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Robust GPS-INS Outlier Accommodation:
A Soft-thresholded Optimal Estimator

Paul F. Roysdon Jay A. Farrell ∗

∗University of California, Riverside, CA 92521 USA
(e-mail: proysdon@ece.ucr.edu, farrell@ece.ucr.edu).

Abstract: Many highway vehicle applications require reliable, high precision navigation (error
less than meter level) while using low-cost consumer-grade inertial and global navigation satellite
systems (GNSS). The application environment causes numerous GNSS measurement outliers.
Common implementations use a single epoch Extended Kalman Filter (EKF) combined with
the Receiver Autonomous Integrity Monitoring (RAIM) for GNSS outlier detection. However,
if the linearization point of the EKF is incorrect or if the number of residuals is too low,
the outlier detection decisions may be incorrect. False alarms result in good information
not being incorporated into the state and covariance estimates. Missed detections result in
incorrect information being incorporated into the state and covariance estimates. Either case
can cause subsequent incorrect decisions, possibly causing divergence, due to the state and
covariance now being incorrect. This article formulates a sliding window estimator containing
multiple GNSS epochs. The approach solves the full-nonlinear Maximum A Posteriori problem
with l1-regularization. By leveraging the resulting window of residuals from the nonlinear
optimization, and exploiting the l1-regularization, an improved outlier accommodation strategy
is implemented. Experimental sensor data is used to demonstrate the robust sliding window
least soft-thresholded squares method and its performance.

Keywords: Moving Horizon Estimation (MHE), Simultaneous Localization and Mapping
(SLAM), Extended Kalman Filter (EKF), Global Navigation Satellite Systems (GNSS),
Inertial Navigation System (INS), Least Soft-thresholded Squares (LSS)

1. INTRODUCTION

The past decade has seen the rapid rise and adoption of
navigation systems on automobiles, unmanned vehicles,
and personal mobile devices such as smartphones. With
differential corrections these systems can exhibit submeter
accuracy. However, further improvements in the reliability
and continuity of this accuracy are required to fully sup-
port autonomous vehicle operations, especially in urban
environments, where variations in the operating conditions
and direct signal path can have critical effects. To achieve
high reliability, it is critical to detect and remove outlier
measurements before they degrade state estimation perfor-
mance. In GNSS applications such outlier measurements
can be caused by multipath, non-line of sight signals, or
overhead foliage.

RAIM is a set of techniques to cope with GNSS receiver
outlier measurements, based on measurement residual
generation techniques equivalent to least-squares (Brown
(1992); Sturza (1988)). Integrity is a measure of the trust
that can be placed in the correctness of the information
supplied by the total system. Often, RAIM is designed
assuming only one outlier occurs and that there is enough
measurement redundancy to detect and identify the source
(Brown (1992)). The principle of multiple outlier detection
has also been well developed over several decades (Brown
(1997); Angus (2006)), within a general framework named
Fault Detection and Elimination (FDE). The authors of

(Hewitson and Wang (2010)) included an inertial mea-
surement unit and a Kalman filter to “extend” the RAIM
capabilities. The method is called eRAIM. However, both
RAIM and eRAIM are based on measurements from a
single epoch, limiting data redundancy. Furthermore, the
residual generation algorithm in RAIM and eRAIM as-
sumes a linear system.

This work in outlier accommodation is motivated by
recent advances in computer vision. It is common in the
robotics community to solve state estimation problems by
the Maximum A Posteriori (MAP) formulation, but the
approach is sensitive to measurements which deviate from
their stochastic noise model (i.e., outliers). The authors
of (Wright et al. (2009); Mei and Ling (2009); Wang
et al. (2015)), using a sparse representation of candidate
tracking sets for face recognition, demonstrate that l1-
regularization can exploit the sparseness of outliers in
a candidate dataset with redundant measurements to
achieve enhanced performance.

Data redundancy is critical to successful outlier accommo-
dation and can be enhanced by considering all GNSS and
IMU measurements within a sliding temporal window. The
resulting full nonlinear MAP estimator, without outlier
detection and removal, is presented in (Zhao et al. (2014)).

This article presents the formulation of the l1-regularization
for a nonlinear sliding window estimator. Because this ap-
proach allows real-time analysis of numerous fault scenar-



ios, with real-time error correction, outlier accommodation
can be improved. This estimator is demonstrated using
real-world data involving urban canyons and overhead
foliage.

2. BACKGROUND AND NOTATION

This section introduces Global Positioning System (GPS)
aided inertial navigation system (INS) background (Farrell
(2008)).

2.1 Aided Inertial Navigation

Let x ∈ Rns denote the rover state vector, where

x(t) = [pᵀ(t),vᵀ(t),qᵀ(t),bᵀ
a(t),bᵀ

g(t)]ᵀ ∈ Rns ,
where p, v, ba, bg each in R3 represent the position, veloc-
ity, accelerometer bias and gyro bias vectors, respectively,
q ∈ R4 represents the attitude quaternion (ns = 16).

The kinematic equations for the rover state are

ẋ(t) = f(x(t),u(t)), (1)

where f : Rns ×R6 7→ Rns represents the kinematics, and
u ∈ R6 is the vector of specific forces and angular rates.
The function f is accurately known (see eqn. 11.31-11.33 in
Farrell (2008), and Roysdon and Farrell (2017b)). Nature
integrates eqn. (1) to produce x(t).

Let τi denote the time instants at which IMU measure-
ments are valid. Assume there is a prior for the initial
state: x(t0) ∼ N (x0,P0). Given the initial condition x0

and the IMU measurements ũ(τi) = u(τi)+b(τi)+ωu(τi),
with additive stochastic errors ωu(τi) ∼ N (0,Qd) and
b = [bᵀ

a,b
ᵀ
g ]ᵀ, a navigation system propagates an estimate

of the vehicle state as the solution of
˙̂x(t) = f(x̂(t), ũ(t)), (2)

where x̂(t) denotes the real-time estimate of x(t).

The solution of (2) over the interval t ∈ [τi−1, τi] from the
initial condition xi−1 is represented as the operator:

φ(xi−1,ui−1) = xi−1 +

∫ τi

τi−1

f(x(τ),u(τ))dτ (3)

where x̂i = φ(x̂i−1, ûi−1), with ûi−1 = ũi−1−b̂i−1. Define
Uk−1 = {ũ(τi) for τi ∈ [tk−1, tk]}. The integral operator
in (3) can be iterated for all IMU measurements in Uk to
propagate the state from tk−1 to tk: x̂k = Φ(x̂k−1,Uk−1).
It is shown in Chapter 4.7 of (Farrell (2008)) that x̂k −
Φ(x̂k−1,Uk−1) = wk, and QDk = Cov(wk).

2.2 GPS Model

For notational simplicity, it is assumed that the double
difference approach removes all common-mode errors (e.g.,
ionosphere, troposphere, satellite clock and ephemeris er-
rors), as well as the receiver clock biases. Let tk = kT
denote the time instants at which GPS measurements are
valid, and xk denote the state at x(kT ). It is typically the
case that T � [τi − τi−1]. Therefore, there are numerous
IMU measurements available between GPS epochs.

For (m+1) satellites, yk represents the double-differenced
code (pseudorange) and Doppler measurement vector, as

defined in Section 8.8 of (Farrell (2008)). The double-
differenced measurement vector at tk is modeled as

yk = hk(xk) + ηyk + sk,

where ηyk = [ηρk,ηdk], and yk, ηyk, sk ∈ R2m. The
symbol ηρk ∼ N (0,σ2

ρI) represents the pseudorange mea-

surement noise with σρ = 0.1 ∼ 3m, and ηmdk ∼ N (0,σ2
dI)

represents the Doppler measurement noise with σd =
0.1 ∼ 0.5m/s. Depending on receiver design, environmen-
tal factors and the performance of multipath mitigation
techniques, the noise level σρ and σd can vary for each
available satellite. The symbol R = Cov(ηyk). The symbol
sk represents the error due to outliers. Using the state
estimate, the GPS measurements at tk are predicted to
be ŷk = hk(x̂k). The GPS measurement residual vector is
computed as δyk = yk − ŷk.

3. ESTIMATION THEORY

For a known linear system with white, normally dis-
tributed, and mutually uncorrelated process and measure-
ment noise vectors with known covariance, the Kalman
filter (KF) is the optimal (linear or nonlinear) estimator.
The KF can be derived from a variety of perspectives
(Maybeck (1979); Jazwinski (1970)): Maximum a Poste-
riori, or Mean Squared Error. When the time propagation
or measurement models are nonlinear, a variety of methods
(e.g., the extended Kalman filter, see Maybeck (1979)) are
available to solve the sensor fusion problem over a single
measurement epoch.

This section presents the MAP estimator solved over a slid-
ing temporal window in the presence of measurement out-
liers. This approach can be extended to many sensors, e.g.
magnetometer, barometric pressure, camera or LiDAR.
Without considering outliers, this formulation has been
developed extensively in the Simultaneous Localization
and Mapping (SLAM) research community (Dellaert and
Kaess (2006); Eustice et al. (2006); Kaess et al. (2012)).
The approach developed for GNSS and IMU integration
in (Zhao et al. (2014)) is referred to as a Contemplative
Real Time (CRT) method due to its enhanced ability to
detect and remove outliers. That ability has not yet been
demonstrated, but is developed and demonstrated herein.

3.1 MAP Problem Formulation

Let Xk denote the vehicle trajectory over a sliding time
window X = [x(tk−L)ᵀ, . . . , x(tk)ᵀ]

ᵀ
, where L is the

length of the window, and contains L GPS epochs,
[yk−L+1, . . . ,yk]. The window will slide one epoch upon
arrival of each new GPS measurement, always keeping L
epochs in the window. For presentation purposes only,
we assume that each GPS epoch aligns with an IMU
measurement time. The results in the experimental section
relax this assumption.

Estimation of the vehicle trajectory X can be formulated
as a MAP problem (see Ch. 11.5 of Kay (2013)):

X̂ = argmax
X,S

{p(X,U,Y,S)} ,

where within the time window U = {Ui | i ∈ [k−L, k−1]},
Ui = {ũ(τ`) for τ` ∈ [ti, ti + 1]}, Y = {yj | j ∈ [k − L +
1, k]}, and S = {sj | j ∈ [k−L+1, k]}. The sets U, Y, and



S will be treated as concatenated vectors in the numerical
approach.

The GPS-INS joint probability can be decomposed as

p(X,U,Y,S)

= p(S)p(xk−L)

k−1∏
l=k−L

p(xl+1|xl,Ul)

k∏
j=k−L+1

p(yj |xj , sj), (4)

where p(xk−L) is the distribution of the initial condition
for the time window, p(xl+1|xl,Ul+1) is the distribution
of the IMU measurement noise, p(yj |xj , sj) is the distribu-
tion of the GPS measurement noise, p(S) is the distribu-
tion which corresponds to the outlier measurements. The
derivation of eqn. (4) is in (Roysdon and Farrell (2017b)).

3.2 Solution Formulation

Assume that x(tk − L), ωu, and ηy have Gaussian distri-
butions with positive definite covariance matrices P(k−L),
QD, and R, respectively. Let W = blkdiag(P(k−L),QD,R).

Then ‖v‖2W = vᵀW−1v represents the squared Maha-
lanobis norm.

The outlier vectors sj are assumed to have zero mean
Laplacian distributions (Mei and Ling (2009); Wang et al.
(2015)):

psj (s) =
1

2
exp

[
−
∥∥∥∥ sρ
λρ

∥∥∥∥
1

]
exp

[
−
∥∥∥∥ sd
λd

∥∥∥∥
1

]
,

where ‖ · ‖1 is the l1-norm, and s = [
sᵀρ
λρ
,
sᵀ
d

λd
]ᵀ. The values

λρ and λd are selected according to the psuedorange and
Doppler measurement distributions, respectively.

Finding X that maximizes eqn. (4) is identical to minimiz-
ing the negative of its natural logarithm. This yields the
equivalent nonlinear cost function:

C(X,S) = ‖x̂k−L − x(tk−L)‖2P(k−L)
+

k∑
j=k−L+1

‖s(tj)‖1

+

k−1∑
l=k−L

‖Φ
(
x(tl),Ul

)
− x(tl+1)‖2QD

+

k∑
j=k−L+1

‖y(tj)− hj
(
x(tj)

)
− s(tj)‖2R. (5)

The cost function can be normalized using Cholesky De-
composition. For the positive definite matrix W, define
ΣW, such that W−1 = Σᵀ

WΣW. Then, for b , ΣWv,
‖v‖W = ‖b‖2. The minimization problem of eqn. (5)
reduces to the optimization of

‖z− g(X)− S‖22 + ‖S‖1, (6)

which will be minimized iteratively. In eqn. (6), the symbol

z = ΣW[x̂ᵀ
k−L,0

ᵀ,Yᵀ]ᵀ

represents the terms that are known at each iteration and

g(X) = ΣW[x(tk−L)ᵀ,Φ(X,U)ᵀ −Xᵀ,h(X)ᵀ]ᵀ

represents the terms that are computed based on X. In
this expression, Φ(X,U)−X represents the concatenation
of the vector terms φ

(
x(tl),Ul

)
− x(tl+1), and h(X)

represents the concatenation of the vector hj(x(tj)) terms.

4. APPLICATION OF THE SOFT-THRESHOLDING
OPERATOR TO A NONLINEAR PROBLEM

The authors of (Wang et al. (2015); Mei and Ling (2009))
provide the derivation of the Soft-Thresholding Operator
for the linear case. Equation (6) has the nonlinear form

C(X,S) = −1

2
‖z− g(X)− S‖22 + ‖S‖1

which can be optimized by methods similar to those of
(Wang et al. (2015); Mei and Ling (2009)) as derived
below. Because the l1-norm is not differentiable at its
maximum (minimum), the optimal solution to C(X,S) is
solved in two parts.

4.1 Part 1: Estimate X, given Ŝ

Given Ŝ and an initial guess X̂, the optimal value of X is

X∗ = argmax
X

C(X, Ŝ)

= argmax
X

{
−1

2
‖z− g(X)− Ŝ‖22 + ‖Ŝ‖1

}
= argmax

X

{
−1

2
‖(z− Ŝ)− g(X)‖22

}
. (7)

This optimization can be solved iteratively using a Taylor
series expansion to approximate g(X),

g(X) = g(X̂) + GδX + h.o.t′s, (8)

where the Jacobian G = ∂g(X)
∂X

∣∣∣
X=X̂

, and δX = X −

X̂ where δX ∈ Rne(L+1). The dimension of the er-
ror state vector is ne. The error state vector is δx =
[δpᵀ, δvᵀ, δθᵀ, δba

ᵀ, δbg
ᵀ]ᵀ ∈ R15, where δp, δv,

δθ, δba, and δbg each in R3 are the position, velocity,
attitude, accelerometer bias and gyro bias error vectors,
respectively. The dynamics and stochastic properties of
this estimation error vector are well understood, and can
be found in Section 11.4 of (Farrell (2008)). The fact that
ns = 16 and ne = 15 is discussed in (Roysdon and Farrell
(2017b)). Inserting eqn. (8) into eqn. (7), ignoring the
higher order terms (h.o.t′s), yields

δX∗ = argmin
δX

‖(z− Ŝ)− (g(X̂) + GδX)‖22

= argmin
δX

‖b−GδX‖22

where

b = z− Ŝ− g(X̂). (9)

Then, the optimal δX̂ is the solution of the normal
equation:

(GᵀG)δX̂ = Gᵀb. (10)

The optimal update to the trajectory

X̂+ = X̂− + δX∗ (11)

is obtained by iterating eqns. (8), (9), and (10), to con-
vergence for some user defined stopping conditions. The
symbol (−) denotes the prior estimate, whereas (+) is the
updated estimate.

4.2 Part 2: Estimate S, given X̂

Given an estimate X̂, the optimal value of S is



S∗ = argmax
S

C(X̂,S)

= argmax
S

{
−1

2
‖z− g(X̂)− S‖22 + ‖S‖1

}
.

= argmax
S

{
−1

2
‖c− S‖22 + ‖S‖1

}
,

= argmin
S

∑
i

[
(ci − Si)

2
+ |Si|

]
, (12)

where c = z− g(X̂) is a constant.

Each term in the summation in eqn. (12) only depends on
ci and si, thus each term can be optimized independently

ŝi = argmin
si

{
(ci − si)

2
+ |si|

}
. (13)

The closed-form solution of the optimization problem in
eqn. (13) is the soft-thresholding operation

ŝi = sign(ci)max(|ci| − 1, 0), . (14)

4.3 Summary

Implementation of Sections 4.1 and 4.2 is as summarized
in Algorithm 1.

Algorithm 1 Least Soft-threshold Squares Regression

1: Given initial X̂ and Ŝ. Initialize i = 0.
2: while (((‖δX̂‖2 & ‖δŜ‖2) > 1× 10−3) & (i < 20))
3: i = i+ 1
4: Compute δX̂ and X̂+ = X̂− + δX̂.
5: if (‖δX̂‖2 < 1× 10−3)

6: Compute Ŝ using eqn. (14).

7: Compute δX̂ and X̂+ = X̂− + δX̂.
8: end
9: end

Note that in Section 4.1 the value of the cost function
C(X,S) is decreased by changing only X, even if multiple
nonlinear least squares iterations occur. In Section 4.2
the value of the cost function C(X,S) is decreased by
changing only S, only a single iteration is required, and
δŜ , Ŝ+ − Ŝ−. Therefore, at each iteration, the cost
function is decreased and is bounded below. Ultimately at
least a local minimum of the cost function will be attained.

A line search is implemented in the direction of δX∗ from
eqn. (10) to determine the magnitude of the update step
in eqn. (11).

The normal equation of eqn. (10) can be compactly ex-
pressed as ΛδX = ξ where Λ = GᵀG is the information
matrix, ξ = Gᵀb is the information vector. The matrix
G is sparse; therefore, eqn. (10) can be solved efficiently
by employing a sparse matrix library (Dellaert and Kaess
(2006); Kaess et al. (2012)). The computational complex-
ity of the algorithm is discussed in (Roysdon and Farrell
(2017b)).

The combined operation of Sections 4.1 and 4.2 are equiva-
lent to the Huber Loss function (Huber (1981); Wang et al.
(2015)).

5. EXPERIMENTAL RESULTS

Real-world performance is evaluated using data from a
drive-test around University of California, Riverside using
a consumer-grade GPS antenna (Antcomm ANN-MS-0-
005) mounted on the vehicle roof. During driving, the
sensor data is time-stamped and stored. The sensor data
includes consumer-grade: Quartz-MEMS IMU data (Ep-
son M-G320) at 250Hz, and L1 GPS data (Ublox 6T) at
1Hz. Differential corrections were obtained from the UCR
base-station NTRIP caster (ntrip.engr.ucr.edu) in real-
time via cellular connection. This trajectory contains a
variety of real-world automotive conditions that adversely
affect GPS receiver performance, e.g. tall buildings and
trees.

To allow direct comparison of the performance of various
algorithms, using the identical input data, the results of
this section are computed during post-processing. Even
though running in post-processing for this evaluation, each
algorithm is written in C++ to run in real-time, using
only the data and prior as would be applicable for each
approach. The navigation algorithms being compared only
use L1 GPS with differential corrections, and IMU data.

The ground truth trajectory is found by solving a nonlinear
optimization problem over the entire (600 second) trajec-
tory, formulated in the maximum a posteriori perspective.
This smoother uses integer resolved carrier phase DGPS
and IMU measurements, to achieve centimeter level accu-
racy (Vu and Farrell (2015)).

Due to limited space, only 3D position performance is
discussed herein. Velocity and attitude results are provided
in (Roysdon and Farrell (2017b)), and are similar to
position performance.

5.1 CRT LSS: Fixed Window Example

This subsection discusses the optimization within one fixed
CRT window with L = 20. The results are shown in Table
1 and Fig. 1.

Table 1 presents the results of each iteration of Alg. 1,
which is initialized with ‖Ŝ‖1 = 0. The X̂ optimization

(Alg. 1 row 4) iterates four times to reach X̂ convergence

with Ŝ = 0. After iteration four, ‖δX̂‖2 < 1 × 10−3 and

Ŝ is computed using eqn. (14). This increases ‖Ŝ‖1, but
decreases both ‖b‖2 and the cost function at iteration

Table 1. CRT LSS Iterations.
Note b, Ŝ and δŜ are dimensionless, while each 3-element

subvector of δX̂ has distinct units (see Section 4.1).

i ‖b‖2 ‖Ŝ‖1 ‖δX̂‖2 ‖δŜ‖1
1 1814564.689 0.000 117.632 0.000

2 104412.888 0.000 1.274 0.000

3 3567.236 0.000 0.064 0.000

4 11.859 0.000 0.001 0.000

4 10.851 2.808 0.077 2.808

5 10.823 2.808 0.003 0.000

6 10.493 2.808 0.000 0.000

6 10.473 2.874 0.005 0.065

7 10.473 2.874 0.004 0.000

7 10.471 2.879 0.000 0.005



Fig. 1. The CRT-LSS results for residuals b before and
after estimating Ŝ, and the values of Ŝ.

five. Then δX̂ and X̂+ = X̂− + δX̂ are computed. At
this point Algorithm 1 returns to row 2, and the X̂
optimization is repeated until both ‖δX̂‖2 < 10−3 and

‖δŜ‖2 < 10−3 (the user defined convergence thresholds).
Only three additional iterations are required.

Fig. 1 shows the residual b̂ before and after compensation

by Ŝ during the final iteration. The vectors b̂ and Ŝ are
structured as follows and separated by red-line boundaries.
The prior is the first 15 elements. The INS data are the
next 300 elements (20 blocks of 15 elements). The GPS
L1 pseudorange data are elements 316-425, and Doppler
data are elements 426-534. Under the assumed conditions
(white Guassian process and measurement noise with per-

fect tuning), the vector b̂ would be Gaussian with unit
variance. Because this is clearly not the case for the INS

and pseudorange portions of b̂, discussion is warranted.
The large elements of the INS residuals correspond to the
accelerometer and gyro bias errors. Those errors in the INS
error model are very slowly time-varying, such that over
this L = 20 second window, these errors are essentially
constant, which cause the 20 peaks in the INS residual.
The pseudorange residuals are affected by time-correlated
multipath errors. Two satellites are significantly worse
than the others. The time-correlation is evident. This cor-
relation could be addressed by state augmentation, which
is an interesting topic for future research. The Doppler and
prior residuals look reasonable. The vector Ŝ, shown in the
bottom plot, is sparse. As defined in eqn. (4), the non-zero

indices in Ŝ, denoted by a red “x”, correspond to the GPS
residuals for both pseudorange and Doppler. Comparing
the first two graphs, while b− has several large elements,
the corrections defined by Ŝ result in b+ being magnitude
constrained by λ. Pseudorange and Doppler magnitude
constrained residuals do not necessarily coincide due to
different modalities.

5.2 CRT LSS Example: Sliding Window

Fig. 2 shows the cumulative distribution function (CDF)
of the norm of the position error ‖p̂k − pk‖ for various
estimation algorithms. Position error is computed relative
to the ground truth trajectory pk discussed earlier. The
value of p̂k is the a posteriori result after convergence of
Alg. 1 at the first time when the k-th epoch enters the
sliding window. In the legend, EKF and CRT are already
defined. IEKF represents the iterated EKF, which is the
same as the CRT with L = 1. The advantage of the IEKF
is its ability to perform a nonlinear iterative correction.
For the CRT algorithm, curves are included for various
values of the window length L.

The CDF shows that the percentage of occurrences where
the EKF position error is less than 0.1m, is roughly 15%.
Approximately 90% of the state vectors, as estimated by
the EKF, have position error less than 1.0m. Fig. 2 shows
that accuracy improves from the EKF to the IEKF to the
CRT. Also, CRT performance (generally) improves with
the window length L. For example, in the CRT approach
with L > 5, 97% of the position errors are less than
1.0m. The CRT algorithms with L > 10 each achieve 1.0m
position accuracy on 100% of the trajectory. Alternatively,
the EKF and IEKF CDF plots do not reach 100% until the
position accuracy is over 3.0m.

The improved performance demonstrated in Fig. 2 is at-
tributed to solving the full nonlinear optimization over a
longer window with outlier accommodation. The longer
window enhances the redundancy and allows reconsidera-
tion of fault decisions, as long as the measurement data
is within the sliding window. This enhanced ability to
accommodate outliers to achieve reliable performance is
one of the major motivations of the CRT approach.

5.3 Comparison: CRT LSS vs. Hypotheses Testing

An alternative to the LSS approach developed and eval-
uated herein are hypotheses testing approaches (Ferguson
(1961)). CRT using the hypotheses testing approach is

Fig. 2. Position Error Cumulative Distributions.



developed and evaluated in (Roysdon and Farrell (2017a)).

Each approach builds on the residual vector z−g(X̂) (see
eqn. (9)).

The hypotheses testing approach first evaluates the null
hypothesis that no outliers exist. If the null hypothesis
fails, then the most likely alternative hypothesis is selected
from a candidate set of alternative hypotheses. The ap-
proach can succeed when the set of candidate hypothe-
ses includes the actual outlier scenario. To evaluate any
given alternative hypothesis, the rows corresponding to the
faulty measurements are removed from both the residual
vector and Jacobian matrix, then the nonlinear optimiza-
tion process is repeated and its likelihood computed. For
a large number of alternative hypotheses, this becomes
computationally expensive.

Given (mL) residuals in each CRT window, there are

mL∑
k=1

(
mL
k

)
=

mL∑
k=1

(mL)!

((mL)− k)! k!
,

ways that any number of satellite measurements could fail
in any combination at one epoch (see Section 3 of Angus
(2006)). For the EKF or IEKF (with L = 1 and m = 9)
this results in 511 hypotheses, which is too large for full
consideration. For the CRT with L = 20, consideration of
all hypothesis is even more infeasible for real-time imple-
mentation. Therefore, simplified approaches to hypotheses
testing are required, such as iteratively removing the row
with the largest residual and reoptimizing until all residu-
als pass a threshold test.

The soft-thresholding approach of (Wang et al. (2015);
Mei and Ling (2009)) as adapted to the CRT problem in
Section 4 does not remove any rows. Instead, it automat-
ically detects which residuals should be soft-thresholded
in a manner that guarantees convergence of the MAP
optimization for each time window accounting for outliers.

6. CONCLUSION

This article derived and demonstrated a MAP estimator
with automated l1-regularization outlier accommodation
using a sliding window smoothing approach. Increasing the
duration L of the sliding window enhances redundancy
at the expense of increased computation. Enhancing re-
dundancy improves the reliability of achieving any given
accuracy specification, by better outlier accommodation.

This CRT-LSS framework, through nonlinear optimiza-
tion, achieves optimal state estimation without lineariza-
tion assumptions. Real-time implementation is feasible on
standard computers. The CRT-LSS performance is demon-
strated through direct comparisons of both the accuracy
and outlier accommodation abilities of various algorithms
using experimental data from a challenging environment.
Such methods have utility in autonomous vehicle applica-
tions where both accuracy and reliability are critical.

Related areas of interest for future research include accom-
modation of time correlated errors (e.g., multipath) either
by augmented states or non-diagonal covariance matrices
(e.g. R), adaptation of the LSS threshold λ to minimize
the risk of missing outliers while guaranteeing a desired

level of expected accuracy, and adaptation of the window
length L again trading off risk and performance.
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