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Abstract

ThispaperpresentsInfinite RAAM (IRAAM), anew fusionof
recurrentneuralnetworkswith fractalgeometry, allowing usto
understandthe behavior of thesenetworks asdynamicalsys-
tems.Our recentwork with IRAAMs hasshown that they are
capableof generatingthecontext-free (non-regular) language������� for arbitraryvaluesof � . This paperexpandsuponthat
work, showing thatIRAAMs arecapableof generatingsyntac-
tically ambiguouslanguagesbut seemlesscapableof gener-
atingcertaincontext-freeconstructionsthatareabsentor dis-
favoredin naturallanguages.Together, thesedemonstrations
supportour belief that IRAAMs canprovide anexplanatorily
adequateconnectionistmodelof grammaticalcompetencein
naturallanguage.

Natural LanguageIssues
In an earlyandextremelyinfluential paper, NoamChomsky
(1956)showedthatnaturallanguages(NL’s) cannotbemod-
eledby a finite-stateautomaton,becauseof the existenceof
center-embeddedconstructions. A secondand equally im-
portantobservationfrom thiswork wasthataminimally ade-
quateNL grammarmustbeambiguous,assigningmorethan
onestructure(interpretation)to somesentences,for example,
They areflyingplanes.

Thefirst observationled to thedevelopmentof Chomsky’s
formal hierarchyof languages,basedon the computational
resourcesof themachinesneededto recognizethem. In this
hierarchy, Chomsky’sobservationaboutcenter-embeddingis
expressedby sayingthatNL’s arenon-regular;i.e., they can-
not begeneratedby a grammarhaving only rulesof theform�	��
�

, where
�

and
�

arenon-terminalsymbolsand



is
a terminalsymbol.

WhetherNL’s are merely non-regular, belongingin the
next, context-free(CF) level of theChomsky hierarchy, or are
morepowerful,belongingfurtherup in thehierarchy, became
thesubjectof heateddebate(Higginbotham1984;Postaland
Langendoen1984;Shieber1985). Non-CFphenomenasuch
asreduplication/copying (Culy 1985)andcrossedserialde-
pendencies(Bresnan,Kaplan,Peters,andZaenen1982)sug-
gestedthata morepowerful approach,usingsyntactictrans-
formations (Chomsky 1957) was called for, but somere-
searcherscriticizedtransformationsashaving arbitrarypower
andthusfailing to constrainthetypesof languagesthatcould
be expressed(Gazdar1982). Furthercriticism of the entire
formal approachcamefrom observingthat even CF gram-
mars(CFGs)had the power to generatestructures,suchas
a sequencefollowed by its mirror image,that did not seem
to occurin NL (Manaster-Ramer1986),or which placedan

extraordinaryburdenon thehumanparsingmechanismwhen
they did occur(Bach,Brown, andMarslen-Wilson1986).

Connectionismand Natural Language
While debatesabout the complexity of NL were raging,
connectionismwasbeginning to awaken from a fifteen-year
sleep. In connectionistmodelsmany researchersfound a
wayof embodyingflexibility , gracefuldegradation,andother
non-rigid propertiesthat seemto characterizereal cognitive
systemslike NL. This researchculminatedthe publication
of a highly controversial paperby Rumelhartand McClel-
land (1986)which provided a connectionistaccountof part
of the grammarof Englishusinga feed-forwardneuralnet-
work. Thepaperwassooncriticizedby moretraditionalcog-
nitivescientists(FodorandPylyshyn1988;PinkerandPrince
1988),who cited the non-generative natureof suchconnec-
tionist modelsas a fundamentalshortcomingof the entire
field.

Partly in responseto thesecriticisms, many connection-
istshave spentthepastdecadeinvestigatingnetwork models
whichsupportgenerativity throughrecurrent(feedback)con-
nections(Lawrence,Giles,andFong1998;Rodriguez,Wiles,
andElman1999; Williams andZipser1989). The research
wepresenthereis anattemptto contributeto thiseffort while
focusingasstronglyaspossibleon the naturallanguageis-
suesdescribedabove. Suchan attemptfacesa numberof
challenges.

First, despiteanalysisof how a network’s dynamicscon-
tribute to its generativity, it is often uncertainwhetherthe
dynamicscansupportgenerationof well-formedstringsbe-
yondacertainlength.Thatis, it is unknown whetherthenet-
work hasatrue“competence”for thelanguageof whichit has
learneda few exemplars,or is merelycapableof generating
a finite, andhenceregular, subsetof thelanguage.1 Second,
it is often easierto modelweak, ratherthanstronggenera-
tivecapacity, by building networksthatgenerateor recognize
stringshaving certainproperties,without assigningany syn-
tactic structureto the strings. Third, this lack of syntactic
structureinhibits the formulationof an accountof syntactic
ambiguity in suchnetworks, making themlessplausibleas
modelsof NL.

1To be fair, not all connectionists,or cognitive scientists,take
seriouslythenotionthathumanlanguagehasinfinite generative ca-
pacity. Thoughwe obviously do not have the resourcesto argue
the issuehere,we arecertainthata modelwith a provably infinite
competencewouldbemorepersuasiveto thecognitivesciencecom-
munityasa wholethanwould amodelwithoutone.



In sum,weareconcernedwith formulatingarecurrentnet-
work modelthat rigorouslyaddressesthe setof criteria that
emerged from the long debateover the complexity of NL.
As an candidate,theremainderof this paperpresentsa new
formulation of RAAM (Pollack 1990), a recurrentnetwork
modelthataddressestheNL issuesin aprincipledway.

Traditional RAAM
Recursive Auto-Associative Memory or RAAM (Pollack
1990) is a methodfor storing treestructuresin fixed-width
vectorsby repeatedcompression.Its architectureconsistsof
two separatenetworks– anencodernetwork, which cancon-
structa fixed-dimensionalcodeby compressively combining
the nodesof a symbolic treefrom the bottomup, anda de-
codernetwork, which decompressesa fixed-widthcodeinto
its two or morecomponents.The decoderis appliedrecur-
sively until it terminatesin symbols,reconstructingthe tree.
Thesetwo networksaresimultaneouslytrainedasanautoas-
sociatorwith time-varying inputs. If the training is success-
ful, the resultof bottomup encodingwill coincidewith top
down decoding.

Following the publication of (Pollack 1990), RAAM
gainedwidespreadpopularityasamodelof NL syntax.Some
researchers(Blank, Meeden,andMarshall1991)foundit an
attractive way of “closing the gap” betweenthe symbolic
and sub-symbolicparadigmsin cognitive science. Others
(Van Gelder1990)saw in RAAM a direct andsimplerefu-
tationof thetraditionalcognitive scientists’backlashagainst
connectionism,and went as far as to show how traditional
syntacticoperationslike transformationscouldbeperformed
directly on RAAM representations(Chalmers1990). As the
power of the RAAM model becameapparent,variantsbe-
gan to emerge. Theseincludedthe SequentialRAAMs of
(Kwasny and Kalman 1995), which showed how a RAAM
could behave like a linked list, and the Labeling RAAMs
of (Sperduti1993),whichencodedlabeledgraphscontaining
cycles.

In short,RAAM seemedto hold a greatdealof promise
asa generalconnectionistsolution to encodingnot just NL
syntax,but all sortsof structuredrepresentations.

Still, RAAM wasplaguedby an apparentlydiversesetof
problems,mostnotablya failure to scaleup to realistically
largestructures.Webelievethattheseproblemscanbetraced
to the original formulation of the RAAM decoder, which
works in conjunctionwith a logical “terminal test”, answer-
ing whetheror not agivenrepresentationrequiresfurtherde-
coding. Thedefault terminaltestmerelyasksif all elements
in a given codeare boolean,e.g. above 0.8 or below 0.2.
This analog-to-binaryconversionwasa standardinterfacein
back-propagationresearchof the late1980’s to calculatebi-
naryfunctionsfrom real-valuedneurons.However, although
it enabledthe initial discovery of RAAM training, it led to
several basic logical problemswhich preventedthe scaling
up of RAAM: 1) The “Infinite Loop” problemis that there
arerepresentationswhich “break” the decoderby never ter-
minating.In otherwords,sometreesappear“infinitely large”
simplybecausetheircomponentsneverpasstheterminaltest.
This behavior breakscomputerprogramimplementationsor
requiresdepthchecking. 2) The “Precisionvs. Capacity”
problemis that tighter tolerancesleadto moredecodinger-

rorsinsteadof agreatersetof reliablerepresentations.3) The
“TerminatingNon-Terminal” problemariseswhenthereis a
“fusion” betweenanon-terminalandaterminal,suchthatthe
decodingof anencodedtreeterminatesabruptly.

In thefollowing sectionof thispaperwepresentanew for-
mulationof RAAM networksbasedon ananalysisof the it-
erateddynamicsof decoding,thatresolvesall theseproblems
completely. Thisformulationleadsto anew “naturalterminal
test”,anaturallabelingof terminals,andaninherentlyhigher
storagecapacity.

NewRAAM Formulation
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Figure1: An exampleRAAM decoderthatis a4 neuronnet-
work, parameterizedby 12 weights. Eachapplicationof the
decoderconvertsan 2 �435+76

coordinateinto two new coordi-
nates.

ConsidertheRAAM decodershown in figure1. It consists
of four neuronsthateachreceivethesame2 �435+86

input. The
outputportionof thenetwork is dividedinto a right anda left
pair of neurons. In the operationof the decoderthe output
from eachpair of neuronsis recursively reappliedto thenet-
work. Using the RAAM interpretation,eachsuchrecursion
implies a branchingof a nodeof the binary treerepresented
by thedecoderandinitial startingpoint. However, this same
network recurrencecanalsobeevaluatedin thecontext of dy-
namicalsystems.This network is a form of iteratedfunction
systemor IFS (Barnsley 1993), consistingof two pseudo-
contractive transformswhich areiteratively appliedto points
in a two-dimensionalspace.

In the pastwe have examinedthe applicability of the IFS
analogyto otherinterpretationsof neuraldynamics(Blair and
Pollack1997;Kolen1994;Melnik andPollack1998;Stucki
andPollack1992). But in the context of RAAMs the main
interestingpropertyof contractive IFSeslies in the trajecto-
ries of points in the space.For contractive IFSesthe space
is divided into two setsof points. The first set consistsof
pointslocatedontheunderlyingattractor(fractalattractor)of
theIFS.Thesecondsetis thecomplementof thefirst, points



thatarenot on theattractor. Thetrajectoriesof pointsin this
secondsetarecharacterizedby a gravitation towardsthe at-
tractor. Finite, multiple iterationsof the transformshave the
effectof bringingthepointsin thissecondsetarbitrarilyclose
to theattractor.

As notedbefore,theInfiniteLoopandTerminatingNonter-
minalproblemsarisefrom aninsufficient terminaltest.Since
sometrajectoriesneverleavetheattractorandall otherseven-
tually hit theattractor. Theonly terminaltestthatguarantees
theterminationof all trajectoriesof theRAAM (IFS) is a test
thatincludesall thepointsof theattractoritself.

By taking the terminal testof the decodernetwork to be
“on the attractor”, not only are problemsof infinite loops
and early terminationcorrected,but it is now possibleto
have extremelylargesetsof treesrepresentedin smallfixed-
dimensionalneuralcodes.Theattractor, beinga fractal,can
be generatedat arbitrary resolution. In this interpretation,
eachpossibletree, insteadof being describedby a single
point, is now an equivalenceclassof initial points sharing
the sametree-shapedtrajectoriesto the fractal attractor. For
this formulation, the setof treesgeneratedand represented
by a specificRAAM is a functionof theweights,but is also
governedby how the initial conditionspaceis sampled,and
by the resolutionof the attractorconstruction. Note that
the lower-resolutionattractorscontainall the pointsof their
higher-dimensionalcounterparts(they coverthem);therefore,
as a coarserterminal set, they terminatetrajectoriesearlier
andsoact to “prefix” thetreesof thehigher-dimensionalat-
tractors.

Two last piecescompletethe new formulation. First, the
encodernetwork, ratherthanbeingtrained,is constructeddi-
rectly asthemathematicalinverseof thedecoder. Thetermi-
nal setof eachleaf of a tree is run throughthe inverseleft
or right transforms,andthentheresultantsetsareintersected
andany terminalssubtracted.Thisprocessis continuedfrom
thebottomupuntil thereis anemptyset,or wefind thesetof
initial conditionswhich encodethedesiredtree.

Second,usingtheattractorasa terminaltestalsoallows a
naturalformulationof assigninglabelsto terminals. Barns-
ley (1993)notedthateachpoint on theattractoris associated
with anaddresswhichis simplythesequenceof indicesof the
transformsusedto arrive on that point from otherpointson
the attractor. The addressis essentiallyan infinite sequence
of digits. Thereforeto achievea labelingfor aspecificalpha-
bet we needonly considera sufficient numberof significant
digits from this address.

Exampleof NewRAAM Formulation
In this section,we describehow we obtainthe attractorand
the treesfor a RAAM decoderof thesortshown in figure1.
Thedecoderweightsin thepresentexamplewereobtainedby
ahill-climbing searchfor anaestheticallyappealingattractor,
but thedemonstrationis valid for any setof decoderweights.

RecallthatwearetreatingthedecoderasanIFS thatmaps
eachinputpoint 2 �435+76

in therange[0,1] to two otherpoints2 ���#35+9�&6
and 2 � . 3:+ . 6

in the samerange. To generatethe
attractorof the IFS, we first apply the two mappings(trans-
forms)to theentireunit squareat somefixedresolution.We
thenre-applythetransformsto theresultingsetof points.We
repeatthis operationuntil the transformsdo not changethe

set of pointsany further at that resolution. Hence,we can
visualizethe behavior of the decoderin the unit squareby
examiningthesetof pointsobtainedthroughiteratedapplica-
tionsof thetwo transforms.

In figure 2, we have applied the transformsonce to all
pointsin theunit square,obtainingtwo large,overlappingre-
gions,correspondingto theleft andright transformsof all the
originalpoints.Notethatsomepointsarepartof boththeleft
andright regions.

;;<
<
Y

X 

1

10

Figure2: The unit squareafter oneapplicationof the trans-
forms. The attractoris shown in gray: dark gray = points
reachablefrom attractoron left transform,light gray= points
reachableonright. Thesmallwhitewedgewherethegrayar-
easoverlapcontains“ambiguous”attractorpointsreachable
on bothtransforms.

Figure3: The unit squareafter two andfive applicationsof
thetransforms.

Figure 3 shows the unit squareafter anotheriteration of
thetransforms,andafterfive suchiterations.Figure4 shows
the final “Galaxy” attractorobtainedwhenfurther iterations
fail to produceany morecontraction. Like any fractal, this
attractorexhibitsself-similarity, with thetwo longestarmsof
thegalaxyendingin shapeslike thatof thewholeattractor.

Figure4 alsoshows how we derive thetree(1 (1 2)) from
a point not on the attractor. Startingat a point not on the
attractor(the small circle at the top of the figure), the left
transform(dashedline) takesusimmediatelyto theattractor;
specifically, to an attractorregion labeled1, indicating that
this region is reachablefrom theotherattractorpointson the
left (first) transformonly. Henceour treesofar is (1.. . ). The
right transformof thepointatthetoptakesusto anotherpoint



not on the attractor, indicatedby the circle in the lower left
part of the figure. Like the first point, this point goesto the
attractorregionlabeled1onits left transform;however, it also
goesto theattractoron its right transform;specifically, to the
region labeled2, which indicatesthatthis region is reachable
from theotherattractorpointsontheright (second)transform
only. Sothis secondpoint decodesthetree(1 2), andits par-
enttreeis (1 (1 2)), completingthederivation.

2

1

(1 (1 2))

(1 2)

Figure4: The final attractor, showing derivation of the tree
(1 (1 2)) and its daughtertree (1 2). The left transformis
shown asa dashedline, andthe right transformasa straight
line.

By repeatingthis processfor everypoint not on theattrac-
tor, wecanmapout thesetof all treesdecodedby theRAAM
at a given resolution. As describedearlier, eachtreein this
setcorrespondsto anequivalenceclassof pointsthatall de-
codeto that tree. Pointsin thesameclasstendto clusterto-
gether, givingusaninterestingwayof layingouttheRAAM’ s
languagespatially. Figure 5 shows this phenomenonfor a
RAAM that we hill-climbed to decodethe language=?> 
 >
(describedin the next section),with grayscaledenotingtree
equivalenceclassesratherthanattractorpoints.Thedramatic
stripingpatternof theequivalenceclassesin thisfigureis not
inherentin the fractal RAAM model, but derives from the
comparatively elegant solution that hill-climbing produced
for this language.

Linguistic Advantagesof NewRAAM
As we describedearlier, the new RAAM formulation thor-
oughly addressesthe three shortcomingsof the traditional
RAAM model. Infinite loopsandterminatingnon-terminals
areboth eliminatedby makingthe terminal testbe a testof
whetheror notapoint is onthefractalattractorof theRAAM
decoder.

Furthermore,thenew formulationprovidesaprincipledac-
countof generativity (grammaticalcompetence).By treating
the RAAM as a fractal that can be generatedat any arbi-
trary resolution,we can increasethe generative capacityof
theRAAM without bound,giving usa modelthatscalesper-
fectly: hencethenameInfiniteRAAM (IRAAM). Aswehave
recentlyshown (?), it is astraightforwardmatterto hill-climb
the weightsfor an IRAAM that generatesall and only the
stringsin thelanguage=?> 
 >A@B=?> 
 > $DC 3:EGFIH

.

(1 ((1 2) 2))

((1 ((1 2) 2)) 2)

(1 ((1 ((1 2) 2)) 2))

(1 ((1 ((1 ((1 ((1 ((1 2) 2)) 2)) 2)) 2)) 2))

((1 2) 2)

Figure5: Treeequivalenceclassesfor the =?> 
 > system.At-
tractorpointsclusterat extremeleft (coloredblack,labeled1
or = ) andright (coloredwhite, labeled2 or



).

Briefly, thedynamicsof thenetwork aresuchthat for any
point in the unit square,one of the two transformsof the
point is guaranteedto beon theattractor. This behavior cor-
respondsto the terminalcomponentof a recursive grammar
in Chomsky NormalForm for the language.In addition,the
left transformof any pointendsup on theleft sideof theunit
square( J �LK

) andthe right transformendsup on the right
side( J � � ). Hence,successiveapplicationof left/right/left...
transformsleadsto azigzagdynamicsthatbalances= ’sonthe
left with



’sontheright, until azig or zaglandsontheattrac-

tor andterminatestheoscillation.This behavior corresponds
to the recursive componentof the grammar. In (?), we pro-
videaconstructiveproof for obtainingthesebehaviorsatany
resolution.

Theproof givesusanexactIRAAM “competence”model
for this non-regularCF language.Specifically, we show that
thereexists a setof weightsfor which a RAAM with an at-
tractor generatedat a predeterminedresolutioncontainsall
andonly thetreesin the =?> 
 > language.Performancelimita-
tions on the sizesof the treesactuallyproducedderive from
the resolutionat which the non-attractorunit spaceis sam-
pled,andnot from anarbitrarystipulationor a breakdown of
themodel.

This infinite competenceis not theonly thing thatIRAAM
brings to connectionistNL modeling, however. Because
IRAAM is amethodof encodinganddecodingtrees, not just
strings,its stronggenerativecapacityis known. Wecanthere-
fore useIRAAM asa directmodelof hierarchicallinguistic
structure.An immediateimplication of this result is that an
IRAAM canbeusedasa parserandnot just a recognizer. To
theextentthatrealNL processinginvolvestheassignmentof
meaningto stringsbasedon structure,andnot merelygram-
maticality judgments,this ability representsa significantad-
vancein theapplicationof connectionismto NL.

Finally, andperhapsmostinteresting,is theway in which
IRAAM handlessyntacticambiguity. Considerthe fractal
addressingschemethat we describedearlier. Eachterminal
point (word) on the attractoris associatedwith an address
which is simply the sequenceof indices of the transforms
takento arriveon theattractorpoint from otherpointson the
attractor. Given M transforms,we would thereforeassume



eachdigit in thesequencewould fall in therange � 3�N-30OPOQOP3 M .
For example, a binary-branchingIRAAM, with two trans-
forms,wouldhave terminalswith addressdigits � and

N
. Us-

ing a one-digitaddress,this effectively putseachword into
oneof M “part of speech”equivalenceclasses.

This is not thewholestory, though. Becausetherecanbe
morethanonepathto a giventerminalfrom someotherter-
minalontheattractor, someterminalswill have“ambiguous”
addresses,containingdigits out of therange � OQO M , to express
the fact that morethanonetransformwastaken to arrive at
thatpoint in thesequence.Continuingthelinguistic analogy,
this ambiguity correspondsto a given word’s belongingto
morethanonepartof speech,asin Chomsky’s“flying planes”
example,whereflyingcanbeeitheraverbor anadjective. For
the binary-branchingIRAAM example,if a given point had
both a left andright inverseon the attractor, a one-digitad-
dressfor thatpointwouldhaveto beasymbolotherthan � orN
. In general,for a M -ary IRAAM, thereare

N�RTS � possible
one-digitaddresses,consistingof M unambiguousvaluesandN�RUS M S � ambiguousvalues.

This fact hasgreatlinguistic importancefor IRAAM, for
the following reason: typically (but not exclusively), an
IRAAM decoderwill favor putting the V th non-ambiguous
terminal classin the V th position in a string of terminals,
becausethe samesetof weightsis usedto generatethe at-
tractorandthe transientsto the attractor. The likeliestnon-
terminalstructureof a binary-branchingIRAAM will there-
forebe(1 2),with structures(1 1), (2 1) and(2 2) beingpossi-
blebut lesslikely to occur. If, however, this IRAAM contains
ambiguousterminals,it will very likely decodethestructures
(1 3), (3 2) and(3 3) aswell.

Returningto the“flying planes”example,let usassignun-
ambiguousverbslikeare thecategory1, unambiguousnouns
likeplanes2 thecategory2, andtheambiguousflying thecat-
egory 3. With this assignment,thenaturalability of a binary
IRAAM to decodethestructures(1 (3 2)) and((1 3) 2) gives
us both parsesof the expressionare flying planes. Hence,
we have an existenceproof of a RAAM that candealwith
syntacticambiguityandnon-deterministicgrammars.

In short,we believe thatIRAAM not only solvestheprob-
lemsof theearlierRAAM model,but alsoaddressesthe lin-
guistic inadequaciesof recurrentneuralnet modelsthat we
discussedearlier.

What IRAAM Can’t Do

In the first sectionof this paperwe outlined two linguis-
tic criteria for a plausibleNL model: the model shouldbe
ableto handle“slightly” non-CFphenomenalikecopyingand
crossedserialdependenciesandshouldalsobe incapableof
handlingCF phenomenaabsentfrom or deprecatedin NL’s,
like mirror-imageconstructions,or shouldincur a relatively
highcostin producingor parsingthosestructures.

To investigatethe latter point, we testedthe ability of the
IRAAM modelshown in figure1 to “learn” thecontext-free
languages= > 
 > and WXW .

, WZY\[%= 3 
%] . Thetrainingsetcon-
sistedof thefirst 14exemplarsof eachlanguage(enumerated

2Readerstroubledby the possibility of planesbeinga singular
verb (Thecarpenterplanesthe wood) cansubstitutecars or some
otherunambiguousnounhere.

in increasingorderof length)3, with thefractaladdress1 rep-
resenting= and2 representing



. Hill-climbing wasusedto

learntheweights.Boththeinitial weightsandthenoiseadded
to eachweight camefrom a Gaussiandistribution with zero
meananda standarddeviation of 5.0,with theaddednoise’s
standarddeviationbeingscaledby thefractionof thetraining
setmissed.Theresultingweightswereusedto generatetrees
on an IRAAM with a resolutionof

N ��^ . The attractorwas
generatedat thatresolutionandtheinitial startingpointspace
wasalsosampledat thatresolution.

Hill-climbing did not producegood resultson either of
theselanguages;theaveragesuccesswassix outof 14strings
coveredfor bothlanguages.It is, however, instructiveto look
out how thosesuccesseswereachieved. Comparingthebest
hill-climbed networks from eachlanguage(10 stringscov-
ered),wefoundthatmostof thestringsgeneratedby the =?> 
 >
network fit the generalpatternof the training set: 74% of
the stringsfit the pattern =?> 
 > . For the best WXW .

network,
however, only 14%fit the patternWXW .

. In otherwords,the=?> 
 > network wasactuallyproducingmostly“grammatical”
strings,whereasthe WXW .

network wasessentiallyguessing.
Weattributetheseresultsto IRAAM’ saforementionedten-

dency to put symbolsof oneclass 2_= 6 on the left sideof a
branchand symbolsof anotherclass 2 
 6 on the right side.
In otherwords,treesof the form 2`= 
 6

, 2_=42`= 
 6a6
, 2a2_= 
 6 
 6

,2_=b2`=42_= 
 6a6a6
, 2a2a2`= 
 6 
 6 
 6

, aremuchmore“natural” for an
IRAAM thanaretreesof theform 2_=c= 6 , 2 
d
 6

, 2 
 = 6 . But it
is preciselythe latter typesof treesthatareusedasbuilding
blocksfor themirror-imagelanguageWXW .

. This biasmakes
the mirror-imagelanguagemuch harderfor an IRAAM to
learnthanthe countinglanguage=e> 
 > , despitethe fact that
bothareexpressibleby a simpleCFG.

Although this result is by no meansa proof of any sort,
we considerit interestingfor two reasons.First, it suggests
that the languagesgenerableby an IRAAM sharean im-
portantformal propertywith NL, namely, the avoidanceof
mirror-imageconstructions.Second,theresultillustrateshow
IRAAM imposesa constraintbetweenthe terminal symbol
“semantics”and the nonterminal“syntax.” This constraint
is absentfrom the definition of CFG’s (or of any grammar
in the Chomsky hierarchy),whereany terminalsymbolcan
appearanywhere. To the extent that individual naturallan-
guagesfavor puttinga givenpartof speechin fixedlocations
in a sentenceor phrase(e.g.,Englishgenerallyhassubject-
verb-object,Japanesesubject-object-verb), IRAAM appears
to haveanadvantageover traditionalgrammarsasamodelof
NL.

Conclusionand Inter pretations
We have demonstrateda new formulationof RAAM, which,
by using a fractal attractoras a terminal test, enablesthe
model to show competenceand ambiguity, to representa
variety of tree structures,and not to representdeprecated
mirror-imagestructures.We planto relatethis new formula-

3The number14 was chosenbecauseit allowed us to include
all the membersof fgfih for j fkjmlon . This languagehasmore
stringsof a given lengththanthelanguage�����5� , which meantthat
theexemplarsof thelatterhadto belongerin orderto enumeratethe
first 14 of them.In effect, this makesthe � � � � taskharder thanthefgfih task.



tion to linguistic formalismslike Tree-AdjoiningGrammars
(JoshiandSchabes1997)andCategorial Grammars(Steed-
man 1999) having similar properties. We hypothesizethat
this relationmay be achieved throughthe useof multiplica-
tive connectionsto gatelexical varietiesinto naturallyrecur-
sivedynamics.

Ourwork is by nomeanscomplete;nordowemeanto im-
ply thatNL grammarcanberepresentedin four neuronswith
12 weights! On the otherhand,the principle of contractive
mapsandthe emergenceof fractal attractorsin the limit be-
havior of nonlinearsystemsaremathematicalfacts,andhave
beenusedsuccessfullyin image-compressionsystems.Re-
centwork by Tabor(1998)providesfurtherevidencefor the
relevanceof suchprinciplesto connectionistmodelingof nat-
ural language.Wenow havereasonto believethattheseprin-
ciples,undertheright interpretationandscale,cansupporta
neurallyplausibleuniversalgrammar.
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