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A New Perspective on Visual Word Processing Efficiency
Joseph W. Houpt (jhoupt@indiana.edu) and James T. Townsend (jtownsen@indiana.edu)

Indiana University, Department of Psychological and Brain Sciences
1101 E. Tenth Street, Bloomington, IN 47401 USA

Abstract

As a fundamental part of our daily lives, visual word process-
ing has received much attention in the psychological literature.
Despite the well established perceptual advantages of word and
pseudoword context using accuracy, a comparable effect using
response times has been elusive. Some researchers continue
to question whether the advantage due to word context is per-
ceptual. We use the capacity coefficient, a well established,
response time based measure of efficiency to provide evidence
of word processing as a particularly efficient perceptual pro-
cess to complement those results from the accuracy domain.

Keywords: Visual word perception; Efficiency; Workload ca-
pacity.

As a fundamental part of our daily lives, visual word pro-
cessing has received much attention in the psychological lit-
erature. However, the interest in visual word perception ex-
tends beyond its value in communication. The written word
is a complex stimulus with which most adults have a large
amount of experience. Unlike faces, there is no reason to
believe we have any innate ability to perceive words. Thus,
word perception may represent the limit of perceptual learn-
ing in the absence of innate ability.

Due to the relative ease with which most adults read, it is
reasonable to assume that word perception is an efficient pro-
cess. This is further supported by the intuition that with more
experience with a process we become more efficient and we
are quite experienced with the written word. Often, the ef-
ficiency is measured using single letter perception as a base
line. When word context offers an advantage in the accu-
racy or processing time of perceiving a letter, this supports
the claim that word perception is efficient.

From the early days of experimental psychology,
researchers have been interested in the value of a word con-
text for perceiving letters. In one study, letters were displayed
sequentially to participants at faster and faster rates until they
could no longer correctly identify the letters. They found that
participants maintained accuracy with shorter durations when
the letters were presented as part of a word compared with
random letter sequences (Cattell, 1886).

One problem with studies of this nature is that they do not
control for the constraint on possible letters that a word con-
text puts on the possible letters. Hence it is not clear from
those early results whether the advantage is a perceptual ad-
vantage or a decisional advantage. In the late 1960’s an alter-
native task was designed to eliminate the decisional advan-
tage of word context so as to examine the perceptual effects.
In this task a letter or word was tachistoscopically displayed
to a participant. They then chose from two possible choices,
one of which was correct. In the letter condition, the choices
were letters. In the word condition, both choices were words

that differed in only a single letter. Since both alternatives
were words, the word context was no longer informative as to
the identity of the letter. Participants were still more accurate
at perceiving letters in the word condition than the letter con-
dition (Reicher, 1969). Furthermore, they found that partici-
pants are also more accurate with word contexts than random
letter sequence contexts. This is known as the word superi-
ority effect. An efficiency gain of context over letters alone
is not unique to words though. If a sequence of letters con-
formed to the pronunciation rules of English, strings referred
to as pseudowords, then participants were again more accu-
rate than letters alone (e.g., McClelland & Johnston, 1977).
This is known as the pseudoword superiority effect.

Despite the robustness of the word and pseudoword su-
periority effects, a comparable effect using response times
(and controlling for decisional information due to context)
has been elusive. This may be in part explained by the possi-
bility that people will read an entire word even if the task does
not require it. Indeed, this has been put forth as further evi-
dence that word perception is special (LaBerge & Samuels,
1974). One of the goals of this paper is to demonstrate a
response time based word superiority effect, and possibly a
pseudoword superiority effect as well.

Even in the accuracy domain, some researchers continue to
question whether there is a perceptual advantage due to word
context. For example, Pelli, Farell, and Moore (2003) demon-
strated evidence for a model of word perception in which let-
ters are perceived independently and with separate detection
decisions on each letter. Their evidence comes from compar-
ing the efficiency of word perception as the number of let-
ters in the word increases. Depictions of longer words have
more information about their identity, since the more letters
that are known, the fewer possibilities there are for the oth-
ers. Hence, if a person is able to take advantage of this global
information, they should need less per letter information as
the number of letters increases. However, a model of word
perception based on independent, separate decisions on the
letters predicts that as the word length increases, the reader
will still need the same amount of information per letter to
maintain accuracy. In fact participants did need roughly the
same amount of per letter information as the number of letters
increased, supporting the latter model.

In the next section we describe the capacity coefficient, a
response time based measure of efficiency. We propose that
this measure, along with a task that controls for both the avail-
able information and possibly mandatory word reading, pro-
vides evidence of word processing as a particularly efficient
process to complement those results from the accuracy do-
main.
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Target Distractors Single Character
Word care bare cure cave card c b a u r v e d
Pseudoword lerb nerb larb lemb lerf l n e a r m b f
Non-Word rlkf vlkf rtkf rlhf rljk r v l t k h f k
Upside-down

rlkf vlkf rtkf rlhf rljk r v l t k h f k

Katakana

Table 1: Stimuli used for capacity analysis.

The Capacity Coefficient
The capacity coefficient, C(t) is an established response time
based measure of the effect of increased load on processing
efficiency (Townsend & Nozawa, 1995; Townsend & Wenger,
2004). Specifically, C(t) is a measure of the change in pro-
cessing rates as the task requires attention to more targets, or
possibly more dimensions of a single target. The basic idea of
the measure is to compare response times when reading the
full string to the times that would be predicted if each charac-
ter took the same amount of time, whether or not it was in a
string.

The capacity function for an exhaustive task is defined us-
ing the natural log of the cumulative distribution function,
K(t) = lnF(t);F(t) = Pr{RT ≤ t}, and is similar to the cu-
mulative hazard function used in survival analysis. If Kc1 is
the cumulative hazard for the first character response times,
Kc2 is the cumulative hazard for the second character, etc.,
and KS is the cumulative hazard for the string condition, the
capacity coefficient is given by C(t) =

[
∑

4
i=1 Kci

]
/KS.

This formulation is based on the predictions of the unlim-
ited capacity, independent, parallel (UCIP) model. The as-
sumptions of the UCIP model are sufficient conditions for
there to be no change in the rates of processing with increased
load. If these assumptions hold then the relationship between
the processing times of the string to the processing times of
the individual characters is as follows:

Pr{RTS ≤ t}=
Pr{RTc1 ≤ t}Pr{RTc2 ≤ t}Pr{RTc3 ≤ t}Pr{RTc4 ≤ t}

By taking the natural log of both sides of this equation,
then dividing by the left hand side, we see that the UCIP
model predicts C(t) = 1 for all t ≥ 0. This gives us a base-
line for comparison. If a person performs better than the
baseline model, C(t) > 1, their performance is referred to as
super-capacity. There are multiple ways performance could
be super-capacity. For example, if there is facilitation be-
tween the characters, or in more extreme cases if the infor-
mation from the characters is accumulated together toward a
single decision (Townsend & Wenger, 2004).

Performance worse than the baseline model, C(t) < 1, is
limited-capacity. In contrast to the case of super-capacity, in-
hibition between characters could result in limited-capacity.
A standard serial model (independent and unlimited capac-
ity) also predicts limited capacity. Furthermore, if the sys-
tem only has a certain amount of resources to dedicate to the

task, limited capacity performance would be expected. For
example, a fixed capacity parallel model (a finite amount of
resources is evenly divided up among the current processes)
also predicts limited capacity.

When performance is about the same as the baseline
model, C(t)≈ 1, then we refer to it as unlimited capacity. Of
course this would happen if all of the assumptions of the base-
line model were met. Alternatively some blend of features
that lead to limited capacity and features that lead to super-
capacity could balance out and result in capacity around 1. It
is not likely that people are truly unlimited-capacity or super-
capacity in the extreme case of very long words, but it is rea-
sonable for shorter words.

The capacity coefficient measures processing efficiency in
isolation by comparing the capacity coefficient to predicted
values of unlimited capacity, independent, parallel models.
Thus, this measure also allows us to compare the efficiency
of a variety of processes despite any possible differences in
difficulty due to component processes. In particular, we are
able to draw conclusions about the efficiency of word pro-
cessing relative to pseudoword, non-word, upside-down non-
word, and unfamiliar character string processing.

Method
To properly compare perceptual efficiency across words,
pseudowords, non-words, upside-down words and unfamil-
iar characters, our task must eliminate the extra information
available given a word context. Furthermore, the possibility
that words are exhaustively processed automatically may lead
to a disadvantage for words on response time measures. To
address these issues, we adapted a task from Blaha, Busey,
and Townsend (2009) which forces exhaustive processing of
the characters in a string. This experiment consists of two
components. First, we measure the participants response
times to correctly identifying the target string. To ensure that
participants base their identification on the entire string and
not any subset, we include a distractor of a string with a single
character different in each position in the string. For example
if the target is ”care” then “bare,” “cure,” “cave” and “card”
are used as distractors (see Table 1). Second, the participants
distinguish between letters in isolation. Whereas in the ex-
haustive case the participant needed to distinguish between
“bare” and “care,” we now only require them to distinguish
between “b” and “c.” The response times on these tasks are
used for computing the predicted performance of the UCIP
model.
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Stimuli Stimuli were created using GIMP version 2.2. For
each stimulus, the character or characters were written in
black in 29pt Courier onto a gray (200) background. Then
each stimulus was doubled in size. There were five types
of stimuli used: words, pronounceable non-words (pseu-
dowords), unpronounceable non-words, upside-down unpro-
nounceable non-words, and strings of Katakana characters.
All strings used were four characters long. Words were cho-
sen so that the frequency of the target was roughly equal to
the average frequency of the distractors. Pseudowords were
taken from the ARC Nonword Database (Rastle, Harrington,
& Coltheart, 2002). Table 1 summarizes the stimuli used for
both the single character and exhaustive trials for each type.

Participants Participants were recruited from the Indiana
University population. Eight females and two males partici-
pated in this study, all of whom were native English speakers
and reported that they did not read or speak Japanese. Their
ages ranged from 19-34. All participants reported having nor-
mal or corrected to normal vision, no difficulty reading En-
glish, and no prior diagnoses of a reading disorder. Partic-
ipants were paid $8 per session, and received a $20 bonus
upon completion of all sessions. Each session lasted between
45 and 60 minutes.

Procedure All experimental conditions were run using
DMDX version 2.9.06 developed at Monash University and
at the University of Arizona by K.I.Forster and J.C.Forster.
Stimuli were presented on a 17 Dell Trinitron CRT monitor
running in 1024x720 mode. Participants used a two-button
mouse for their responses.

Each session was dedicated to a type of stimuli and there
were ten total sessions, two sessions for each type. At the
beginning of each session, we read the participant the gen-
eral instructions for the task while those instructions were
presented on the screen. The instructions encouraged par-
ticipants to respond as quickly as possible while maintaining
a high level of accuracy. Each session was divided into five
blocks, one block of string stimuli and a block for each of
the corresponding single character stimuli. Each block be-
gan with a screen depicting the button that corresponded to
each of the categories. Participants had 40 practice trials, 20
of each category. Next participants were given 240 trials di-
vided evenly between the two categories, the first 40 of which
were not used in the analysis. Each trial began with a 30 ms
presentation of a fixation cross. After a random delay (300-
600 ms), the stimulus was presented for 80 ms. Participants
had a maximum of 2500 ms to respond. If the participant re-
sponded correctly, the next trial started after a 400 ms delay.
If the participant responded incorrectly, a tone was played
then the next trial started after a 400 ms delay. The session
order was counterbalanced among the participants so that par-
ticipants completed the different types on different days and
in different orders.

Analysis All data was analyzed using R. Analysis was lim-
ited to the correct responses on the target category. We com-

puted a repeated measures ANOVA of the response times in
each condition. We then calculated the AND capacity co-
efficient, C(t) for each participant and each condition. For
each capacity coefficient, bootstrapped confidence intervals
(95%) were calculated to determine if the function was reli-
ably above or below 1 for any length of time.

To facilitate comparison between conditions, we analyzed
the capacity functions using functional principal component
analysis (fPCA, Ramsay & Silverman, 1997). In fPCA, each
capacity function is treated as a weighted linear combination
of a common set of basis functions. The set of weights is
specific to each function and are therefore an alternative rep-
resentation of the individual function. Similar to multivari-
ate PCA, the basis functions each explain some percentage
of the variance in the data. By treating those basis functions
that explain only small amounts of variance as noise, we can
achieve a concise representation of our data in terms of just
the weights. The justification for applying fPCA is essen-
tially the same as standard PCA; further details can be found
in Ramsay and Silverman (1997).

To apply fPCA to capacity coefficient functions, we first
calculated the empirical K(t) by taking the natural log of the
empirical cumulative distribution functions. Each of those
functions were then interpolated using monotone cubic in-
terpolation. The capacity coefficient for each condition was
then calculated for each condition using those estimated K
functions, then registered by aligning the median of each par-
ticipants response time data in each condition. Functional
principal components was then applied to the smoothed and
registered functions, with the data weighted by the overall
density function of the response time data and factor scores
were computed based on a varimax rotation.

Results
Using a repeated measures ANOVA we found significant ef-
fects of condition [F(4,18713) = 937.75, p < 2.2e−16] and
whether the stimulus was a target for each of the string stimuli
[F(1,18713) = 10.75, p = 0.001], along with a significant in-
teraction effect [F(4,18713) = 57.73, p < 2.2e−16]. Eight
of the ten participants were faster on words and pseudowords
than the other two conditions. Participant 6 was fastest
on non-words while Participant 1 was fastest with words,
but faster with non-words and upside-down non-words than
pseudowords. Eight of the ten participants were slowest
with Katakana, while Participant 7 was slowest with non-
words and Participant 9 was slowest with upside-down words.
While these results are interesting, this level of analysis does
not account for the varied difficulty of processing each of the
components. Hence, we turn to the capacity coefficient.

The results for the capacity analysis are shown in Figure
1. Bootstrap confidence intervals were used to determine sig-
nificance, but are not included due to space limitations. Sig-
nificance in comparisons against the UCIP model was deter-
mined by overlap of 99% confidence intervals with C(t) = 1.

In the word condition, nine participants had capacity coef-
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Figure 1: Capacity Coefficient values across time. Thin lines represent individual participant data and thick lines are the mean
function across participants. The bottom right panel contains the mean function for each condition together.

ficient values significantly above one for at least some time
(1-3, 5-10) and no participant had capacity values below 1
for any time. In the pseudoword condition, eight participants
were super-capacity for some time (1, 2, 5-10), two of whom
were limited capacity at later times (7, 8). The other two were
limited capacity most of the time (3, 4). Three participants
were super-capacity for some time in the non-word condition
(1, 6, 8), one of whom was limited capacity for later times (8).
The other seven participants were limited capacity for some
time (2-5, 7, 9, 10), six of whom were limited capacity most
of the time (3-5, 7, 9, 10). In the upside-down non-word con-
dition, all participants were limited capacity for most times,
with only three participants significantly super-capacity for
early times (6-8). All participants were limited capacity for
all times in the Katakana condition.

The bottom right panel of Figure 1 shows the capac-
ity function averaged across participants for each condition.
The average word capacity was the highest, followed by
pseudoword, non-word, upside-down non-word, and lastly
Katakana.

Figure 2 depicts the first principal component function of
the capacity coefficients. This demonstrates that the fea-
ture that best distinguishes performance is a relatively large
change in magnitude at early times, tapering off to a slight
opposite change at later times. This first principal component
describes 94% of the variance in the capacity functions. Fur-
thermore, the condition was found to be a significant predic-
tor of the factor score on this component in a repeated mea-

sures ANOVA [F(4,36) = 18.56, p < 2e−8].

Discussion
Due to space limitations, we limit the majority of our discus-
sion to the word and, to a lesser extent, the pseudoword re-
sults. We have demonstrated clear evidence of super-capacity
processing of the word stimuli for nine of the ten participants.
These participants are efficiently perceiving the whole word
in comparison to individual letter perception. As mentioned
earlier, evidence for the word superiority effect has been diffi-
cult to demonstrate with response times. These findings pro-
vide that evidence and thus agree with the majority of the
word perception literature based on accuracy results. Based
on comparisons across conditions, it is also clear that the
word perception was more efficient than non-word, upside-
down word, and strings of Katakana perception, findings that
again match with the results reported for accuracy (e.g., Mc-
Clelland & Rumelhart, 1981).

There is also evidence for a pseudoword superiority ef-
fect, another well established effect in the accuracy domain
(McClelland & Johnston, 1977). Although the evidence was
not as consistent as the word results, eight of the ten par-
ticipants were super capacity for some time, with only two
participants showing significantly limited capacity process-
ing for most times.

The functional principal components analysis demon-
strates that most of the differences in capacity across partic-
ipants and types of stimuli occur early in the response time
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Figure 2: The first principal component of the capacity coefficient functions, which accounts for 94% of the variance. The first
panel shows the component function with the mean capacity function for comparison. The second panel shows the difference
between the component and the mean functions. The third panel depicts the factor scores on this component for each participant
in each condition.

distribution. For all participants except Participant 6, the fac-
tor scores are higher for words and pseudowords than any of
the other three conditions. This indicates that the word and
pseudoword superiority effects are most pronounced in faster
response times.

There are multiple plausible explanations for the capac-
ity coefficient results demonstrating particularly efficient pro-
cessing of words. At least one of the assumptions of the UCIP
model must have been violated, so we examine each of those
assumptions in turn. Each of these violations have been con-
sidered previously for modeling the accuracy based superior-
ity effects.

One assumption that may have been violated is that of inde-
pendence. If there is any type of facilitation between the letter
processes, each letter would be processed faster within a word
which would explain the capacity coefficient values above
one. There could be many explanations of this facilitation.
For example, word processing mechanisms may in fact take
advantage of the considerable amount of co-occurrence be-
tween letters in English. As is often observed, there are only
a fraction of possible four letter combinations used for words
and it would be surprising if we did not take some advantage
of this reduction in uncertainty. This correlation between let-
ters is an important part of how connectionist models explain
the word superiority effect (McClelland & Rumelhart, 1981;
Plaut, McClelland, Seidenberg, & Patterson, 1996; Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001).

Another, related component of many visual word process-
ing models is the phonological pathway. If a phoneme is acti-
vated as a possible interpretation of some letter combination,
then it may in turn send positive feedback to those letters,
speeding up their processing. Hence a phonological compo-
nent of visual word processing could also lead to capacity co-
efficient values above one. Both the correlation between let-
ters and the lack of a regular pronunciation of the non-words
imply that these predictions are consistent with lack of evi-
dence against the UCIP model of non-word processing. The

phonological explanation is also supported by the evidence of
a pseudoword superiority effect.

Another assumption of the UCIP model is that the letters
are processed in parallel, with a separate detection of each
letter. An alternative architecture that does predict capacity
coefficient values above one is the coactive architecture. By
pooling activation from each of the letters when processing a
word, the word is processed much faster than if each letter is
processed separately. A coactive architecture in this sense can
be thought of as an extreme version of a facilitatory parallel
model, in which all activation in each of the letters is shared.
Many connectionist models of visual word perception assume
a type of coactive architecture. In these models the activation
accumulated in favor of a letter is immediately passed on to
the word level. In this framework the type of parallel model
assumed in the UCIP would not pass on any activation until
the letter process is complete. There is some middle ground
between these two extremes. One example is that of squelch-
ing suggested by Pelli et al. (2003). In this case, the activa-
tion from the letter process would only be passed on once it
is above a certain threshold. It is important to note that these
results are not necessarily inconsistent with serial processing,
but for a serial model to predict capacity-values above one it
would need to include facilitation and/or be super-capacity.

A coactive architecture could also lead to violations of the
assumption of unlimited capacity, so that seemingly more re-
sources are available to each component when more compo-
nents are present. Capacity values above one imply that the
participant had more than four times as many resources ded-
icated to the word task compared to the letter task, so that
none of the individual letter processes has less. In this sense
the advantage is similar to chunking; when groups of letters
are recognized together, fewer resources are needed for each
individual letter. Participants probably do not have truly un-
limited resources to dedicate to the task, but having enough
to act super-capacity with four letters is not so unreasonable.

There were clearly individual differences present in these
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data, particularly in word and pseudoword processing capac-
ity. This finding mirrors results reported in accuracy based
studies (e.g., Reicher, 1969) and it will be an interesting ex-
tension of this work to compare the capacity measure to es-
tablished measures of individual differences in reading.

Finally, we reiterate the importance of going beyond the
simple ANOVA analysis of these data. Merely finding an
ordering of the means in the string conditions says nothing
about the relative processing efficiencies. For example, faster
word processing than non-word processing could be due to
the letters in “care” being relatively faster to process than the
letters “rlkf”. Workload capacity analysis, however, takes the
processing of the components into account in estimating effi-
ciency.

Summary
We have demonstrated response time based evidence for vi-
sual word perception as a particularly efficient process. This
includes evidence that words are more efficiently perceived
than predicted by the individual letter reading times, and ev-
idence from comparing word perception efficiency to non-
word stimuli. Based on the workload capacity analysis, there
is also evidence for a pseudoword superiority effect in the re-
sponse time domain although not as strong as for word supe-
riority. The evidence we present negates models of word pro-
cessing that assume parallel, independent processing of let-
ters with separate decision thresholds on each channel. This
deeper level of understanding of visual word perception re-
quired a shift from statistics based on comparing means to-
ward a more theoretically rich, modeling-based approach.
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