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Abstract

Dynamic Field Theory is based on spatially continuous
representations of parameter space and provides a math-
ematical framework to study the metric structure of rep-
resentations. We review evidence for such metric struc-
ture and provide a Dynamic Field Theory of stimulus-
response association to account for effects caused by the
metric structure of representations such as the distance
effect and the interaction of the Hick and Hyman effects
with stimulus metrics. We show how the integration of
different sources of information contributes to stimulus-
response association by providing a new model of the
manual Stroop effect.

Introduction
People continuously interact with their environment gen-
erating simple behaviors such as pointing or reaching,
but also using more complex skills such as using a com-
puter. Everyday life thus requires a highly flexible
neural system that may adjust and readjust its behav-
ior depending on situational constraints, may continu-
ously learn new responses toward sensory inputs and
may adapt already existing stimulus-response mappings.
Cognitive scientists and psychologists have studied how
neural systems learn to react to input from sensory sur-
faces and how they compute the corresponding output
through stimulus-response association paradigms. If a
participant is asked to respond to a red stimulus by
pressing a right button and to a green stimulus by press-
ing a left button, this requires a stimulus-response map-
ping that the subject probably has never encountered
before. Nevertheless, within a very few practice trials
participants are able to perform such a task.

While such tasks might appear trivial to the partic-
ipant, it is not obvious how the nervous system might
achieve them. One way researchers have tried to study
stimulus-response associations consists of bringing into
conflict multiple sources of response specification. In
the classic Stroop task (review by MacLeod, 1991), for
instance, the meaning of color words is brought into con-
flict with the color the words are printed in. Participants
have to speak out loud the latter and are slowed in their
response if that color is incongruent with the meaning of
the color word.

Neural accounts for such conflict in connectionist mod-
els are typically based on units that code for entire stim-
ulus or response categories. For instance, neurons rep-
resenting the print-color information ”red” or the word

meaning information ”red” may provide input to neu-
rons encoding the oral response ”red” (Cohen, Dunbar
& McClelland, 1990; Roelofs, 2003; see Figure 1).

print color

red green red green

word

task input

“red” “green”

Figure 1: Connectionist model of the Stroop paradigm,
redrawn after Cohen, Dunbar & McClelland (1990)

Neurophysiological evidence on the other hand sug-
gests that features are represented in continuous feature
maps, in which populations of neurons with broad tun-
ing curves are activated. Across neocortex and other
parts of the central nervous system, the location of neu-
rons in the network determines what information neu-
rons encode (space code principle). In many cortical ar-
eas, topographic mapping makes that neighboring neu-
rons encode similar kinds of information. Independently
of topography (anatomical coordinates), neuronal repre-
sentations of parameters can be constructed by sorting
neurons according to what they code (functional coor-
dinates) (Georgopoulos et al., 1982). Neuronal inter-
action is sensitive to this metric structure of represen-
tations, meaning that neurons representing similar in-
formation excite each other while neurons representing
dissimilar information inhibit each other. Wilson and
Cowan (1973) as well as Amari (1977) have shown that
the processing of information in such cortical and subcor-
tical networks is mathematically well described by con-
tinuous dimensions with an associated metric defined by
interaction.
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How may stimulus-response associations occur within
such continuous maps? Does the underlying metric
structure of feature representations influence the way
stimulus-response associations are realized?

Dynamic Field Theory (Kopecz & Schöner, 1995; The-
len et al., 2001; Erlhagen & Schöner, 2002) is an ap-
proach to the representation of stimulus and response
parameters that takes their natural metric structure into
account while also being consistent with basic neuro-
physiological principles (Amari, 1977). Within Dynamic
Field Theory (DFT), task and stimulus parameters de-
fine the dimensions of a functional space, over which an
activation field is defined. The activation field evolves
continuously in time under the influence of inputs and
brain-like interactions within the field. Inputs may de-
rive from current sensory stimulation, but also from prior
knowledge about possible choices, memory traces of prior
activation or subthreshold cues. Localized peaks of ac-
tivation represent perceptual or motor decisions as in-
teraction is sufficiently strong to be capable of making
detection decisions (Bicho, Mallet & Schöner, 2000) or
selecting one out of a set of behavioral options (Kopecz
& Schöner, 1995). Based on the notion of population
distributions of activation (Erlhagen et al., 1999), Dy-
namic Field Theory is thus a process model of neuronal
decision making.

Many perceptual decision making tasks require a dis-
crete response, for instance, as a label, to graded sen-
sory information. If the neuronal support for decisions
is functionally continuous and metric in nature, how may
categorical responses emerge from such representations?
To categorically react to graded sensory information,
prior information is required that represents properties
of the categories. When prior activation has the appro-
priate metric and strength, Dynamic Fields respond in
a categorical mode, in which the location of a localized
peak of activation is determined by the location of the
prior distribution of activation and the generation of the
peak driven by a broad boost of activation while the cur-
rent sensory input is weak (Wilimzig & Schöner, 2005).
In contrast, the field continuously estimates current pa-
rameters, as required for sensorimotor decision making
to support pointing or grasping movements, when the
current stimulus input is the dominant contribution and
prior activation provides a smaller contribution (Erlha-
gen & Schöner, 2002; see also Wilimzig & Schöner, 2005).
Many psychophysical effects occurring in sensorimotor
and perceptual decision making tasks provide evidence
for these concepts (Wilimzig & Schöner, 2005).

Dynamic Field Theory of
Stimulus-Response Associations

To extend DFT to stimulus-response association tasks
a concept of the linkage between continuous sensory
and motor dimensions is needed. Continuous dimen-
sions may be linked through a multi-dimensional asso-
ciation matrix. Following the DFT concept of neural
activation fields based on the Amari equations we use
a mathematical formalization by means of multidimen-
sions fields. Mathematically, generalizing the concepts

for one-dimensional fields to the multi-dimensional case
is straightforward (Taylor, 1999). Minimally, stimulus-
response association requires a two-dimensional field
with one sensory (perceptual) parameter, denoted by y,
and one motor parameter, denoted by x. This field repre-
sents all potential associations of a sensory-motor feature
through a dynamical equation of the following form:

τ u̇(x, y, t) = −u(x, y, t) + h + S(x, y, t)

+
∫ ∫

w(x, x′, y, y′)f [u(x′, y′, t]dx′dy′

Due to the interaction of global inhibition and local
excitation

w(x− x′, y − y′) = −winhibit,xy

+wexcite,xexp[
−(x− x′)2

2σ2
w,x

]wexcite,yexp[
−(y − y′)2

2σ2
w,y

]

localized peaks can arise for the appropriate input build-
ing stable states of activation. Such a localized peak
then represents both a feature (perceptual decision) and
a response (motor decision) that can be read out for
movement planning.

How is the input structured? The two-dimensional
fields represent all possible feature-response associations
but in a given situation only those linkages that are rel-
evant for the current situation are activated. This is
achieved through prior distributions of activation (pre-
shape). Preshape, information about how to respond to
certain stimuli like ”press the right button for a red stim-
ulus”, provides localized activation specifying response
parameters for feature parameters, Spre(x, y, t) (see Fig-
ure 2). The stimulus itself specifies a feature, for exam-
ple ”red”, but does not give any information about the
response dimension, Sstimulus(y, t), thus the stimulus in-
put is a ridge perpendicular to the motor dimension (see
Figure 2).

Preshaped activations are subthreshold as long as
there is no stimulus information. The stimulus informa-
tion acts as a local shift of activation (local for the stim-
ulus dimension, delocalized for the response dimension).
With the stimulus input the subthresholded preshape is
uplifted enough to generate a stable peak of activation
(see Figure 2). This peak generation is strongly driven
through interaction dynamics as with the stimulus con-
tribution the localized preshape comes into the compet-
itive regime of local excitation and global inhibition.

Experimental signatures

Distance of choices
A first signature of the importance of the metric struc-
ture of task parameters is the finding that the metric
distance between choices matters (Erlhagen & Schöner,
2002). When preshapes are close along the feature
dimension but specify different motor responses, in-
puts overlap with more than one preshape (Wilimzig &
Schöner, 2005). As the stimulus input thus gives a con-
tribution to more than one possible choice, both choices
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Figure 2: Prior information (preshape) provides local-
ized information specifying values for both dimensions
(a). Stimulus information specifies only a value for the
feature dimension but is unspecific for the response di-
mension (a). Due to the interaction single peaks of acti-
vation arise reflecting both a feature and a motor deci-
sion that can be read out for movement planning (b).

actively compete with each other leading to a substantial
amount of inhibition (see Figure 3).

In psychophysical literature this ”distance effect” is
one of the most robust phenomena in mental comparison
paradigms (review by Leth-Steensen & Marley, 2000).

Number of choices
The influence of number of choices as an increase of reac-
tion time for an increasing number of choices is formal-
ized through Hick’s law. Erlhagen and Schöner (2002)
have shown that the evolution of Hick’s law is an inher-
ent consequence of the DFT concept of preshape. Each
choice adds a single distribution of preshaped activa-
tion. If choices are metrically distant, they interact pri-
marily through inhibitory interaction, thus adding more
choices adds more inhibitory interaction to the field slow-
ing down responses to each of the choices.

As interaction is sensitive to metric structure DFT
predicts a switch to primarily facilitatory interaction for
metrically close choices, thus in the limit case of suffi-
ciently close choices the Hick effect can be reversed as
adding more choices then means adding more facilitatory
interaction (McDowell et al., 2004).

Figure 3: If choices are metrically close along the feature
dimension but specify different responses (a), the incom-
ing stimulus overlaps with both choices so they actively
compete with each other resulting in a relatively slow
response generation ((c), black line). If choices are met-
rically distant along the feature dimension (b), the stim-
ulus specifies only one of them so the peak generation is
faster ((c), grey line).

For stimulus-response association fields DFT thus pre-
dicts that for sufficiently distant choices each stimulus-
response association adds an inhibitory contribution to
the field (Figure 4). In psychophysical literature this
is related to the question whether the number of motor
responses or the number of stimuli determines reaction
time. A classic result is indeed, as predicted by DFT,
that the number of stimulus-response associations de-
termines reaction time (Keele, 1986). For sufficiently
close choices, for example if similar stimuli are grouped
under the same response (multi-to-one mapping), DFT
predicts that this effect decreases or even inverses (Fig-
ure 4) which is confirmed by experimental data (for ex-
ample Lacouture, Li & Marley, 1998). Specifically, Pel-
lizzer and Hedges (2003) showed that when subjects had
to point toward the location of a target the number of
precued locations influences reaction time as predicted
by Hick’s law. When the subjects had to respond to the
target by pressing a button, not the number of precued
locations but their metrical distance determined reaction
time.
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Figure 4: Metrically distant choices (a) interact through
inhibitory interaction leading to the classic Hick effect.
For metrically close choices – metrically close along the
feature dimension, specifying the same response (b) –
this can switch to primarily facilitatory interaction lead-
ing to much faster response generation for metrically
close choices ((c), black line) than for distant ones ((c),
grey line), although in both cases the same number of
stimulus-response associations is specified.

Distributions of preshaped activation may also result
from previous tasks, such as memory traces of previously
learned associations. It is a well-known effect that when
participants have to switch between two types of associa-
tions (”task-switching”), their responses are slower com-
pared to a single task design. Within DFT this effect
is due to the inhibitory influence of preshapes resulting
from the previously learned associations.

However, DFT predicts that this effect decreases with
decreasing metric distance between choices. Having
learned similar responses to the same stimulus or the
same response to similar stimuli decreases or even in-
verses the classic task-switching cost. Thus, whether
the number of choices, either involved in current pro-
cessing or previously learned ones, matters depends on
their metrical distance.

Probability of choices
The amplitude of preshapes codes for the probability
of choices similar to prior probabilities in Bayesian in-
ference – the more probable a choice is the higher the
amplitude of the preshape. Thus, if a probable choice
is specified through the stimulus contribution, it reaches
threshold earlier. On a psychophysical level, this is for-
malized through the Hyman law referring to faster re-
sponses toward more probable choices. DFT predicts
that if choices are sufficiently close, they interact through
facilitatory interaction, thus less probable choices benefit
from the facilitatory interaction of the preshape of the
more probable choice. This leads to the prediction that
for metrically close choices the Hyman effect disappears
which could be confirmed experimentally (McDowell et
al., 2002).

Within DFT, the Hyman law is a result of the memory
traces of prior activation history (Erlhagen & Schöner,
2002). Repeating the same response in reaction to a re-
peated presentation of the same stimulus leads to faster
reaction times, known as a facilitatory pretrial effect (for
a review see Luce, 1986) due to the increased preshape
for this choice. Whether responses to other stimuli can
contribute from this facilitatory memory trace depends
on the metric distance between stimuli and responses
respectively. In principle, such an effect was shown on
an abstract level shown by Campbell & Proctor (1993).
Again, whether the probability of choices matters de-
pends on their metrical distance.

Influence of task environment - manual
Stroop task
What kind of evidence exists for the assumption that
the representation of the Stroop task is based on similar
kinds of representation? Similar as for other stimulus-
response paradigms, the distance of choices matters. For
the Stroop paradigm this means that the distance deter-
mines the amount of interference: If relevant and irrele-
vant information specify similar, that is metrically close
information, the Stroop effect is larger than if they spec-
ify dissimilar information (Pavese & Umilta, 1998, 1999).

In the classic Stroop paradigm participants respond
orally which is a highly overlearned response for human
adults. In manual Stroop tasks participants have to asso-
ciate colors with responses toward perceptually marked
response locations in the task environment which is an
association learned within the course of the experiment.
Stimuli are color-words written in different print colors,
so the stimulus contains two sources of information: the
word information and the print color. If the task is to
respond to the word information, in the manual Stroop
task the print color causes interference if it is incompat-
ible with the word information which gave rise to the la-
bel ”reversed Stroop effect” (for example Durgin, 2003)
as for the classic word reading task the opposite effect
occurs.

Within the DFT model of the manual Stroop effect the
association field consists of a feature (color) and a spatial
dimension. Response buttons add localized preshaped
activations, associating colors with response locations.

2362



Stimulus contributions spread out along the spatial di-
mension. As two values are specified by the stimulus –
one through its color and one through its word informa-
tion – two inputs are fed into the field that can either
specify the same feature value (compatible situation) or
different ones (incompatible situation) (see Figure 5).

Figure 5: In the manual Stroop task participants com-
municate their decisions by pressing colored buttons.
This task requires a stimulus-response association field
with one feature (color) and one spatial dimension (for
example movement direction). Localized preshapes re-
flect information about the location of the response but-
tons. As the stimulus itself contains two sources of in-
formation, for example through its print color and its
word information, two stimulus ridges are fed into the
field with the respectives strengths depending on which
information is the relevant and which the irrelevant one.

The manual Stroop paradigm shows that the task
environment has an important impact on whether the
Stroop effect occurs or not. In the model, inhibition
arises mostly through the overlap of the stimulus contri-
bution with a preshape, not through the stimulus itself
as it does not specify a response. Thus, DFT predicts
that a response option has to be specified for a particular
color in order to produce interference. That is, the irrel-
evant stimulus color has to be present in the set of colors
used for the response space. Indeed it was shown that
irrelevant information referring to colours used within
the experiment lead to a substantially larger amount of
interference (Durgin, 2003).

Furthermore, even if the irrelevant information refers
to a response option that is part of the current task set,
the interaction with the environment has an important
impact: The Stroop effect only occurs if the response
buttons are visibly labeled, within the field of vision of
the subjects and not rearranged between trials (overview
by Sugg & McDonald, 1994).

Different sources of information, such as inputs from
sensory surfaces and memory traces reflecting recent ac-
tivation history, thus contribute significantly to stimulus-
response associations. Within, DFT all these sources of
information are reflected by the amount of preshaped
activation.

Discussion
A number of psychophysical effects support the concept
that metric discriptions of relevant feature and motor
dimension are necessary to explain how nervous sys-
tems associate stimuli with responses as predicted by
DFT. The manual Stroop effect further indicates that
the representation of associations must integrate differ-
ent sources of information. The concept of preshape in
Dynamic Field Theory provides a basis for understand-
ing this integration of current information from sensory
surfaces and recent information from previous trials lead-
ing to a continuous updating of information about asso-
ciations.

Within the framework of Dynamic Field Theory, the
concept of a memory trace representing the recent his-
tory of activation in the field has been used to under-
stand how representations are preshaped by prior ex-
perience. This has led to an account for how the ac-
tion history influences reaching in young infants (Thelen
et al., 2001), how choice probabilities determine reac-
tion time (Erlhagen & Schöner, 2002), and how spa-
tial memory becomes biased toward previously memo-
rized locations (Schutte, Spencer & Schöner, 2003). In
stimulus-response association tasks the opposite effect of
an inhibition of just executed responses may also occur
(overview by Luce, 1986). However, recent evidence sug-
gests that this effect might be due to an attentional bias
(Fecteau, Bell & Munoz, 2004; Fecteau et al., 2004).

This integration of different sources of information
provides an important contribution to the question how
the system learns new stimulus-response associations.
Learning needs to work on a very fast time scale as hu-
man adults are able to learn new associations within
very few practice trials or even ad hoc. As Dynamic
Field Theory provides a framework of how these differ-
ent sources of information are integrated, it may serve as
an important tool to understand how stimulus-response
mappings adjust depending on situational constraints,
to explore how learning can work unsupervised on a fast
time scale, basically bootstrapping itself from previous
responses through preactivations leading to a highly flex-
ible system.
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