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Abstract 

We present a neural-network computational model of a recent 
experiment revealing that chimpanzees show some ability to 
reason probabilistically. Specifically, we show that the neural 
probability learner and sampler (NPLS) system can account 
for both success by chimpanzees and better performance by 
human controls. NPLS effectively combines learning 
probability distributions with sampling from those learned 
distributions to guide action choices. Because NPLS also 
simulates learning and use of probability distributions by 
human infants, this brings us closer to a unifying model of 
probabilistic reasoning, across various age groups and species. 

Keywords: probabilistic reasoning; neural networks; neural 
probability learning and sampling; chimpanzees; Weber’s law 

Introduction 
There has been intense recent interest in the learning and use 
of probability distributions, due in large part to the 
recognition that much of cognition involves making 
decisions in uncertain situations. A series of experiments has 
shown than even pre-linguistic infants show some amazing 
abilities in this domain: they learn simple binary probability 
distributions, use that knowledge to guide their intentional 
actions, and show differential surprise at seeing their 
probabilistic expectations violated (Denison, Reed, & Xu, 
2013; Denison & Xu, 2010, 2014, 2019; Xu & Garcia, 2008).  

Computational modeling of how these infant phenomena 
has attempted to solve the mystery of how such young infants 
could deal with probabilities long before they were able to 
explicitly count and divide (Shultz & Nobandegani, 2021). 
These infant experiments have also attracted the interest of 
researchers of animal cognition to see if other species could 
learn and use probability distributions (Eckert, Call, Hermes, 
Herrmann, & Rakoczy, 2018; Eckert, Rakoczy, & Call, 2017; 
Rakoczy et al., 2014). Initial experiments with monkeys and 
apes, using similar research designs from the infant studies, 
revealed some degree of success but also some divergence in 
results and interpretations. Here we focus on simulating the 
most recent of these non-human primate experiments, as it 
corrects some shortcomings of the earlier experiments and 
includes samples of both chimpanzees and adult humans 
(Eckert et al., 2018).  

Experiment with Chimpanzees and Humans 
Eckert and colleagues (2018) tested 24 chimpanzees in their 
home sanctuary using a paradigm inspired by the infant 
experiments and initial primate experiments. This paradigm 

required a chimp to choose between random binary samples 
drawn from populations of food items with different ratios of 
preferred (peanuts) and non-preferred items (carrot pieces). 
In a series of experimental conditions, the ratio of the two 
ratios to be discriminated (RoR) was varied from 1 to 16 in 
order to assess the Weber effect that the two ratios would be 
easier to distinguish with increasing RoR. Human adults (n = 
144) were tested in a computerized version of an analogous 
task in which they were asked to blindly select a marble of a 
particular color from one of two containers, each containing 
two colors of marbles, where the ratios and RoRs were the 
same as those used with the chimpanzees (Eckert et al., 
2018).  

For the chimpanzees, the experimenter’s hands were 
crossed on a random half of trials to control for proximity 
effects between food population and sample. As in some of 
the infant experiments (Denison & Xu, 2014), a positive 
correlation between frequencies of preferred items and 
probabilities was eliminated by ensuring that the more 
favorable population had fewer preferred items than the 
unfavorable population (see Table 1). Correct choices (of the 
preferred sample) increased with log RoR, taken as evidence 
for operation of Weber’s law (Eckert et al., 2018).  

 
Table 1: Favorable and unfavorable populations, ground-
truth probabilities, and ratios used in the empirical 
experiments and simulations. Favorable is represented here 
as fav, unfavorable as unf, population as pop, preferred item 
as pre, not-preferred as not, and ratio-of-ratios as ror. 

Methods 
The same neural probability learner and sampler (NPLS) 
system (Shultz & Nobandegani, 2021) used to simulate the 
human infant experiments (Denison et al., 2013; Denison & 
Xu, 2010, 2014, 2019; Xu & Garcia, 2008) is used here. 
NPLS includes a modified version of the sibling-descendant 
cascade-correlation (SDCC) algorithm that has been used to 
simulate many deterministic phenomena in cognitive and 
language development (Nobandegani & Shultz, 2022; Shultz, 

fav pop unf pop probability ratios 
pre not pre not fav unf fav unf ror 
28 20 56 80 .58 .41 1.40 .70 2 
28 14 56 112 .67 .33 2.00 .50 4 
28 11 56 132 .72 .30 2.55 .42 6 
28 10 56 160 .74 .26 2.80 .35 8 
28 8 56 192 .78 .23 3.50 .29 12 
28 7 56 224 .80 .20 4.00 .25 16 
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2003, 2017), and the widely used Markov chain Monte Carlo 
(MCMC) sampling algorithm that has been used to simulate 
a broad range of empirical findings in human probabilistic 
reasoning and decision making (Dasgupta, Schulz, & 
Gershman, 2017; Nobandegani & Shultz, 2020). 

SDCC uses deterministic, feed-forward networks that learn 
from labelled examples by reducing overall prediction error 
(Baluja & Fahlman, 1994). The unit activations are passed 
forward from inputs that describe examples to hidden units 
that transform the inputs into more abstract representations, 
and finally to output units representing responses to that 
particular input. Network outputs can be regarded as 
predictions about what will happen, while target output 
represents what actually happens. There are two phases in 
SDCC processing: input phase and output phase. During 
output-phase learning, connection weights are adjusted to 
reduce sum-of-squared network error E:  

 
𝐸 =##$𝐴!" − 𝑇!"(

#

"!

									(1) 

where A is the actual output activation for unit o and pattern 
p, and T is the target output activation for this unit and 
pattern. 

SDCC learning begins with only the input and the output 
layers of units, and then recruits hidden units one at a time, 
as needed, to solve the problem being learned. SDCC thus 
constructs its own network topology, as opposed to being 
designed by a programmer. In the input phase, weights 
entering randomly-generated candidate hidden units are 
trained to increase covariation of candidate hidden-unit 
output activation with network error. The highest correlating 
unit is then installed either on the highest layer of hidden units 
or on its own higher layer, whichever shows the better 
absolute covariation with network error. Input weights to 
each recruited hidden unit are frozen as soon as the recruited 
unit is installed. At this point, control is passed back to output 
phase, in which connection weights entering output units are 
adjusted one layer at a time, thus never requiring (unrealistic) 
propagation of error signals back through the network. The 
function to maximize in input phases is the covariance C 
between candidate-hidden-unit activation and overall 
network error: 

 

𝐶 =
∑ |∑ (ℎ" − ⟨ℎ⟩)(𝑒!" − ⟨𝑒!⟩)" |!

∑ ∑ $𝑒!" − ⟨𝑒!⟩(
#

"!

								(2) 

 
where ℎ" is activation of the candidate hidden unit for pattern 
𝑝, ⟨ℎ⟩ is the mean activation of the candidate hidden unit for 
all patterns, 𝑒!" is the residual error at output 𝑜 for pattern 𝑝, 
and ⟨𝑒!⟩ is the mean residual error at output 𝑜 for all the 
training patterns.  

For probability learning, the networks use an asymmetric 
sigmoid activation function: 

𝑦$ =
1

1 + 𝑒%&! 								(3) 

In order to prevent the algorithm from recruiting new 
hidden units ad infinitum, NPLS monitors its progress in error 
reduction over learning cycles. SDCC already possessed the 
capacity to monitor its progress during both input and output 
phases, using parameters for threshold and patience (Baluja 
& Fahlman, 1994). During output phases, SDCC adjusts its 
connection weights to reduce error. But when error reduction 
stagnates, there is a shift to input phase to recruit a new 
hidden unit, adjusting the input weights to candidate units in 
order to increase covariation between candidate-unit 
activations and network error. In each of these two phases, 
stagnation is detected when progress no longer exceeds a 
threshold parameter for some number of training epochs, 
specified by a patience parameter. 

This idea was extended by adding an outer loop having its 
own threshold and patience parameters to monitor progress 
over learning cycles, where each cycle is an input phase and 
the next output phase (Shultz & Doty, 2014). This allows 
NPLS to stop when learning stagnates, which happens to 
coincide with accurate estimates of the probability 
distribution being learned. Thus, NPLS can learn an 
unnormalized multivariate probability distribution from 
examples specifying whether or not an output occurs in the 
presence of a particular input (Kharratzadeh & Shultz, 2016). 

We run 20 NPLS networks in each of the six conditions 
representing the six RoR values for the chimpanzee and 
human populations studied by Eckert et al. (2018). Networks 
are trained on event sequences with an input unit arbitrarily 
coding for the identity of the source container (1 or 2) and an 
output unit coding 1 for presence and 0 for absence of an 
object type (food item for chimpanzees, or marble color for 
humans).  

With this deterministic binary coding, corresponding 
directly to the visual stimuli experienced by the empirical 
experimental participants, networks learn to output the 
probability of drawing a preferred item from a favorable or 
an unfavorable population. Importantly, ground-truth 
probabilities are not used as learning targets. Probability 
estimates are instead an emergent property of NPLS learning, 
represented by learned network output activations (Shultz & 
Nobandegani, 2021).  

Table 2 shows an example of the coding scheme for a much 
simpler binary distribution with frequency ratios of 4:1 vs. 
1:4. This example requires five training patterns for each 
ratio. In 4 of 5 examples for container 1, a focal object 
appears. For container 2, a focal object appears in only 1 of 5 
examples. Our simulations use the exact ratios from the 
empirical experiments, realistically representing what a 
participant sees in the containers. An asymmetric sigmoid 
activation function on the output unit constrains outputs to 
the 0-1 range of probabilities.  
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Table 2: Schematic coding of a binary probability 
distribution 

 
 
 

 
 
 
 
 

 
A parameter called score-threshold is used to distinguish 

deeper learning in humans from the apparently shallower 
learning of chimpanzees. Formally, score-threshold 
represents the allowable distance between actual and 
expected outputs that are considered as correct. The default 
score-threshold in SDCC is .4, allowing for an uncertain, 
buffer zone from outputs of .4 to .6. We set score-threshold 
to .5 for human simulations and .6 for chimpanzee 
simulations, reflecting hypothesized imperfect learning for 
humans and slightly less perfect learning for chimpanzees.  

Following recent advances in how to probabilistically 
generate examples from learned categories (Nobandegani & 
Shultz, 2017), NPLS then uses an MCMC algorithm to 
simulate how participants select a container, essentially 
converting a deterministic neural network into a probabilistic 
generative network. NPLS learns categories from examples 
and then generates examples from those categories using the 
learned weights (Nobandegani & Shultz, 2018). Such 
backward inferences can be mathematically characterized as 
a form of sampling from the underlying, learned probability 
distribution. A participant could mentally draw a sample, 
cued by the higher probability of a preferred object, and thus 
identifying the more favorable sample for obtaining that 
object.  

Formally, NPLS induces a probability distribution 𝑝(𝐗|𝐘) 
on the deterministic input-output mapping 𝑓(𝐗;𝑊∗) learned 
by an NPLS network, and uses MCMC to sample from that 
induced distribution. The induced distribution is given by: 

 
𝑝(𝐗|𝐘 = 𝑌) ∝ 𝑒𝑥𝑝(−β||𝑌 − 𝑓(𝐗;𝑊∗)||##)     (4) 

 
where || ⋅ ||# is the l2-norm, 𝑊∗ the set of weights for a 
network after training, and β a damping factor. For an input 
instance 𝑿	 = 	𝑋 belonging to the desired class 𝑌, the network 
output 𝑓(𝑋;𝑊∗) is expected to be close to 𝑌 in the 𝑙#-norm 
sense. Equation 4 adjusts the probability of input instance 𝑋 
to be inversely proportional to the base-e exponentiation of 
the 𝑙# distance. The NPLS system can handle any MCMC 
method, including Metropolis-Adjusted Langevin, a 
gradient-based MCMC method, which could be implemented 
in a biologically-plausible way (Moreno-Bote, Knill, & 
Pouget, 2011; Savin & Denève, 2014). 

Results 
Mean output activations are plotted across RoRs, with SDs, 
for 20 NPLS networks in the human simulations (Figure 1) 

and the chimpanzee simulations (Figure 2). Comparing these 
network probability estimates to the ground-truth 
probabilities calculated in Table 1 reveals better accuracy and 
less variation for the human than for the chimpanzee 
simulated agents. Mean network output activations correlate 
highly with ground-truth probabilities across the twelve 
conditions of the six experiments, in both chimpanzees 
(𝑟(10) =	.9709, 95% CI = [.8966, .9920], 𝑝 < 10%() and 
humans (𝑟(10) =	.9999, 95% CI = [.9997, .9999], 𝑝 <
10%)*). Human simulated agents recruit more hidden units 
(M = 3.54) than do chimpanzee simulated agents (M = 1.54), 
independent t(139.53) = 11.986, p = 3.36E-23, Cohen's D = 
1.55. This reflects deeper learning in human simulated agents 
than in chimpanzee simulated agents. 

 

 
Figure 1: Comparison of mean network probability 

estimates (output activations), along with SDs, to ground-
truth probabilities for 20 NPLS networks in human 

simulations. 
 

 
Figure 2:  Comparison of mean network probability 

estimates (output activations), along with SDs, to ground-
truth probabilities for 20 NPLS networks in chimpanzee 

simulations. 
 

Mean sampling probabilities (with SDs) are shown in 
Figure 3. They correspond well with the empirical 
experiments (Eckert et al., 2018) in that simulated agents 
select correctly with probability close to .5 with a lower RoR 
of 2, and approach .7 for the chimpanzees and .8 for humans 
at a higher RoR of 16. Mean sampling probabilities correlate 
highly with empirically observed choice behavior across the 
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twelve conditions of the six experiments, in both 
chimpanzees (𝑟(10) =	.9532, 95% CI = [.8374, .9871], 𝑝 <
10%*) and humans (𝑟(10) =	.998, 95% CI = [.993, .999], 
𝑝 < 10%)#). 

 

 
Figure 3. Mean sampling probabilities and SDs for the 

human and chimpanzee simulated agents. 
 
Simple linear regressions reveal that mean favorable 

selection probabilities increase linearly as a function of 
log(RoR) for both simulated species (Table 3), consistent 
with Eckert et al.’s (2018) empirical results. Equivalently, 
these probabilities increase logarithmically as a function of 
raw RoR. 

 
Table 3: Linear regression results for sampling. 

Species 𝛽 95% CI F(1,4) p < 𝑅+,-#  

Human .087 [.079,.096] 806 .001 .994 
Chimp .077 [.053,.101] 81 .001 .941 

Discussion 
Our simulation results show that NPLS provides accurate 
coverage of the empirical results presented by Eckert et al. 
(2018), including some success by chimpanzees and even 
better performance by human controls. Although Eckert et al. 
(2018) dealt only with selection and not with learning, it is 
likely that individuals would have to somehow register the 
probability distributions before being able to use them to 
guide their selections. To our knowledge, this is the first 
successful computer simulation consisting of a precise and 
plausible set of causal mechanisms for both learning and 
acting on probability distributions that matches empirical 
data across various age groups and species. 

In the NPLS model, the superior performance of humans is 
due to more accurate learning (due to a smaller score-
threshold setting).  

Our familiarity with SDCC allowed us to estimate the 
score-threshold values that could simulate the difference 
success levels of humans and chimpanzees, illustrated by 
asymptotic performance of humans (.8 correct) and 

chimpanzees (.7 correct). Our initial estimate of effective 
score-threshold values proved to be correct, requiring no data 
fitting by comprehensive parameter variation.  

Depth of learning could involve any of several different 
underlying factors including, e.g., attention, motivation, and 
ability. Such factors are effectively summarized by 
manipulation of the score-threshold parameter, which 
controls depth of learning. Future empirical and modeling 
work could perhaps sort out the essential causal factors in 
more detail.  

Alternatively, it is possible that humans are better able to 
leverage their knowledge to select an advantageous action. 
Future empirical and computational work could further 
clarify the precise causal mechanisms for the human 
advantage on this task. 

Like some other researchers contemplating successful 
performance in probability experiments (Denison & Xu, 
2014; McCrink & Birdsall, 2015), Eckert et al. (2018) 
attributed the success of their participants to use of the 
Approximate Number System (ANS). The ANS (sometimes 
called the Analog Magnitude System) is described as a 
nonverbal system that allows approximate numerical 
estimation of collections of items at a glance, yielding 
magnitude values (Carey, Shusterman, Haward, & Distefano, 
2017; Dehaene, 2009; Feigenson, Dehaene, & Spelke, 2004; 
Gallistel & Gelman, 1992). 

However, there are several problems with the ANS 
hypothesis for explaining probabilistic reasoning. First, raw 
frequencies suffice for probability judgments only when the 
two are positively correlated. When that positive correlation 
is disentangled, participants focus on probabilities and ignore 
raw frequencies (Denison & Xu, 2014; Eckert et al., 2018). 
Accurate conversion of raw frequencies into probabilities is 
arguably too difficult for chimpanzees and human infants, 
both of whom lack explicit division skills. Also, the ANS is 
known to be relatively imprecise, particularly with large 
numbers, small Weber fractions, and infants (Carey et al., 
2017; Feigenson et al., 2004; Xu & Spelke, 2000). In contrast, 
recent empirical experiments have revealed that infants are 
surprisingly precise in probability matching, even in tasks 
involving large numbers of items (Denison & Xu, 2014). 
Finally, the ANS has not yet, to our knowledge, been fully 
implemented as a precise computational mechanism, making 
it difficult to determine how much power it actually has in 
explaining probabilistic reasoning, but see Dehaene and 
Changeux (1993) for a preliminary ANS model.  

Eckert et al. (2018) show that both humans’ and 
chimpanzees’ choice behavior depends logarithmically on 
RoR, taking that as evidence for use of Weber’s law. 
However, in Eckert et al.’s experiments, ground-truth 
probabilities also depend logarithmically on RoR (see 
Figures 1-2). Because the ground-truth probabilities used 
here almost exactly add up to 1, the normalized ground-truth 
probabilities are almost identical to the ground-truth 
probabilities. Therefore, as an alternative explanation, the 
observed logarithmic trend in humans’ and chimpanzees’ 
choice behavior could be instead attributed to probability-
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matching, an empirically well-supported behavioral pattern 
found in a wide variety of animal species, e.g., bees 
(Greggers & Menzel, 1993), fish (Behrend & Bitterman, 
1961), turtles (Kirk & Bitterman, 1965), humans (Denison & 
Xu, 2014), and apes and monkeys (De Petrillo & Rosati, 
2019; Eckert et al., 2018; Tecwyn, Denison, Messer, & 
Buchsbaum, 2017). Future experimental work should 
adjudicate between these two competing explanations of 
observed choice behavior (i.e., Weber’s effect and 
probability matching), by using a set of normalized ground-
truth probabilities that do not depend logarithmically on RoR. 

In the meantime, NPLS modeling suggests a relatively 
simple set of neural mechanisms that explain how a wide 
variety of learners could internalize and employ probability 
distributions to guide their action choices, without explicit 
counting and dividing of large numbers. So far, NPLS 
predicts and explains probabilistic learning and reasoning in 
adult chimpanzees, adult humans, and human infants (Shultz 
& Nobandegani, 2021), all of which approaches a unifying 
model of probabilistic learning and reasoning across various 
ages and species.  

However, several additional challenges remain to be 
explored in the study of probabilistic reasoning in non-human 
animals. One is the extensive, classic literature on the 
matching law in individual operant conditioning. Individual 
animals (often a pigeon or a rat) allocated choices in direct 
proportion to the rewards that the choices provided 
(Herrnstein, 1970). Coherent interpretation of this literature 
is currently difficult because these animals sometimes 
optimized probabilistic choices rather than matching 
probabilities. This is often referred to as the explore vs. 
exploit issue, and is subject to active research efforts in 
several disciplines, including psychology (Gaissmaier & 
Schooler, 2008; Koehler & James, 2009), computer science 
(Agrawal & Goyal, 2012), and behavioral economics (Uotila, 
Maula, Keil, & Zahra, 2009).  

Interestingly, NPLS allows for simulating both probability-
matching and probability-maximization by modulation of its 
𝛽 parameter (see Eq. 4). Concretely, a gradual increase of the 
𝛽 parameter results in a smooth transition from probability-
matching, at one end of a spectrum, to probability-
maximization, on the other end. As such, variation in 𝛽 
allows for reconciling two ostensibly distinct behaviors, 
probability-maximization and probability-matching, with the 
former being normatively justified while the latter is often 
interpreted as a sign of irrationality. Future research should 
investigate whether and how variation in the NPLS 𝛽 
parameter could account for observed discrepancies in 
probabilistic reasoning.  

Another promising comparative literature deals with 
foraging strategies in animal groups. In ecology, Ideal Free 
Distribution theory (IFD) describes how the individuals in a 
group distribute themselves across multiple patches of 
resources in their environment. Presumably, they would do 
this in order to minimize resource competition and maximize 
reproductive fitness. The IFD theory predicts that the number 
of individual animals that aggregate in various patches is 

proportional to the richness of resources available in each 
patch. For this to work, presumably individual animals would 
have to estimate the probabilities of finding food in each of 
the patches to decide where to spend their foraging time. As 
with the operant conditioning literature, there is evidence 
both for (Dreisig, 1995) and against (Godin & Keenleyside, 
1984) this prediction.  

Additionally, there are other probabilistic reasoning studies 
of apes and monkeys that have not yet been modeled (Eckert 
et al., 2017; Rakoczy et al., 2014; Tecwyn et al., 2017). 
Careful and extensive interpretations of these three empirical 
literatures would be required in order to prepare for the quest 
of achieving a fully unified model and theory of probabilistic 
reasoning across species. Because decision making is often 
complicated by context and individual differences, NPLS 
provides a starting point, and perhaps a solid foundation, for 
understanding such behavior. For now, it is encouraging to 
see that a unified model can already predict and explain the 
learning and use of probability distributions across several 
infant experiments (Shultz & Nobandegani, 2021) and, as we 
show here, experiments with human adults and chimpanzees.  

Although NPLS is not the only algorithm capable of 
learning probability distributions, it possesses several 
features that make it particularly suitable for simulating and 
thus explaining learning and use of such distributions across 
ages and species: network construction, learning cessation, 
and sampling. Network construction allows a clear 
distinction between learning (via weight adjustment) and 
development (via hidden-unit recruitment). Learning 
cessation prevents fruitless attempts to reduce error that 
cannot be further reduced while allowing efficient and 
accurate probability matching. And sampling allows reverse 
inferencing of example generation and action selection from 
learned probability distributions, with the potential ability to 
maximally exploit knowledge of probability distributions.  
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