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The Bayesian Logic of the Conjunction Fallacy: 

Effects of Probabilities and Frequencies in Contingency Tables 
Momme von Sydow (momme.von-sydow@bio.uni-goettingen.de) 

 

Department of Psychology, Universität Göttingen,  

Gosslerstr. 14, D-37073 Göttingen, Germany 

 

Abstract 

In this paper a Bayesian logic of the conjunction fallacy (CF) 

is advocated as a normative and descriptive proposal for 

testing hypotheses about dyadic logical connectors. Accor-

ding to traditional extensional probability a violation of addi-

tivity and, in particular, a violation of P(A) ≥ P(A ∧ B) or of  

P(Linda is a bank teller) ≥ P(Linda is a bank teller AND  an 

active feminist) is a fallacy. The psychological literature has 

adopted this interpretation. In contrast, the proposed Bayesian 

model formulates qualitative as well as quantitative condi-

tions under which such a judgment is reasonable. Qualitati-

vely, the model is applicable to situations in which probabili-

ties have to be taken (or are taken) not directly as extensional 

probabilities, but as (posterior) probabilities for alternative 

logical hypotheses about whole situations. If the preconditions 

of the model are given, Bayesian logic should be applicable to 

novel situations, like highly transparent tasks, even if frequen-

cy information is provided in a fully specified contingency 

table. Quantitatively, the model makes predictions about the 

effects of extensional probability patterns and resulting 

Bayesian probabilities and corresponding ‘CFs’. Additionally, 

while keeping the probability patterns constant, the model 

predicts effects of different underlying frequencies (sample 

sizes). In the experiment two quantitative factors were varied 

using highly transparent tasks with explicit frequency 

information in a contingency table. Despite using these strict 

conditions, the results supported the predicted occurrence of 

‘double CFs’ and the differential effects of sample size. 

Keywords: Bayesian logic, conjunction fallacy, probability 

theory, hypothesis testing, noise, frequency format, logic 

 

The Additivity of Probability in Classical and 
Non-Classical Probability Theories 

It is a basic truth of standard extensional probability theory 

that the probability of a set X can never become larger than 

the probability of a set Y if the latter has a larger extension 

than the former (inclusion rule). Applied to logical 

connectors and, particularly, to conjunctions, no conjunction 

‘A ∧ B’ can be more probable than one of its conjuncts, ‘A’ 

or ‘B’, since the intersection of both is a subset of each 

conjunct. The conjunction is true for A & B cases only, 

whereas, for instance, the conjunct ‘A’ is additionally true 

for A & non-B cases. Correspondingly, probabilities have to 

satisfy the (extensional) conjunction rule: 

 

 P(A) ≥P(A ∧ B);  P(B) ≥ P(A ∧ B) (1) 

 

Taking the classical axioms of probability theory of 
Kolmogorov, this can be derived directly from his third 
axiom (σ-additivity): The probability of an event set which 

is the union of n other disjoint subsets of events Ei is the 
sum of the probabilities of those subsets:   

∑=∪∪∪
i

in EPEEEP )()...( 21  (2) 

There are alternative calculi of probability or belief which 
have abandoned or extended the axioms of probability 
theory. In our context, the most prominent approaches are 
the Dempster-Shafer theory of belief functions, Cohen’s 
Baconian probabilities, and different formalizations of 
multi-valued or fuzzy logic (cf. e. g., Hájek, 2001, Hayek, 
2003). The belief functions postulated by Dempster-Shafer 
theory are non-additive, but they meet the requirement of 
Equation 1. Likewise, the Baconian probability of a con-
junction violates Equation 2 – it is equal to the minimum of 
the probabilities of their conjuncts, but does not violate 
Equation 1. Finally, in multi-valued or fuzzy logic there are 
quite different t-norms (Łukasiewicz, Gödel, product), but 
these t-norms are all consistent with P(A) ≥ P(A ∧ B). 

The Conjunction Fallacy Debate in Psychology 

When Tversky and Kahneman (1983) initiated a broad psy-

chological debate on the conjunction fallacy as a corner-

stone of their ‘heuristic and biases’ program, they took the 

conjunctive rule (1) as a general norm of rational thought. 

The conjunction debate was mostly concerned with tasks 
of the sort of the Linda task. In this task subjects read: 
“Linda is 31 years old, single, outspoken, and very bright. 
She majored in philosophy. As a student, she was deeply 
concerned with issues of discrimination and social justice, 
and also participated in anti-nuclear demonstrations.” 
Subjects were asked to rank several statements about Linda 
to their probability, including: “Linda is a bank teller” (T) 
and “Linda is a bank teller and she’s active in the feminist 
movement” (T and F). Tversky and Kahneman (1983) found 
that a majority of subjects judged ‘T and F’ to be more 
probable than ‘T’ and concluded that subjects committed a 
conjunction fallacy (CF) due to ‘representativeness’ of ‘F’.

1
  

In the subsequent debate all aspects of the task and its 
interpretation became objects of closer scrutiny.  

One group of objections concerned subtle linguistic or 
pragmatic aspects of the task which makes the interpretation 
of ‘T’ as well as of ‘T and F’ logically ambiguous, perhaps 
exculpating participants from committing a fallacy. A 
precondition for calling a judgment a ‘conjunction fallacy’ 
is that natural language roughly corresponds to the meant 
ideal connectors in the first place. 

Firstly, in natural language ‘A and B’ is not always to be 
interpreted as a conjunction ‘A ∧ B’, with the common truth 

                                                           
1 Conjunction tasks which have been explained by availability are 

not topic of this paper. 
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table function ‘1, 0, 0, 0’ (for A & B, A & ¬B, ¬A & B, 
¬A & ¬B). As Hertwig (1997, cf. Mellers, Hertwig & 
Kahneman, 2001) made clear, the sentence “we invite 
friends and colleagues to the party” often implies an 
inclusive disjunction of friends and colleagues (with a truth 
function ‘1, 1, 1, 0’), not their intersection. Hertwig sug-
gested that the phrase ‘bank tellers who are active in the 
feminist movement’ would exclude this unintended interpre-
tation as union, not testing true CFs. In Mellers, Hertwig 
and Kahneman (2001), Kahneman conceded that ‘and’ 
might have indeed been semantically ambiguous. However, 
in regard of Hertwig’s ‘who are’ formulation he objected 
that this phrase is also inadequate, since it too strongly cued 
participants to interpret AND as a subset only. In their ad-
versarial collaboration they settled on an “and are” formula-
tion (we shall even use the stricter ‘who’ formulation). Their 
between-subject tests in a frequency format did not lead to a 
clear decision of their dispute (Mellers, et al. 2001). 

Secondly, a proposition ‘A’, if presented in the context of 
a proposition ‘A and B’, needs not to be interpreted as the 
dyadic connector ‘affirmation A’ (with the truth function ‘1, 
1, 0, 0’), but it may be interpreted as ‘A but not B’ (‘0, 1, 0, 
0’). “Linda is a bank teller and is active in the feminist 
movement” might itself prompt an interpretation of “Linda 
is a bank teller” as “Linda is a bank teller and not active in 
the feminist movement”. Actually, Tversky and Kahneman 
(1983) themselves in one experimental condition aimed to 
remove this problem by using the phrase “Linda is a bank 
teller whether or not she is active in the feminist 
movement”, but this only partially reduced the number of 
observed CFs. However, Hilton (1995, 260, cf. Tentori, 
Bonini & Osherson, 2004) noted that this formulation might 
still be misinterpreted as asserting that Linda is a bank teller 
even if she is a feminist. Moreover, Tversky and Kahneman 
did not simultaneously remove the other mentioned mis-
understanding. Actually, Macdonald and Gilhooly (1990, cf. 
Tentori et al., 2004) did observe a much larger reduction 
with some problem alterations and the wording “Linda is a 
bank teller who may or may not be active in the feminist 
movement” (we shall use a similar formulation). 

Another group of objections concerned the concepts of 
probability and of representativeness. Fiedler (1988) men-
tioned alternative understandings of the term ‘probability’ 
and experimentally significantly reduced the portion of CFs 
by using a frequency formulation instead (cf. Tversky & 
Kahneman, 1983).  Gigerenzer (1991, cf. 1996) criticised 
Kahneman and Tversky’s bias and heuristic approach and 
argued that the errors in probabilistic reasoning, like CFs, 
are in fact not violations of probabilistic theory, since from 
a frequentist perspective extensional probability theory is 
not applicable to single events. Kahneman and Tversky 
(1996) objected that giving up the inclusion rule for single 
events leads to normative agnosticism and empirically they 
showed CFs also to occur in a frequency format, at least in 
between-subject tasks.  Gigerenzer (1996) defended his 
position and objected to a content-blind application of 
norms like the conjunction rule and to vague heuristics, like 
‘representativeness’, as one-word explanations. To 
Gigerenzer, between-subject designs are not decisive, since 

they do not prove a violation of internal inconsistency (also 
affecting Mellers, Hertwig, and Kahneman, 2001, findings).  

Hertwig and Chase (1998) showed that besides a fre-
quency format an estimation response mode also reduces 
CFs. Hertwig and Gigerenzer (1999) showed that the word 
‘probability’ is polysemous, whereas the natural language 
sense of frequency ‘is primarily mathematical’. Sloman, 
Over, Slovak and Stibel (2003) emphasised the importance 
of the ranking vs. rating responds mode and suggested that 
ranking may lead to understanding the options as alter-
natives. Recently, the existence of CFs was also shown by 
Tentori, et al. (2004) in transparent within-subject tasks both 
with a probability and a frequency format and also by Sides, 
Osherson, Bonini and Viale (2002) in betting contexts.  

The Bayesian Logic  
of the Conjunction Fallacy 

Building on the result that ‘probability’ is polysemous (cf. 
Hertwig and Gigerenzer, 1999), a specific interpretation of 
probability is proposed that differs from standard 
extensional probability but is neither non-mathematical nor 
irrational. Bayesian logic provides probabilities about hypo-
theses concerning dyadic logical relations and whole 
situations (not particular cases, as in other Bayesian accounts: 
e. g. Fisk, 1998, cf. e. g. the BLOG model in machine 
learning). Although the proposed Bayesian logic may well 
be applicable more generally, the current article is confined 
to the discussion of the conjunction fallacy.  

The advocated Bayesian logic is related to Oaksford and 
Chater’s Bayesian optimal information gain approach 
(Oaksford and Chater, 2003) elaborated for the Wason 
selection task (for an extension to different probabilistic 
connectors, see von Sydow, 2006). However, the Bayesian 
logic advocated here is a model of hypotheses evaluation 
based on complex data patterns integrating over many noise 
levels and not one of information selection which is only 
concerned with single data points and one noise level.  

The proposed Bayesian logic of hypothesis testing 
(‘Bayesian logic’ for short) inherits aspects of probability 
theory and of propositional logic of dyadic connectors. 
Nonetheless, it does not subscribe to the inclusion rule or, 
more particularly, to the conjunction rule. Based on an 
observed pattern of data, D, given in a 2 × 2 contingency 
matrix, the Bayesian model specifies the posterior probability, 
P(H|D), of different ‘logical’ hypotheses, Hk, like ‘pupils 
from the Linda school generally become bank tellers’ (B) or 
they ‘generally become bank tellers and feminists’ (A and B).  

(1.) Similar to other kinds of multi-valued or fuzzy logics, 
this probabilistic Bayesian logic replaces the two values ‘true’ 
(‘T’ or ‘1’) and ‘false’ (‘F’ or ‘0’) of bivalent propositional 
logic by instead admitting truth values in the whole interval, 
[0, 1], normally used for probabilities. On the logical side, 
Bayesian logic is basically still concerned with all 14 
possible dyadic connectors, �i, of propositional logic (like 
AND, OR, etc.) which may relate any atomic propositions A 
and B, A �i, B, without tautology or contradiction.  

(2.) More specifically, Bayesian logic assesses proba-
bilities for hypotheses PH(X) that concern patterns of pro-
babilities or ‘probability tables’ (PTs), probabilistic 
analogues to deterministic truth tables. PTs are hypothetical 
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constructs that can be tested against data. Dyadic Bayesian 
logic is confined to PTs based on tuples of four probabilities 
(P(A ∧ B) + P(A ∧ ¬B) + P(¬A ∧ B) + P(¬A & ¬B) = 1).  

(3.) Logical connectors and hypotheses about probability 
tables are linked by the two assumptions of idealization and 
uncertainty. According to the assumption of idealization the 
connector is based on a deterministic relation with a 
basically equal probability distribution for true cases. The 
assumption of uncertainty (noise, error, risk, or randomness) 
assumes some general level of uncertainty R for a natural set 
of observations of a relation. This corresponds to the fact 
that we live in an uncertain world, with only probabilistic 
relations (objective uncertainty) or limited knowledge 
(subjective uncertainty). Rational models of testing hypotheses 
about logical relations under uncertainty are needed. Only in 
the borderline case of R = 0 a single disconfirmatory case 
should falsify a hypothesis.  The model asserts that uncer-
tainty/noise is equally distributed over the PT. The actual R 
value r (0 ≤ r ≤ 1) may be fixed by prior knowledge or can be 
calculated from the model itself.   

Mathematically, the probability of a false case in a PT with R 
= 0 is zero: P(F°i) = f = 0. The probability of a true case, P(T), 
in such a PT is weighted by the number of true cells of the 
connector under investigation: P(T°i | R = 0) = 1 / N(T°i) = t (cf. 
Table 1). If the error term approaches its maximum the PTs of 
all connectors �i in question converge at a pattern where all 
cases have the same probability, c = .25. Formally, for any 
PT(�I, r) the probability of a true case T (now with noise) is t - 
r (t - c). Likewise, noise increases the zero probability of a false 
case F by r multiplied with the convergence value c. This 
formalization of randomness levels is coherent with the idea 
that of all true cases of a connector a portion r is distributed at 
random over all four possible cases (including other true cases). 
Table 1 provides examples for the PTs of the hypothesis of a 
conjunction ‘A AND B’, an affirmation ‘A’ and an inclusive 
disjunction ‘A OR B’. Here the error level is modeled as a 
discrete variable (in steps of .10). Please note that the combined 
hypothesis Hk represent a connector combined with an 
uncertainty level (Hk = �i ∧ Rj). For the experiment, the prior 
probabilities for the hypotheses Hk are assumed to be equal.  

(4.) We now calculate the probability of some observed data 
pattern given one hypothesis, P(D | Hk). A data sample, ordered 
in a 2 × 2 contingency matrix, D, consists of four frequencies, 
x1, x2 , x3, x4 (with Σ xl = n). The multinomial distribution gives 
the discrete probability distribution P(x1, x2, x3, x4 | n, p1, p2, p3, 
p4) = P(xl | n, pm) of obtaining a particular pattern of the four 
disjoint outcomes, x1, x2, x3, x4, in a total sample of n 
independent trials given a hypothesis with the respective 
probabilities p1, p2, p3, p4 (with 0 ≤ pm ≤ 1, Σ pm = 1). It has the 
following probability mass function: 
 

4321

4321

4321

),|(
xxxx

ml pppp
xxxx

n
pnxP 








=  (3) 

(5.) In order to calculate the posterior probabilities of each 
combination of connector and uncertainty level, Hk, given the 
observed pattern of data, D, Bayes’ theorem is used: 

 
´  (4) 

 
 
The normalizing probability P(D) of the data D under all 

hypotheses Hk (connector-uncertainty combinations, �i × Rj )  
is calculated by: 

 
(5) 

 
As simple measure of information gain, one can calculate 

the impact of the data on the probability of each hypotheses: 
 

(6) 
 
Since we are here concerned with logical hypotheses (Hi 

= �i) without a specified error level, and since we 
calculated the posterior error levels from the data, we have 
to formulate an integration rule to determine the global pro-
bability of the logical hypotheses in question. Here for each 
Hi the sum of the posterior probabilities over all error levels 
rj is calculated, resulting in a probability mass function:

2
  

 
(7) 

 

Predictions of Bayesian Logic 

Bayesian logic provides a suitable alternative to traditional ex-
tensional probability, not replacing it, but supplementing it. 
Bayesian logic (itself based on extensional probabilities) is 
meant as a rational formalization of probabilities for alternative 
hypotheses of connectors corresponding to the whole of a 
probabilistic truth table (‘hypotheses probability’ or PH(X) for 
short). In contrast, extensional probability theory provides us 
with probabilities of those subsets of a PT which are specified 
by true extensions of the corresponding logical connectors 
(‘extensional probability’ or PE(X) for short). Here we are 
concerned with PH(X) in the context of the conjunction fallacy, 
considering two kinds of predictions, although only the latter 
one is varied in our study:  

                                                           
2 Alternatively one may weight R values by their reciprocal, 1/ r. In 

the experiments conducted here, data sets have been used, for 

which both models lead to the same predictions. 
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Tables 1a, b, c. Probability tables for three different connectors �i and different uncertainty levels R = r.  

Table 1a  Table 1b  Table 1c 

A AND B B Non-B  ONLY A B Non-B  A OR B B Non-B 

A t - (t-c)r cr  A t - (t-c)r t - (t-c)r  A t - (t-c)r t - (t-c)r 

Non-A cr cr  Non-A cr cr  Non-A t - (t-c)r cr 

Note: The probability c of convergence for maximal uncertainty is here set to .25. 
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(1.) Qualitative predictions. From the preconditions of the 
model one can derive constraints for a situation in which the 
outlined model should be normatively and descriptively 
applicable: In the reported experiment we are going to 
construct situations in which it is plausible to understand 
probabilities as alternative hypotheses (cf. Hertwig & 
Chase, 1998, Sloman et al., 2003) about connectors, each 
relating to a whole situation (not to a subset). If such 
preconditions of the model are met, it is claimed that one can 
achieve a substantial portion of ‘conjunction fallacies’ even 
with extremely transparent tasks, salient frequency 
information, and excluded misunderstandings (concerning ‘A 
and B’ and ‘A’). Here I will use explicit contingency tables 
(going beyond the experiments of Sloman et al., 2003, and 
Tentori et al., 2002). Nonetheless, Bayesian logics (unlike 
e. g. Gigerenzer, 1996) predicts CFs.  

(2.) Quantitative predictions. Here we are particularly 
concerned with two novel predictions of the model, both di-
stinguishing PH(X) from PE(X). According to Bayesian logic 
there are quantitative conditions, in which a hypothesis with 
a narrower extension may have a higher hypothesis 
probability, PH(X), than a one with a broader extension.  

Firstly, one prediction is concerned with the probability 
pattern given by the data if the sample sizes are large, as in 
Example 1 and 2 of Figure 1. Here, whether a CF should 
occur or not, should depend on the probability pattern of the 
data. Example 1 provides a data pattern under which a novel 
double CF effect (with PH(A) ≅ PH(B) <PH (A ∧ B)) is 
predicted. In contrast, Kahneman and Tversky were con-
cerned only with single CFs, if feature A is more 
‘representative’ than feature B (the prediction P(B) 
< P(A ∧ B)). However, for Example 1 a double focus effect 

Figure 1: Graphs of information gain for three hypotheses ‘A ∧ B’, ‘A’, and ‘B’ given the observed frequencies, for each 
uncertainty level (P(Hk|D)-P(Hk), r = .1 to 1.0, left) or summing up the weighted noise levels (P(Hi|D)-P(Hi), right).   
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and for Example 2 no or only a weak single CF effect is 
predicted (the latter point is not tested here). The Bayesian 
logic of hypotheses concerning whole PTs obviously differs 
from Fisk’s (1998) Bayesian model related to extensional 
subsets only, which  never allows for P(A ∧ B | D) > P(A | D).   

Secondly, when keeping the probabilities PE(X) constant 
the model predicts no change in the discussed Bayesian pro-
babilities, PH(X), provided there is a substantial sample size. 
Whereas extensional probabilities should remain unaffected 
by sample size and traditional extensional sampling sta-
tistics would differ for large and medium sample sizes, 
Bayesian probabilities should change in a specific way if the 
sample size is very low. Bayesian models integrate aspects 
of reliability into the probability measure. The Examples 3 
and 4 show that despite constant extensional probabilities 
the predicted Bayesian patterns get less pronounced, but the 
Bayesian pattern of ‘A AND B’ in Example 3 is clearly 
more affected than the pattern ‘ONLY A’ in Example 4.  

Experiment 

The reported experiment tests the mentioned qualitative and 

quantitative predictions of the advocated Bayesian logics.  

Qualitatively, extremely transparent ranking tasks were 
used, where all hypotheses, A & B, A and B, but no filler 
hypotheses were formulated. Simultaneously, the aim was 
to exclude the misunderstandings concerning P(A & B) and 
P(A) (cf. Tentori et al. 2004). The task was conducted as 
within-subjects task. One objective was to test whether CFs 
could even be elicited under conditions where frequency 
information is explicitly provided in a contingency table.  

Quantitatively, the frequencies of all logical cases were 
shown and varied according to Table 2, investigating both 
the effects of the probability patterns (AND versus A condi-
tions) and of sample size (small versus large sample size).

3
 

 
Table 2: The Observed Frequencies of Different Cases in 

Different Schools/Conditions (Linda, Maria, Sara, Nina) 

 A ∧ B A ∧ ¬B ¬A ∧ B ¬A ∧ ¬B 

High AND 102 51 52 50 

High A 102 100 50 52 

Low AND 2 1 1 1 

Low A 2 2 1 1 

 

Method The 98 participants were told in the instructions 
that they had to find out which ‘hypotheses’ about schools are 
most probable and closest to truth. In order to fulfill the 
preconditions of the model (alternative hypotheses interpre-
tation and whole PT interpretation) the task concerned dif-
ferent schools, such as a Linda school. Each hypothesis con-
cerned a school as a whole. A 2×2 contingency table with in-
formation about a sample of pupils was given, using side la-
bels like “bank tellers”, “no bank tellers” etc. (Table 2).  

Each participant investigated two schools in which the ob-
served patterns differed both in probability and sample size. 
Subjects were asked to tick for each school the option, which 

                                                           
3 The predictions are almost identical to those in Figure 1. The 

different examples led to broader distributions and were used to 

visualize that there are probability distributions over error levels. 

(s)he regards to be most probable. Subjects were asked to 
make this judgment intuitively. The hypotheses read:  

A hypothesis: “Today, the girls in the Linda [Maria, etc.] 
school are generally bank tellers, whether they are feminists 
or not.” (“[…] sind heute in der Regel Bankangestellte, egal 
ob sie aktive Feministinnen sind oder nicht.“) 

B hypothesis: “[…] are generally active in the feminist 

movement, whether they are bank tellers or not.” 
AND hypothesis: “[…] are generally bank tellers who are 

active feminists” (“Bankangestellte, die”, cf. Introduction).  
No hypothesis (‘?’): “Based on the data no single hypo-

thesis is really better supported than the other hypotheses.” 
 

Results  
Table 3: Percentage and Number of Choosing Hypotheses 

as Being most Probable 

 A B AND ? n 

High AND 17 % 8 17 % 8 42 % 20 25 % 12 48 

High A 67 % 32   6 % 3 15 % 7 13 % 6 48 

Low AND 10 % 5   6 % 3 19 % 9 65 % 31 48 

Low A 52 % 25   4 % 2   6 % 3 38 % 18 48 

Note: The predicted cells are darkened. 

 

For each condition, Table 3 summarizes the number and 

percentage of participants choosing a particular hypothesis 
as the most probable one. As predicted, the portion of 
‘AND’ choices was significantly larger in the ‘high AND’ 
condition than in the ‘high A’ condition (χ

2
(1, n = 96) = 8.71; 

p < .01). Apart from the ‘?’ answers, 56 % of the participants 
in the ‘high AND’ condition committed a ‘double CF’ (single 
CFs were not tested). Likewise, the portion of ‘A’ choices 
was lower in the ‘high A’ condition than in the ‘high AND’ 
condition, χ

2
(1, n = 96) = 24.69; p < .001). Moreover, it was 

confirmed that the AND selections were significantly reduced 
in the ‘low AND’ relative to the ‘high AND’ condition (χ

2
(1, 

n = 96) = 5.98, pone-tailed < .01). In contrast, it was likewise 
corroborated that the A selections were not significantly 
reduced in the ‘low A’ relative to the ‘high A’ condition (χ

2
(1, 

n = 96) = 2.12; p = .15) and there were more A choices in the 
‘low A’ than in the ‘low AND’ condition (χ

2
(1, n = 96) = 

19.39; p < .001). Finally, it was shown that there were more 
‘?’ choices in the two high frequency conditions than in the 
two corresponding low frequency conditions (χ

2
(1, n = 96) = 

15.21; p < .001; χ
2
(1, n = 96) = 8.00; p < .01) and that there 

were more such choices in the ‘low AND’ condition than in 
the ‘low A’ condition (χ

2
(1, n = 96) = 7.04; p < .01). A 

slightly different replication of the study led to similar results. 

Discussion 

The results of the experiment were predicted by Bayesian 
logic. The effects of probability patterns as well as the 
differential effects of sample size were corroborated.  

The ‘high AND’ condition elicited estimations 
corresponding to P(A ∧ B) > P(A) and P(A ∧ B) > P(B). The 
expected double CFs were confirmed for the first time in 
situations with extremely transparent tasks, clear set inclusion 
and explicit frequency information in a contingency table. 
According to extensional probability the correct answer in the 
‘high AND’ condition would have been ‘B’, but the ‘B’ 
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choices occurred only as often as the ‘A’ choices. It is 
particularly problematic for the frequentist position (e. g. 
Gigerenzer, 1996) that CFs occur even if a full contingency 
table is provided.  

Furthermore, the specific predictions regarding set size 
were also confirmed. High and low sample conditions had 
roughly the same extensional probabilities, but the posterior 
probabilities of the tested hypotheses, PH(Hi|D), differed and 
were actually judged differently. The number of answers 
without a clear preference rose. More importantly, as 
predicted, in the ‘Low AND’ condition the ‘A AND B’ 
selection did not remain the modal answer, whereas in the 
‘Low A’ condition the ‘A’ selection was reduced but 
remained predominant. This supports Bayesian logic. 

One may perhaps think that the results are post hoc also 
explainable by another formal model in the CF debate. As 
mentioned before, Fisk’s (1996) Bayesian model, based on 
extensional subsets, does not allow for any rational CFs. 
Tversky and Koehler’s (1994) support theory cannot explain 
the results, since there should be an equal unpacking in all 
conditions. Replacing probability by reverse probability is 
another plausible candidate (cf. Fisk, 1996; Hertwig & 
Chase, 1998; Sides et al. 2002, p. 191-192) but it is difficult 
to see how one may apply this interesting idea to our 
frequency table tasks. In traditional Linda tasks inverse 
probability may indeed partially exculpate participants since 
P(D|A&B) > P(D|A) appears reasonable, because “Linda is 
more likely to be single, outspoken, and so on, on the 
assumption that she is a feminist bank teller than on the mere 
assumption that she is a bank teller” (Sides, et al., 2002, 192). 
Nonetheless, in our current study there are no varying 
characteristics of Linda, but only different frequencies. Any 
single-cue explanation (Hertwig & Chase, 1998) is excluded, 
since, given that this effect appears to refer to an interaction 
of two cues, it cannot account for the novel double focus 
effects. But how to formalize inverse probability here? Using 
the formalization of Bayesian logic would go beyond 
previous models. Interpretations which lead to P(D|H) = 1 or 
collapse with extensional probability (P(D|A&B)= PE(A&B)) 
have to be excluded. Interpreting P(A) as average probability 
(P(A)AV = PE(A ∧ B) + PE(A ∧ ~B)) / 2) allows for violation 
of the conjunction rule, but this measure would here falsely 
predict CFs for the ‘high A’ condition as well. This would 
not be improved, if we assumed different prior probabilities 
for A ∧ B and A: Without frequency information the original 
probability P(Bank teller ∧ Feminist) would be judged to be 
lower than the probability for its compounds. Hence, the 
difference between the original estimation and the resulting 
estimation given the frequencies would even clearly lead to 
falsely predict CFs in the ‘low A’ condition as well.  

In conclusion, the results corroborate Bayesian logic and 
have not been predicted by any other theory of the CF.  

It remains an open question, whether the developed 
Bayesian logic has to be understood as a more precise 
formalization of the vague heuristic ‘representativeness’, or 
whether it constitutes a third concept beside extensional pro-
bability and representativeness (cf. Gigerenzer, 1996, 
Gigerenzer et al. 1999). In any case, Bayesian logic shows 
that ‘CFs’ may (partly) not be ‘fallacies’ at all, even if we 
are concerned with the evaluation of contingency tables. 
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