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Abstract 

Spatial ability tests like mental rotation and paper-folding 
provide strong predictions of an individual’s achievement in 
science and engineering. What cognitive skills are involved in 
them? We use a computational model to analyze these tasks, 
asking how much information must be processed to perform 
them. The models demonstrate that in some cases stimuli can 
be vastly simplified, resulting in consistent performance 
regardless of stimulus complexity. The ability to produce a 
scaled-down representation of a complex stimulus may be a 
key skill underlying high spatial ability. 

Keywords: spatial ability; mental rotation; paper-folding; 
cognitive modeling. 

Introduction 

There is strong evidence linking spatial ability to academic 

achievement. Children who perform well on spatial ability 

tests are more likely to study STEM disciplines (Science, 

Technology, Engineering, and Mathematics) and to go into 

a STEM profession (Shea, Lubinski, & Benbow, 2001; Wai, 

Lubinski, & Benbow, 2009). This effect holds even when 

controlling for verbal and mathematical ability, suggesting 

that spatial ability is an independent component of 

intelligence.  If we are to improve STEM achievement, it is 

critical that we better understand the skills that compose 

spatial ability and how they can be taught. 

Traditionally, spatial ability has been evaluated using 

tasks such as mental rotation and paper-folding.  In mental 

rotation (Figure 1A, 1B), individuals are shown two shapes 

and asked whether a rotation of one shape could produce the 

other. In paper-folding, they are shown a line-drawing of 

paper and asked to imagine the results of unfolding (Figure 

1C) or folding up (Figure 1D) the paper.  Both tasks appear 

to measure spatial visualization, the ability to manipulate 

mental representations of images (McGee, 1979). There is 

evidence that the tasks are linked, with training on one 

improving performance on the other (Wright et al., 2008). 

However, many questions remain about what skills enable 

people to perform them quickly and accurately.  

Here, we study the mental rotation and paper-folding 

tasks using a computational model. The model operates 

directly on 2D line drawings (sketches), automatically 

generating representations, transforming them, and 

evaluating the results of the transformation. We use the 

model to analyze the tasks, asking how much information 

must be encoded and carried through the transformations to 

perform each task consistently. This analysis allows us to 

address a longstanding debate about the effects of shape 

complexity on mental rotation. It also provides hypotheses 

about the skills supporting fast, efficient mental rotation, 

and thus the skills underlying spatial ability. 

We begin with background on mental rotation and the 

question of shape complexity. We show how paper-folding 

appears to violate many researchers’ conclusions, as it 

involves simple shapes but requires great deliberation and 

effort. We next present our computational model, which 

builds on previous cognitive models of perception, 

comparison, and visual problem-solving (Falkenhainer, 

Forbus, & Gentner, 1989; Lovett & Forbus, 2011). We 

apply the model to the two tasks, determining the amount of 

information that must be carried through the 

transformations, and showing why paper-folding is a more 

difficult task. Finally, we discuss the results and consider 

the ramifications for spatial ability in general. 

Background 

Mental Rotation 

Mental rotation is frequently used to evaluate spatial ability 

(Vandenberg & Kuse, 1978). Typically the distractors—the 

shapes that aren’t a valid rotation—are mirror reflections. 

When they are presented sequentially, there is often a cue 

indicating what the orientation of the second shape will be 

(e.g., Cooper & Podogny, 1976; Figure 1B). A common 

finding across task variations is that the response time is 

proportional to the angle of rotation between the shapes. 

That is, response times increase linearly with angular 

distance. This finding has led to the claim that people use a 

mental space, analogous to the physical space, and that they 

rotate their representation through this space just as an 

object might rotate physically (Shepard & Cooper, 1982). 

One common question concerns how shapes are rotated 

through mental space. Are they rotated piecemeal, with one 

part rotated at a time, or are they rotated holistically, with 

every part rotated together (Bethell-Fox & Shepard, 1988)? 

These two possibilities produce different predictions about 

how shape complexity interacts with rotation speed. If 

shapes are rotated piecemeal, then people should rotate 

complex shapes more slowly, because there are more parts 

to rotate. If shapes are rotated holistically, then shape 

complexity may not affect rotation speed. 
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The results on shape complexity provide evidence for 

both piecemeal and holistic rotation. Overall, it appears that 

rotation speed depends more on other factors, such as the 

familiarity of the objects (Bethell-Fox & Shepard, 1985; 

Yuille & Steiger, 1982), the similarity of the distractors 

(Folk & Luce, 1987), and the strategy and overall ability of 

the participant (Yuille & Steiger, 1982; Heil & Jansen-

Osmann, 2008). These findings suggest that dealing with 

shape complexity may itself be a spatial skill. Skilled 

participants may apply heuristics to simplify shapes for 

rapid rotation. However, when these heuristics fail, they are 

reduced to rotating one piece at a time, which is slower. 

One straightforward heuristic for simplifying a shape is to 

ignore parts of it. When Yuille and Steiger (1982) told 

participants they could complete a mental rotation task 

using only the top halves of the shapes, participants rotated 

the shapes more quickly. Alternatively, participants might 

utilize scalable representations (Schultheis & Barkowsky, 

2011) that support dynamic variation of detail based on task 

demands. Both the degree and the type of detail may vary. 

For example, while we can imagine both the locations and 

orientations of objects in space, a task might require 

considering only one of these. In this paper, we use the term 

spatial smoothing for any process that removes spatial 

detail, producing a simpler representation. 

Participants may smooth out the details in complex 

shapes, producing representations with equal complexity to 

those of simpler shapes. However, when the distractors are 

particularly similar to the base shapes, participants may 

require additional detail, and so they may use more complex 

representations that are more difficult to rotate. 

This hypothesis leads immediately to two predictions: 1) 

When similarity of distractors is kept constant and relatively 

low, people should rotate shapes at the same rate regardless 

of shape complexity. 2) As distractors become more similar, 

people should rotate shapes more slowly, particularly when 

the shapes are complex.  There is evidence supporting both 

predictions (1: Cooper & Podgorny, 1976; 2: Folk & Luce, 

1987). 

Paper-Folding 

In contrast with mental rotation, paper-folding has seen 

relatively little study. This is surprising, given that it is also 

often used to evaluate spatial ability (Ekstrom et al., 1976). 

Here, we focus on a version of paper-folding that emerged 

at about the same time as mental rotation (Shepard & Feng, 

1972). While this version is used less frequently in spatial 

ability evaluations, there is direct evidence linking it to 

mental rotation (Wright et al., 2008). 

Figure 1D shows an example. The letters have been added 

for illustrative purposes and are not part of the stimulus. In 

this task, participants are shown six connected squares, 

representing the surfaces of a cube that has been unfolded.  

Two edges are highlighted by arrows, and one square is 

grayed out, indicating it is the base of the cube. Participants 

are asked whether the highlighted edges would align if the 

squares were folded back into a cube. 

Unlike mental rotation, this task requires a sequence of 

rotations. For example, Figure 1D requires three rotations. 

One solution (Figure 2) would be: 1) Rotate squares A, B, 

and C up, so that they stick out from the plane. 2) Rotate 

squares B and C down to make the top surface of the cube. 

3) Rotate square C farther down, making the front surface of 

the cube. At this point, the two arrows align perfectly. 

Surprisingly, even though each of these three rotations 

seems simple, they appear to be piecemeal rotations. 

Participants’ response times are not a function of the 

number of rotations performed, but of the number of times 

every square is rotated. In this case, three squares are rotated 

(Figure 2B), then two squares (2C), then one square (2D), 

A)     B)       C)    D)  
Figure 2. Possible solution for Figure 1D. 

A)    B)  

C)  D)  
Figure 1. Mental rotation (A, B) and paper-folding (C, D) tasks (A: Shepard & Metzler, 1971; B: Cooper & Podogny, 1976; 

C: Ekstrom et al., 1976; D: Shepard & Feng, 1972). 
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so the overall number of squares rotated is 3 + 2 + 1 = 6. 

The response times reflect the six rotations, suggesting 

participants rotate a single square at a time.  

Why should participants require piecemeal rotation for 

such apparently simple shapes? We propose that, unlike 

many mental rotation tasks, little spatial smoothing can be 

performed. The precise location and orientation of every 

surface rotated is critical to performance. In Figure 2A, the 

location and orientation of square A determines where the 

second rotation occurs, and the location and orientation of 

square B determines where the third rotation occurs. 

If this proposal is true, it may shed light on how and when 

spatial smoothing can be applied, and what happens when it 

cannot be used.  Understanding this requires determining 

how much spatial information must be rotated in each task. 

To better answer this question, we developed a 

computational model of the tasks. 

Model 

The spatial ability model is built within CogSketch, a sketch 

understanding system. Below, we present CogSketch and its 

framework for cognitive modeling. We then describe how 

the model performs mental rotation and paper-folding. 

CogSketch 

CogSketch is an open-domain sketch understanding system 

(Forbus et al., 2011). Users sketch a scene by drawing one 

or more objects. It is the user’s responsibility to manually 

segment a sketch into objects, indicating when they have 

finished drawing one object and begun on the next.  

Given a set of objects, CogSketch automatically generates 

a representation of the scene. While CogSketch does not 

model the process of visual perception, its representations 

are a model of those produced by human perception. The 

representations are based on two psychological claims: 1) 

Spatial representations include a qualitative or categorical 

component and a quantitative or metric component 

(Kosslyn et al., 1989; Forbus, et al 1991). When possible, 

people use the qualitative component during reasoning. 

CogSketch computes qualitative spatial relations between 

objects, e.g., indicating that one object is right of another or 

that two objects intersect. 2) Spatial representations are 

hierarchical, meaning they can represent a scene at different 

levels of abstraction (Palmer, 1977; Marr & Nishihara, 

1978). CogSketch can represent objects and the relations 

between them, or it can represent the edges of an individual 

object and the relations between those edges. To produce an 

edge-level representation, CogSketch segments an object’s 

contour into edges at points of maximum curvature (e.g., 

Figure 3A; Lovett et al., 2012).  Once edges have been 

computed, it generates qualitative spatial relations between 

the edges, e.g., indicating that two edges are parallel or that 

a corner between edges is convex. 

CogSketch models visual comparison using the Structure-

Mapping Engine (SME) (Falkenhainer et al 1989), a 

domain-general cognitive model based on Gentner’s (1983) 

structure-mapping theory. SME compares two qualitative 

representations by aligning their common relational 

structure, highlighting commonalities and differences. For 

example, suppose SME is comparing two shapes like the 

one in Figure 3A. Each representation will contain entities 

(symbols representing each edge), attributes (features of the 

edges, such as straight vs. curved), first-order relations 

between edges (e.g., indicating that a corner between edges 

is convex), and higher-order relations between other 

relations (e.g., indicating that two corners are adjacent along 

the shape). By aligning the common relations, SME can 

determine the corresponding edges in the two shapes. 
 

Modeling in CogSketch CogSketch possesses two key 

features that support modeling psychological experiments. 

First, in addition to sketching by hand, users can import 

shapes from another program such as PowerPoint. Perfectly 

straight line drawings from an experiment can be replicated 

in PowerPoint and imported into CogSketch, providing it 

with the same stimuli as those shown to human participants. 

Second, CogSketch includes a Spatial Routines language 

for writing cognitive models. Spatial Routines, which builds 

on Ullman’s (1984) concept of visual routines, provides 

modelers with a set of cognitive operations. These include 

visual perception, visual comparison, and spatial 

transformation operations. Modelers can parameterize these 

operations and combine them in different ways to produce a 

spatial routine. Each routine is both a theoretical model of 

how people perform a task and a fully automated 

computational model. The computational model can be run 

on visual stimuli, and its performance can be compared to 

human responses to evaluate the theoretical model. 

We have previously modeled visual problem-solving 

tasks such as geometric analogy (Lovett & Forbus, 2012), 

Raven’s Progressive Matrices (Lovett, Forbus, & Usher, 

2010), and an oddity task (Lovett & Forbus, 2011).  

Mental Rotation 

We modeled a classic sequential mental rotation task 

because it presents the clearest evidence for efficient, 

holistic rotation. In this task (Figure 1B; Cooper & 

Podogny, 1976), participants are presented with three 

stimuli in sequence: 1) They see the base shape. 2) They see 

an arrow indicating what the target shape’s orientation will 

be. They are encouraged to mentally rotate the base shape to 

that orientation and press a button when they are done. 3) 

They see the target shape, and they indicate whether it is the 

same as the rotated base shape. The amount of time 

participants spend on step 2) indicates the rotation time. The 

key finding of the experiment was that rotation time did not 

increase as the shape complexity increased from a 6-sided 

A) B) C)  
Figure 3. A: Shape segmented into edges. B: Result of 

Gaussian smoothing. C: Result of selecting 4 longest edges. 
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polygon to a 24-sided polygon. Our model is designed to 

evaluate whether spatial smoothing can explain this finding. 
 

Input In CogSketch, sequences of images can be input 

using a sketch lattice, a grid which divides the sketch space. 

For this model, we used a three-cell lattice to represent the 

three phases of each experimental trial. Stimuli were 

reproduced in PowerPoint. The experimenters traced over 

images of the original stimuli, ensuring that the number of 

sides in the new polygons was the same as in the original. 
 

Representations CogSketch uses edge-level representations 

to perform two-dimensional shape transformations and 

comparisons. The qualitative edge-level representations 

describe spatial relations between edges, as summarized 

above.  The quantitative representation includes for each 

edge: 1) The location of its center. 2) Its two-dimensional 

orientation. 3) Its length. 4) Its curvature. 

When a shape is scaled, rotated, or reflected, each 

individual edge is transformed. This has little effect on the 

qualitative representation, but it can change each of the four 

features in the quantitative representation. 

Shapes are compared in a two-step process. 1) Qualitative 

representations are compared using the Structure-Mapping 

Engine. This identifies the corresponding edges in the two 

shapes. 2) Each corresponding edge pair’s four quantitative 

values are compared. If every pair is quantitatively the 

same, the shapes are identical.  
 

Strategy Given a stimulus such as Figure 1B, the model 

automatically constructs an edge-level representation of 

each shape. It detects the orientation of the arrow and rotates 

the base (leftmost) shape accordingly. It then compares the 

rotated base shape to the target shape to determine whether 

they are identical. 
 

Spatial Smoothing Recall that scalable representations 

allow two forms of spatial smoothing: spatial detail may be 

smoothed out, or certain types of spatial information may be 

removed entirely. There are many possible ways to smooth 

data, e.g. apply a Gaussian filter to the entire shape (Figure 

3B). Such an approach would lose critical information about 

the nature of the edges making up the object.  Here, we use 

a simple sampling strategy: we remove all but the four 

longest edges (Figure 3C). This operation produces 

representations of equal size for all shapes, regardless of 

their initial complexity, which is what we desire. 

The quantitative representations contain four types of 

spatial information. We propose that spatial smoothing 

might remove three, leaving only a single type. In our 

evaluation, we test whether the task can be performed using 

only edge locations or using only edge orientations. 

Paper Folding 

We modeled the paper-folding task shown in Figure 1D.  
 

Input Each paper-folding stimulus was recreated in 

PowerPoint. The square representing the base of the cube 

was given a solid gray fill (CogSketch can recognize 

elements by their color). CogSketch was given three 

objects: the unfolded cube and the two arrows pointing to 

the critical edges. 
 

Representations This model required the development of a 

new representational level: surfaces. Surfaces are closed 

shapes making up the sides of three-dimensional objects. 

Each square of the unfolded cube is a separate surface. 

Surfaces can be computed easily using CogSketch’s existing 

ability to find closed cycles of edges. 

This model does not need to find corresponding elements, 

so it requires only quantitative representations. Each surface 

is represented with: 1) The location of its center. Locations 

are now in three-dimensional space, unlike with the 

previous model. 2) Its orientation, i.e., the orientation of a 

vector orthogonal to the surface. Three-dimensional 

orientations are unit vectors containing (x, y, z) 

components, unlike the single value required for two 

dimensions. 3) A list of edges going around the surface. 

Each edge has its own individual location and orientation. 

Three-dimensional rotations are performed about an axis 

in three-dimensional space. For example, in Figure 2B, 

surfaces A, B, and C are rotated about the edge connecting 

surface A to the base of the cube. 
 

Strategy Given a stimulus, the model segments the object 

into edges and surfaces. Using the arrows, it identifies the 

two critical edges and their associated surfaces. In Figure 

1D, the critical surfaces are the base of the cube and surface 

C. It folds each critical surface back into the cube shape via 

two spatial operations: 1) Trace along adjacent surfaces 

from the critical surface to the base surface. For surface C, 

this would produce the following trace: C->B->A->base. 2) 

Rotate 90° about the edge between surfaces in the reverse 

trace order. First rotate surface A about the edge between 

the base and surface A. Because surfaces B and C are 

connected to A, they will also be rotated (Figure 2B). Next, 

rotate surface B about the edge between surfaces A and B. 

Because C is connected, it will also be rotated. And so on. 

The model performs these two operations on each critical 

surface. In Figure 1D, the second critical surface is not 

rotated because it is already the base. The model takes the 

resulting shape and evaluates whether the two critical edges 

are aligned, i.e., have the same location and orientation. 
 

Spatial Smoothing In this task, the location and orientation 

of most edges is irrelevant to the task; only the two critical 

edges matter. If an edge lies along only one surface, it can 

be ignored. If an edge lies between two surfaces (e.g., the 

edge between surfaces A and B), it is important for 

determining the axis of rotation. However, because this task 

involves perfectly regular square shapes, a heuristic can be 

used: when rotating between two surfaces, place the axis of 

rotation halfway between the surfaces’ centers, and orient it 

within the plane of those surfaces, perpendicular to the line 

connecting their centers. Due to this heuristic, all edges can 

be ignored except the two critical edges. 
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This means the following is being considered: the location 

and orientation of each rotated surface (and of the base), and 

the location and orientation of each critical edge. It may be 

possible, again, to consider only the location or orientation 

of the critical edges. However, both a surface’s location and 

its orientation must be used in computing axes of rotation.  

Simulation 

Mental Rotation 

The original experiment (Cooper & Podogny, 1976) used 

five base shapes which varied in complexity from a 6-sided 

figure to a 24-sided figure. On each trial, participants were 

cued to rotate shapes some multiple of 60° using the rotated 

arrow. They were then presented with a target shape at the 

new orientation. This could be: a) the same shape; b) a 

mirror-reflected shape; or c) a shape with some of the points 

permuted from the base shape. While distractors of type b) 

are commonly used, the distractors of type c) were added to 

test how carefully participants were rotating the shapes. 

In this simulation, we ran the model on all six base 

shapes. However, we used only a single rotation value (60°), 

and only the mirror-reflected distractors. The single rotation 

was used because other rotations are mathematically 

equivalent and should not place additional demands on the 

model. The mirror-reflected distractors were used because 

they are the most common distractors found across different 

mental rotation tasks. In Future Work, we consider the 

challenge of recognizing permuted distractors. 
 

Results Recall that the model spatially smoothed each 

shape, removing all but the four longest edges. This proved 

sufficient for recognizing that same shapes were the same 

and mirror-reflected shapes were different. Furthermore, 

when only edge orientations or only edge locations were 

used, either was sufficient for performing the task. We can 

conclude that when the distractors are sufficiently different, 

very little information must be rotated to perform mental 

rotation, and the complexity of the shapes is irrelevant. 

Paper-Folding 

Shepard and Feng (1972) identify ten different classes of 

paper-folding problems, based on the number of folds and 

the number of squares per fold. For example, Figure 1D is a 

class I problem, in which 3 + 2 +1 squares must be rotated 

for one critical edge and no squares must be rotated for the 

other. Their paper provides one example of each class. 

In this simulation, we ran the model on the single 

example of each class. Other instances of a class are 

mathematically equivalent. As in the original study, there 

was one nonmatch problem (where folding did not cause the 

critical edges to align) for each match problem. Nonmatch 

problems were created by randomly rotating an arrow so 

that it pointed to an adjacent edge in the same square. 
 

Results Recall that the model rotated each surface’s center 

and orientation. The two critical edges were rotated also, but 

all other edges were ignored. This proved sufficient for 

solving all problems—the model correctly distinguished 

between matches and nonmatches. Furthermore, when only 

edge orientations or only edge locations were used to 

compare the critical edges, either was sufficient. 

Discussion 

Having successfully modeled both tasks, we can now 
consider how much data must be transformed to perform 
mental rotation and paper-folding. The mental rotation 
model required only four values: the orientations or 
locations of the four longest edges.  

Now, suppose the model were rotating two surfaces 

during paper-folding. This would require five values: the 

location and orientation of the two surfaces, and the location 

or orientation of the critical edge. Furthermore, these values 

are three-dimensional, whereas the mental rotation values 

were two-dimensional. In the computational model, three-

dimensional values are far more complex—for example, an 

orientation is a vector with (x, y, z) components. Spatial 

data is likely implemented differently in the brain, but there 

still may be increased processing demands for three 

dimensions (see Jolicoeur et al., 1985 for a discussion; but 

see Shepard & Metzler, 1988). 

These results support our initial hypothesis.  Rotation rate 

appears to depend less on shape complexity than on the 

degree and type of detail required by the task. Paper-folding 

requires that more information be transformed, even when 

only two surfaces are being rotated and the surfaces are 

perfect squares. We propose that paper-folding overwhelms 

people’s spatial working memory, forcing them to rotate 

one surface at a time in a piecemeal fashion. 

Conclusions and Future Work 

This paper demonstrates how visual stimuli can be encoded, 

transformed, and compared. The computational model 

builds on existing cognitive models of visual representation 

and comparison. While we wish to avoid strong conclusions 

about how spatial information is represented and 

transformed in the brain, the model provides valuable 

information on the constraints of the modeled tasks. 

In particular, the model suggests much of the spatial detail 

in a shape can be ignored during transformation.  The detail 

needed depends on the task. In a task like mental rotation, 

where a single transformation is applied to all edges, very 

little detail is required. In a task like paper-folding, where 

the results of one rotation determine the axis for the next 

rotation, more detail must be carried through each 

transformation. Of course, even in mental rotation more 

detail will be required as the distractors become more 

similar to the shapes being rotated (Folk & Luce, 1987; 

Yuille & Steiger, 1982). 

These findings are important for understanding spatial 

ability. Fast, holistic spatial transformations require spatial 

smoothing. Thus, a key component of spatial ability must be 

spatial abstraction: the ability to identify and encode critical 

spatial details while ignoring irrelevant features. 
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Questions remain about how skilled rotators perform 

spatial abstraction. The present approach of selecting the 

four longest edges, while effective, is only one heuristic. 

Others might include studying the distractors to determine 

which parts of a shape are most diagnostic (Yuille & 

Steiger, 1982) and segmenting shapes into larger-scale parts 

(Hoffman & Richards, 1984). In the future, we would like to 

study a larger stimulus set with distractors that vary in their 

similarity to the base shapes (Cooper & Podogny, 1976; 

Folk & Luce, 1987). By evaluating different spatial 

smoothing heuristics in the model, we can better understand 

the skills supporting spatial abstraction and spatial ability. 
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