 
Causal Generative Models as Likelihood Functions 
We focus on the relationship between two binary-valued 
causes 21 , xx  (i.e. 1=ix if cause i is present, and 0=ix  

otherwise) and a continuous-valued outcome variableO . We 
define two continuous-valued hidden variables 21, RR . The 
hidden variables correspond to internal states that reflect the 
magnitudes of the effect generated by each individual cause. 
Each such magnitude corresponds to the weight of the 
corresponding cause, 21,ωω , analogous to causal strength 
(Cheng, 1997). The generative model of the data, as shown in 
Figure 1, is given by 
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iii xRPRROPdRdRxxOP ωωω  (1) 

The first generative model is called the linear-sum model 
because the output O  can be expressed as the sum of R1 and 
R2 plus Gaussian noise with mean 0 and variance 2

mσ ,  
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The second generative model, termed the noisy-MAX 
model, is motivated by the successful noisy-OR model for 
causal reasoning with binary variables by humans (Cheng, 
1997). To adapt the noisy-OR model for continuous outcome 
variables, we express it as a noisy-MAX, 
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where the function );,( 21 TRRF  is a noisy-MAX function of 

21, RR  specified by: 
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The parameter T determines the sharpness of the noisy-MAX 
function. As T  0, the noisy-MAX function becomes 
identical to the MAX function, i.e., equal to the maximum 

value of R1 and R2. By contrast, as T ∞ the noisy-MAX 
function approaches the average (R1+R2)/2.  

For both models, the hidden effects of the individual causes 
are assumed to follow a Gaussian distribution,  

( ){ } .2 ,1  ,2)(exp),|( 22 =−−∝ ixRxRP hiiiiii σωω      (5) 
  
 
Figure 1.  An illustration of the 
generative models. The different models 
combine R1 and R2 in different ways, a 
linear-sum or a noisy-MAX, to yield the 
output effect O . 
 

Causal Priors  
To perform Bayesian estimation we must specify prior 
distributions on the weights )(),( 21 ωω PP , which we define 
as Gaussians with 0 mean and small variance 2

pσ . This prior 
distribution expresses the default assumption that the weight 
of both causes is close to zero before observing any data. 

For sequential presentation in a trial-by-trial dynamic 
manner, we also assume a temporal prior for the change of 

21,ωω  over time (i.e.,trials), as in Dayan and Kakade (2000). 
{ } 2 ,1  ,2)(exp)|( 2211 =−−∝ ++ iP T

t
i

t
i

t
i

t
i σωωωω       (6) 

These temporal priors imply that weights may be slowly 
varying from trial to trial. The amount of variation is 
controlled by the parameter 2

Tσ .  As 2
Tσ  0 the weight 

becomes fixed over trials, thus effectively switching off the 
temporal prior. For larger 2

Tσ  the weights can change 
significantly over trials. 

 
Combining the Likelihood and Priors  
We use the standard technique for combining likelihoods with 
temporal priors for sequential data (Ho & Lee, 1964).  The 
linear-sum model can be obtained from this formulation as 
the special case in which the likelihood, prior, and temporal 
priors are Gaussian.   

To simplify the notation, we write ),,( 21 xxx =r  
).,( 21 ωωω =

r We write { }tO  and { }txr  to denote the set of 
rewards and causes on all trials up to and including trial t, i.e. 
{ } ),,,( 11 OOOO ttt K−= . 

The Bayesian formulation for updating the estimates of the 
weights is given in two stages: 
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Here we set )|()|()|( 2
1

21
1

1
1 tttttt PPP ωωωωωω +++ =
rr  assuming 

independence in the temporal prior. 
The process is initialized by setting )( 0ω

rP to equal the prior 
(i.e., product of Gaussians with 0 means and variances 2

pσ ). 

We use Eq. 7 to predict a distribution on the weights 1ω
r  at 

time t=1  (with the convention that { }0O  and { }0xr  are empty 
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sets). Then we employ Eq. 8 to make use of the observed data 
on trial 1, 11, xO , to update the estimate of the weights, 1ω

r .  
Eqs. 7-8 correspond to prediction and correction for each 

trial as a recursive estimator.  That is, only the estimated 
weight distribution from the previous trial t  and the current 
cue-outcome measurement, 11, ++ tt Ox , are needed to compute 

the weight estimate for the current trial, 1+tω . Thus the 
model does not need to memorize cue-outcome pairs across 
all trials. If all the probabilities are Gaussian, then updating 
the probability distributions using Eqs. 7-8 simply 
corresponds to updating the means and covariance matrices 
using the standard Kalman filter equations (Dayan & Kakade, 
2000). In the case of the noisy-MAX model, Eqs. 7-8 are 
applied directly in the distribution updating. 

 
Parameter Estimation and Model Selection 
There are two types of inference that we can make from the 
posterior distributions }){},{|( tt

t xOP rr
ω . First, we can perform 

parameter estimation to estimate the weights tω
r , i.e., the 

weights of causes after t trials. Second, we can evaluate how 
well each model fits the data and perform model selection 
(i.e., choose between the linear-sum and noisy-MAX 
models). As discussed by Lu et al. (2007), different 
experimental paradigms can be modeled as parameter 
estimation or model selection. 

Parameter estimation involves estimating the weight 
parameters tω

r
. In our simulations, these estimates are the 

means of weights with respect to the distribution:  
.}){},{|(∫= t

tt
ttt xOPd ωωωω

rrrrr
            (9) 

Model selection involves determining which model is more 
likely to account for the observed sequence of data { }tO  and 

{ }txr . For each model (linear-sum or noisy-MAX), we 
compute: 
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with the convention that  
).(),|(}){},{|( 11101 ωωω
rrrrr PxOPdxOOP ∫=       (11) 

Simulation of Blocking Experiments 

We first report our simulations of traditional 
forward/backward blocking paradigms (Shanks, 1985) using 
linear-sum and noisy-MAX models. These two blocking 
effects provide a critical test for any sequential learning 
model.  We then apply our Bayesian approach, e.g. using 
model selection, to a human experiment that employed 
pretraining (Beckers et al., 2005), and a similar conditioning 
experiment using rats (Beckers et al., 2006).  The simulations 
will illustrate how our approach accounts for human and rat 
performance based on model selection and parameter 
estimation for sequential data. 

Forward/Backward Blocking 
Conditioning paradigms provide a window to the 
investigation of natural inferences produced by causal 
learning. Two common paradigms, schematized in Table 1, 
are forward blocking (A+, AX+) and backward blocking 
(AX+, A+).  In both, the common finding is acquisition of a 
weaker weight between X and reward O  than that between 
A and reward O  (Kamin, 1969; Shanks, 1985). Note that 
backward blocking (typically weaker than forward blocking) 
implies that the weight of the absent cue X is updated as a 
result of a series of A+ trials.  Any successful sequential 
learning model must explain the difference of weights 
associated with different cues in both blocking paradigms. 

Blocking 
paradigm 

Training 
phase 1 

Training 
phase 2 

test 

forward 8A+ 8AX+ A, X 
backward 8AX+ 8A+ A, X 

Table 1: Design summary for a typical blocking experiment. The 
numerical values indicate the number of trials, + indicates the 
presence of the outcome effect.  

Figure 2 shows simulations of learning of weight for cue A 
( Aω , solid) and cue X ( Xω , dashed) as a function of trial 
number in forward blocking (black) and backward blocking 
(gray) designs. Figure 2A, B shows predictions based on the 
linear-sum and the noisy-MAX model, respectively. Both 
models predict the basic phenomena, as the weight associated 
with cue X is weaker than the weight for A in both forward 
and backward blocking paradigms, and more so in the former. 
However, the linear-sum model predicts a larger weight 
difference than does the noisy-MAX model in both 
paradigms.  Furthermore, for the weight associated with cue 
X, the linear-sum model predicts a weaker weight in forward 
blocking (dashed black) than in backward blocking (dashed 
solid), which is an asymmetry between forward/backward 
blocking.  The noisy-MAX model also predicts an 
asymmetry, although it diminishes as the number of trials 
increases. A novel prediction from the noisy-MAX in forward 
blocking is that the weight associated with cue A is expected 
to decrease to 0.5 after a large number of AX+ trials. 

 
Figure 2. Predicted mean weights of each cue as a function of 
training trials in two different blocking paradigms. (A) linear-sum 
model; (B) noisy-MAX model. The black lines indicate predictions 
for forward blocking paradigm (A+, AX+); the gray lines indicate 
predictions for backward blocking paradigm (AX+, A+).  The solid 
lines are estimates of weights for cue A; the dashed lines are 
estimates of weights for cue X. The linear-sum model predicts a 
larger difference between Aω  and Xω across the two blocking 
paradigms than does the noisy-MAX.  

A B 
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Impact of Pretraining on Human Judgments  
We simulated results of a pretraining study with humans by 
Beckers et al (2005). Table 2 schematizes the experimental 
design. G and H indicate different food cues: + and ++ 
indicate a moderate or a strong allergic reaction, respectively. 
As shown in Table 2, additive pretraining involved G+ trials 
followed by H+, and then followed by GH++. Sub-additive 
pretraining involved G+ trials followed by H+ trials, and then 
followed by GH+ trials.  

The experiment included three phases: (a) pretraining, (b) 
elemental training, and (c) compound training. The elemental 
and compound training were always the same but the 
pretraining could be either additive or sub-additive for the 
two groups. In both groups, standard forward blocking trials 
with different food cues (A+ followed by AX+) were 
presented in phase 2 and 3. Note that the design used 
completely different cues in the pretraining phase 1 (cues G, 
H) and phases 2 and 3 (cues A, X, K, and L). If blocking 
occurs, we would expect the weight of cue X to be reduced 
by its pairing with cue A, due to the earlier elemental training 
on A in phase 2. K and L served as control cues, which were 
only presented in phase 3 as KL+ trials. 

After completing these three phases, participants were 
asked to rate how likely each food cue separately would cause 
an allergic reaction. As indicated by the human results shown 
in Figure 4A, cue X was blocked after additive pretraining but 
not after sub-additive pretraining. More precisely, additive 
pretraining resulted in a lower rating for cue X than for the 
control cues, K and L, both of which in turn received 
significantly lower causal ratings than cue A. In contrast, after 
sub-additive pretraining there was little difference among the 
ratings for X, K, and L. 

 
Group Phase 1: 

Pretraining 
Phase 2: 
Elemental 
Training 

Phase 3: 
Compound 
Training 

Additive 8G+/8H+/8GH++ 
/8I+/8Z- 

8A+ 
/8Z- 

8AX+/8KL+ 
/8Z- 

Subadditive 8G+/8H+/8GH+ 
/8I++/8Z- 

8A+ 
/8Z- 

8AX+/8KL+ 
/8Z- 

Table 2: Design summary for human pretraining experiment in 
Beckers et al. (Exp. 2, 2005).  
 

The experimental design used by Beckers et al. (2005) can 
be translated into the notation of our model as follows. G+, 
H+, GH+ respectively correspond to ),0,1(),( 21 =xx  

),1,0( and )1,1( . The notation + and ++ correspond to 1=O  
and 2=O , respectively. Using the pretraining trials in phase 1, 
we performed model selection to infer which model is more 
likely for the additive and sub-additive groups. With the 
models selected in the pretraining phase, we then used trials 
in phases 2 and 3 to estimate the distribution of the weights 
ω  for each cue. The mean of each ω  was computed to 
provide a comparison with human ratings. 

We employed trials in the pretraining phase to compute the 
log-likelihood ratios for the noisy-MAX model relative to the 
linear-sum model using Eq. 10. The resulting plots are shown 

in Figure 3. In the simulation we used model parameters 
4.0  ,01.0,3.0,6.0 ==== TmTh σσσ . To perform model 

selection, we need to impose a threshold on the log-likelihood 
ratios. We set the threshold to be the log-likelihood ratio 
obtained when only the data G+, H+ had been shown (as the 
experimental subject would have no basis for a preference 
between the two models at this stage). The simulation results 
(see Figure 3) show that the linear-sum model is selected if 
the pretraining is additive (i.e., G+, H+, GH++), because the 
corresponding ratio is below the threshold, whereas the noisy-
MAX model is selected if the pretraining is sub-additive (i.e., 
G+, H+, GH+), because the corresponding ratio is above the 
threshold 

 
We then computed the mean weights, using Eq. 9, for the 

models chosen by the model selection stage. These mean 
weights (see Figure 4B) constitute our simulation’s 
predictions for the causal ratings. The simulation results are in 
good agreement with the results for humans (Figure 4A). The 
linear-sum model generates accurate predictions for the 
additive group: the mean weight for X is much lower than 
weights for the control cues K and L, indicating blocking of 
causal learning for cue X. In contrast, the noisy-MAX model 
gives accurate predictions for the sub-additive group: the 
mean weight for X is about the same as the weights for the 
control cues K and L, consistent with absence of blocking for 
X. 

 
Figure 4. Mean causal rating for each cue. (A) Human ratings in 
Experiment 2 by Beckers et al (2005); see their Figure 3, p. 243. 
Black bars indicate the mean rating for additive pretraining group; 
white bars for sub-additive pretraining group.  (B) Predicted ratings 
based on the selected model for each group. Black bars indicate the 
mean ω  based on the linear-sum model, which gives a good fit for 
the human means in the additive group. White bars indicate the mean 
ω  based on the noisy-MAX model, which give a good fit for the 
human means in the sub-additive group. 

Impact of Pretraining on Rat Conditioning 
Now we compare the predictions of the models to the 

experimental findings for a conditioning experiment with rats 
(Beckers et al., 2006). Animals were presented with cues that 
were associated with shocks while the animals pressed a lever 

A B 

Figure 3. Log-likelihood ratios 
for the noisy-MAX model 
relative to the linear-sum model 
for the additive group (black) 
and the sub-additive group 
(white) in human experiment by 
Beckers et al. (2005). The 
dashed line indicates the 
threshold for model selection. 
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for water. We focus on two conditions: sub-additive and 
irrelevant element, as schematized in Table 3 (Beckers et al., 
2006, Experiment 1). Animals in the experimental group 
received forward blocking training (A+ followed by AX+); 
control animals did not receive blocking training (B+ 
followed by AX+). Before the actual blocking training (phase 
2 and phase 3), experimental and control animals in the sub-
additive condition were exposed to a demonstration of two 
effective cues, C and D, that had sub-additive outcomes (i.e., 
C+, D+, CD+), or to an irrelevant pretraining (i.e. C+, D+, 
E+). The number of lever-press responses to X after phase 3 
was measured for all animals. 

 
Condition and  
  group 

Phase 1: 
Pretraining 

Phase 2: 
Elemental 
Training 

Phase 3: 
Compound 
Training 

Subadditive  
Experimental 
Control 

 
4C+/4D+/4CD+ 
4C+/4D+/4CD+ 

 
12A+ 
12B+ 

 
4AX+ 
4AX+ 

Irrelevant element   
Experimental 
Control 

 
4C+/4D+/4E+ 
4C+/4D+/4E+ 

 
12A+ 
12B+ 

4AX+ 
4AX+ 

Table 3: Design summary for the rat pretraining experiment by 
Beckers et al. (Exp. 1, 2006).  

We used the same translation to the model notation as 
before. We set the threshold such that without any training, 
the linear-sum model would be preferred over the noisy-
MAX model, as evidence suggests that rats typically assume 
linear integration (Beckers et al., 2006, p. 98; see also 
Wheeler, Beckers, & Miller, 2008). We computed the log-
likelihood ratios for the pre-testing data, using Eq. 10, to 
confirm that the noisy-MAX model was selected for the sub-
additive condition and the linear-sum model for the irrelevant 
condition. The results are shown in Figure 5. We used model 
parameters ,6.0,6.0 == Th σσ 3.0 ,01.0 == Tmσ in the 
simulations. Compared to the parameter set used for the 
human experiments, we increased the variance for the 
temporal prior to speed up causal learning of cues (perhaps 
reflecting the high salience of electric shock as an outcome).  

Beckers et al. (2006) used the suppression ratio of cue X as 
a measure of rats' causal judgment about cue X. A value of 0 
for the suppression ratio corresponds to complete suppression 
of bar pressing (i.e., high fear of cue X), and a value of 0.5 
corresponds to a complete lack of suppression (i.e., no fear of 
X). Figure 6A shows the mean suppression ratios for 
experimental and control animals in Experiment 1 of Beckers 
et al. (2006). 

We model the suppression ratio as a function of the 
predicted mean weight of cue X, 

Xω  with Eq. 9. Assuming 
that the mean number of lever presses in the absence of cue X 
is N, the expected number of lever presses in the presence of 
cue X will be XNN ω− . Accordingly, the predicted 
suppression ratio can be computed as: 

X

X

X

X

NNN
NN

ω
ω

ω
ω

−
−

=
+−

−
=

2
1

  ration  suppressio     (12) 

Figure 6B shows the predictions of selected models for the 
two conditions tested by Beckers et al. (2006). Similar to the 
results obtained when modeling the human data, the noisy-
MAX model was selected for the sub-additive condition, and 
the linear-sum model for the irrelevant condition. 
Accordingly, the suppression ratio was estimated using the 
noisy-MAX model for the subadditive condition. The 
suppression ratio in the irrelevant condition was computed by 
the linear-sum, because the default model was assumed to 
favor the linear-sum given that irrelevant pretraining data did 
not provide clearly discriminative information for model 
selection. As shown in Figure 6B, there was no significant 
difference in the suppression ratio for the noisy-MAX model, 
in agreement with rat data showing no significant difference 
between the experimental and control groups with sub-
additive pretraining. In contrast, suppression ratios differed 
between experimental and control groups using the linear-
sum model in agreement with the rat data showing a 
significant difference between the experimental and control 
groups with irrelevant element pretraining. 

 
Figure 6. Mean suppression ratio for cue X in experimental and 
control groups by pretraining conditions in the subadditive condition 
and irrelevant condition (Beckers, et al, 2006, Exp. 1). Black/white 
bars indicate the experimental/control group, respectively. (A) Rat 
results; (B) Suppression ratio predicted by the noisy-MAX model 
(matched to sub-additive experimental condition), and predicted by 
the linear-sum model (matched to irrelevant element condition).  

General Discussion 
 The Bayesian theory of sequential causal learning 

described in the present paper provides a unified explanation 
for important learning phenomena observed with both 
humans and rats. In particular, the theory accounts for 
influences of pretraining on subsequent learning with 
completely different stimuli (Beckers, et al., 2005, 2006). The 
key assumption is that learners have available multiple 
generative models, each reflecting a different integration rule 
for combining the influence of multiple causes (cf. Lucas & 
Griffiths, 2007; Waldmann, 2007). When the outcome is a 
continuous variable, both humans and rats have tacit 
knowledge that multiple causes may have a summative 

A B 

Figure 5. Log-likelihood 
ratios of noisy-MAX 
model relative to linear-
sum model for the 
subadditive condition 
(white), and the irrelevant 
condition (gray) in the rat 
experiment (Beckers, et 
al., 2006, Exp. 1). 
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impact on the outcome (linear-sum model). Alternatively, the 
outcome may be effectively “saturated” at a level 
approximated by the weight of the strongest individual cause 
(noisy-MAX). Using standard Bayesian model selection, the 
learner selects the model that best explains the pretraining 
data, and then employ the favored model in estimating causal 
weights with different cues during subsequent learning.  Note 
that the information provided in Phases 2-3 is identical for 
both groups; hence only Phase 1 (pretraining) is relevant to 
model selection. 

A key component of the sequential learning theory is the 
temporal prior, which controls dynamic updating of the 
estimated weight of each cue in a trial-by-trial manner. The 
temporal prior allows the theory to explain both forward and 
backward blocking effects, and more generally captures the 
influence of trial order on causal learning. Trial-order effects 
are outside the scope of models that only deal with 
summarized data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 
2005; Lu et al., 2007). 

The present theory is also more powerful than previous 
accounts of sequential causal learning. The Rescorla-Wagner 
model (Rescorla & Wagner, 1972) and its many variants (see 
Shanks, 2004) only update point estimates of causal strength, 
and thus are unable to represent degrees of uncertainty about 
causal strength (Cheng & Holyoak, 1995). By adopting a 
Bayesian approach to learning probability distributions, the 
present theory provides a formal account of how a learner’s 
confidence in the causal strength of a cue will be expected to 
change over the course of learning. The same limitation 
(updating point estimates of strength, rather than probability 
distributions) holds for a previous simulation of sequential 
learning based on the noisy-OR generative model (Danks, 
Griffiths & Tenenbaum, 2003). Most importantly, the present 
theory goes beyond all previous accounts of dynamical causal 
learning (e.g., Dayan & Kakade, 2000) in its core assumption 
that learners, both human and non-human, are able to flexibly 
select among multiple generative models that might “explain” 
observed data. The theory thus captures what appears to be a 
general adaptive mechanism by which biological systems 
learn about the causal structure of the world. 
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