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Abstract

There have been few studies on a cognitive model for algo-
rithm understanding in a human-computer cooperative situa-
tion. In the present study, we conducted an experiment with
participants to investigate the cognitive process of higher level
abstraction (algorithm understanding) performed in a human-
computer collaboration task. The most recently used (MRU)
algorithm, known to be one of the simplest adaptive algo-
rithms, and probabilistic MRU algorithm were used to test the
human capability to understand an algorithm. The experimen-
tal results showed that inductive reasoning in which partici-
pants observed the history of computer action, and they up-
dated a statistical model while restricting their focus on a cer-
tain history with deteministic bias and Markov bias played key
role to correctly understand the MRU algorithm. The results
also showed that deductive reasoning was used to understand
algorithms when participants rely on prior knowledge, and that
there was a case in which the algorithm, even known to be the
simplest one, was never understood.

Keywords: algorithm understanding; inductive reasoning; de-
ductive reasoning; adaptive user interface;

Introduction

The number of situations in which humans collaborate with
computers has been increasing with the advance of informa-
tion technology. Although user-adaptive systems that adapt
to a user, including adaptive user interfaces, have been a main
topic in the human-computer interaction community and arti-
ficial intelligence machine learning community (Findlater &
McGrenere, 2004; Oviatt, Swindells, & Arthur, 2008; Bigde-
lou, Schwarz, & Navab, 2012), an adequate design policy for
implementing useful user-adaptive systems still remains un-
clear (Shneiderman & Maes, 1997; Lavie & Meyer, 2010;
Gajos, Everitt, Tan, Czerwinski, & Weld, 2008). Further-
more, there have been few studies on a cognitive model for
algorithm understanding in the context of human-computer
collaboration tasks.

In a human-human collaboration task, mutual intention un-
derstanding plays the key role in accomplishing successful
work (Byrne & Whiten, 1988; Call & Tomasello, 2008).
However, in a collaboration task with a computer, the abstrac-
tion level of behavior necessary to understand a collaborator’s
behavior is lower than that used in a human-human collabo-
ration task (Dennett, 1987). Behavior abstraction in terms of

goal (intention) is not required in human-computer collabo-
ration because a goal is given and explicitly shared with both
a human and a computer. Instead, algorithm level abstraction
is needed. In a human-computer collaboration task, under-
standing a computer’s algorithms in order to accomplish the
given goal is quite important because a human relies on the
computer’s underlying mechanisms in order to predict its be-
haviors and to adapt to it.

One way to predict the future behavior of a target is to use
input-output association acquired on the basis ofsequence
learning (Clegg, DiGirolamo, & Keele, 1998; Sun & Giles,
2001a; Winkler, Denham, & Nelken, 2009). In a typical se-
quence learning problem (Nissen & Bullemer, 1987), humans
learn a recurring loop of action sequences from given exam-
ples, and as a result, their reaction time for the given ex-
amples decreases. This learning is done both explicitly and
implicitly (sensory-motor learning), and currently, implicit
sequence learning is actively studied (Sun & Giles, 2001b).
The situation in which humans observe only the action se-
quences given to them is the same in both sequence learning
and algorithm understanding. However, the learning target
of algorithm understanding is procedures with variables that
describe the internal states of computers, and this target is
quite different from that of sequence learning (i.e., sequence
patterns of values). Obviously, the number of hypotheses in
algorithm understanding is far more than that in sequence
learning, and this makes algorithm understanding very hard.
Hence, algorithm understanding requires quite strong biases
to find adequate algorithms. Another difference between un-
derstanding cooperative algorithms and sequence learning is
the type of interactivity in the tasks. In algorithm understand-
ing in a cooperative situation, a computer’s behaviors change
depending on the behaviors of humans because it adapts to
them. In sequence learning, sequences are given to humans
as physical stimuli.

The research objective of this study is to build a cogni-
tive model to describe the human capability to understand
computer algorithms in the context of a human-computer col-
laboration task. We introduce one of the simplest human-
computer collaboration tasks, in which a computer adapts to
humans who are asked to try and understand the computer
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algorithms. Concretely, we investigated how humans under-
stand the most recently used (MRU) algorithm (Lee et al.,
1999; Findlater & McGrenere, 2004; Gajos et al., 2008). The
MRU algorithm is well known to be one of the simplest adap-
tive algorithms in which a computer’s current statement sim-
ply corresponds to the user’s last one. Examples of the imple-
mentation of the MRU algorithm are themost recently used
files(Amer & Oommen, 2006), which lists the user’s most re-
cently accessed files in an application, and the most recently
used menu (calledadaptive menu(Arcuri, Coon, Johnson,
Manning, & Tilburg, 2000)), which lists the user’s most re-
cently used menu.

The MRU algorithm has succeeded in contributing to mak-
ing useful interactive software that includes adaptive user in-
terfaces (Findlater & McGrenere, 2004). One reason is that it
can be easily understood by users. If users can not find any
meaning (regularity or rules for computer’s behaviors) from
a list in which the order of the items is frequently changed,
the list causes the user stress. The reason the MRU algorithm
is easily understood is that there are explicit descriptions of
the algorithm, i.e., there may be a description such as “most
recently used file.” In this work, we investigate the human
ability to understand an algorithm in a situation without such
explicit knowledge.

One preferable explanation of algorithm understanding is
inductionbecause rule finding is considered to be an inductive
process (Haverty, Koedinger, Klahr, & Alibali, 2000; Simon
& Kotovsky, 1963; Verguts, Maris, & Boeck, 2002; Schmid
& Kitzelmann, 2011). In general, induction needs to be done
only with a small number of examples. It is hard to induce ad-
equate rules with finite examples that can cover infinite facts
because there is a huge number of hypotheses of rules that
can be induced from the examples. Thus, we need heuristics
(called inductive biases) to sufficiently restrict the hypothe-
sis of rules for practical induction. In algorithm understand-
ing, since humans have to induce computer algorithms only
with tens of examples, we consider they have a strong bias
for algorithm understanding. In this paper, to investigate hu-
man algorithm understanding, we hypothesize biases on al-
gorithm understanding and verify them in experiments with
participants.

Cognitive Model of Adaptive Algorithm
Understanding

Adaptive algorithm understanding is a subclass of algorithm
understanding. An adaptation in human-computer interaction
refers to a feature of algorithms in which strategies of a com-
puter dynamically change according to user’s input in order to
pursue given goals. The goals refer not only corporation but
also competition (Hampton, Bossaerts, & O’Doherty, 2008).
In the present study, we focus on a cooperative situation. We
introduce acooperative mark-matching gameas a simplified
and generalized task ofhuman-computer adaptationin which
a user adapts to a user-adaptive system.

Cooperative Mark-Matching Game

The cooperative mark-matching game is a repeated game
with two players. Each player has the same marks (e.g.,♠,
♢, ♡) and must secretly choose one of the marks. The play-
ers then reveal their own choices simultaneously. If the marks
match each other,both playersobtain a certain score, and if
not, nobody obtains a score. In our experiments, the two play-
ers were a human and a user-adaptive system.

In a situation of the human-computer adaptation, a system
predicts the user’s next action (e.g., a menu item that will be
chosen next by a user in an adaptive menu (Findlater & Mc-
Grenere, 2004)) and adapts to him/her by modifying the user
interface (e.g., changing the menu item positions (Findlater &
McGrenere, 2004)). If the prediction is correct (i.e., the two
marks of the human and user-adaptive system matched in the
game), the user and system obtain efficiency together. The
number of the mark corresponds to the number of menu items
in the adaptive menu. The key difference between a cooper-
ative mark-matching game and human-computer adaptation
with AUIs is that a user can freely choose his/her next action
by him/herself in the game in contrast to the user’s action se-
quence being determined to achieve a task with AUIs.

While the simplest strategy for a cooperative game is for
participants in each trial to simply choose the action that
in the recent past gave the most rewards (known as rein-
forcement learning), a more sophisticated strategy is to try
to predict the system’s next actions by taking into account
a statistical model constructed on the basis of the history of
prior actions. Studies on game theory (Fudenberg & Levine,
1998)(Berger, 2005) and sequence learning (Sun & Giles,
2001a) with an opponent player (a user-adaptive system) in a
game situation suggest that opponent strategy is identified on
the basis of a mixed strategy, which is defined as a probabil-
ity distribution over the alternative actions available to each
player.

Statistical model

We hypothesize that, as mentioned earlier, a higher level ab-
straction, i.e.,algorithm identification, for a computer’s strat-
egy is carried out on the basis of biases. We set the starting
point of our discussion to statistics in which a human updates
the conditional probability distribution of the system’s next
choice over time.

p(as
t |as

t−1, · · · ,as
j ,a

h
t−1, · · · ,ah

k) (1)

, whereah, as ∈ A, andA are available choices for both the
system and human andas

t−1, · · · ,as
k and ah

t−1, · · · ,ah
j are the

past choices of the system and human, respectively. Indicesj
andk denote the length of the history, which the human takes
into account, and vary depending on focus. However, detect-
ing the computer’s algorithm on the basis of only observed
behaviors is an ill-posed inverse problem because humans do
not know how to restrict their focus to a certain history, and
in addition, different strategies sometimes produce the same

1439



Table 1: Conditional probability distributions correspond to
most recently used and probabilistic most recently used algo-
rithm

ah
t−1

♡ ♠ ♢
♡ 1 0 0

as
t ♠ 0 1 0

♢ 0 0 1

(a) MRU

ah
t−1

♡ ♠ ♢
♡ .9 .05 .05

as
t ♠ .05 .9 .05

♢ .05 .05 .9

(b) Probabilistic MRU

history. Thus, we consider that a human does sufficiently re-
stricted exploration with inductive biases.

The MRU algorithm is formalized as the following distri-
bution.

p(as
t |ah

t−1) (2)

The actual distribution produced by the MRU algorithm in
the cooperative mark-matching game is shown in Table 1(a).
The system’s choice (as

t ) depends only on the human’s most
recent choice (ah

t−1) and is independent from any other his-
tory of choices. If the human’s most recent choice is heart,
for example, the system’s next choice will be heart, repre-
sented asp(as

t =♡|ah
t−1 =♡) = 1. Infinite numbers of trials

are, theoretically, required to convince a human that the prob-
ability is 1. Hence, one reasonable strategy for this problem
is to use inductive biases to adequately control the inference
process. As such inductive biases, we considerdeterministic
biasandMarkov bias. If a human has a deterministic bias that
assumes computer’s behaviors are deterministic, not proba-
bilistic, only one piece of evidence is necessary to estimate
the probability distribution. Markov bias, in which the condi-
tional probability distribution of the next choice depends only
upon the present choice, not on the sequence of events, is also
necessary to ignore any unnecessary history of choice.

Experiments
We conducted an experiment with participants to investigate
the cognitive process of higher level abstraction (algorithm
identification) performed in the context of a human-computer
cooperation task. The MRU algorithm and probabilistic MRU
algorithm was used to test the human capability of algorithm
understanding. Participants were asked to play a cooperative
game with a computer, and after that they were asked to an-
swer the computer’s algorithm.

A 50-round repeated cooperative mark-matching game
with different statistical profiles of the MRU algorithm was
used. We used the following two conditions.

Deterministic (D) condition Computer’s choice is com-
pletely the same as the human’s most recent choice (deter-
ministic MRU algorithm, see Table 1(a)).

Probabilistic (P) condition Although 90% of the com-
puter’s choices are the same as the human’s most recent
choices, 10% differs (probabilistic MRU algorithm). The

1

2

3

4

Figure 1: Interface of on-line experimental system: 1) history
of both players’ choices, 2) choice marks (marks are click-
able), 3) round number and remaining time, 4) place for un-
veiling players’ choice and scores for both players

actual distribution produced by the probabilistic MRU algo-
rithm is shown in Table 1(b).

The P condition was prepared to contrast the effect of noise
on the inductive reasoning performed to understand the MRU
algorithm. In particular, we expected that the deterministic
bias was strongly affected by the noise and performance dete-
riorated in the P condition. It was also expected that the score
of those who participated in the P condition was at most 10%
worse than that of the D condition if the participants merely
estimated the probability distribution and did not use any bi-
ases to identify an algorithm.

Experimental setup and measurement
The game was implemented with JavaScript and HTML and
played in a Web browser (Firefox). Figure 1 shows the game
interface. The computer’s choices were automatically con-
trolled by a JavaScript program. Participants were instructed
to click the mark corresponding to his/her choice within 10
seconds for every round. Scores for both players were shown
in the interface. The choices of the past five rounds for both
players remained displayed so that the participant was able to
recognize the computer’s strategy.

A single-factor two-level between-subject experimental
design was used. Fifty people (9 female) aged 19 to 47 (mean
= 28) recruited via direct e-mail participated in the experi-
ment. All participants had moderate to high experience using
computers. Participants were randomly assigned to either a
deterministic or probabilistic condition. Participants were in-
formed of an ostensible goal of the experiment - that the point
of the experiment was to assess the usability of an on-line
game system. They were also informed that “the computer
was cooperative.” Participants were told that they would win
a PC gadget as a prize according to the score (under 20 points:
around $5, 21 to 44 points: around $15, 45 to 50: around
$30).

In the P condition, a 50-round sequence with 10% random
noise, which corresponds to 5 rounds in which MRU rules
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Figure 2: Percentage of participants who won each round
(solid line) and percentage of participants who started to
take a “fixed choice strategy” (correct solution to the game)
throughout the remaining rounds (dotted line)
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Probabilistic

Deterministic
MRU
Regular pattern
No strategy
Most frequent
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Figure 3: Computer’s algorithm identified by participants

are violated, is generated, and sequences that do not fit the
following criteria are omitted: 1) errors do not appear in the
first and last 5 rounds and 2) five errors appear within the re-
maining 40 rounds. The computer’s choice for the first round
was selected not to match the participant’s choice in both con-
ditions.

The outcomes of all 50 rounds were recorded. The round
in which participants became aware of the correct solution to
the game was identified by detecting the round in which par-
ticipants started to continue to select the same mark through-
out the remaining rounds. After the game, participants were
asked to answer 7-point Likert scale questions, such asQ. Did
the computer make its choices strategically?, and one open-
ended question if participants gave a rating of 5 to 7 (positive)
to this question -Describe the computer’s strategy.

Results
The average scores were 43.7 (SD = 7.0) in the D condition
and 31.4 (SD = 7.5) in the P condition. ANOVA revealed
that there was statistically significant difference(F(1,48) =
33.99, p< 0.01) between the two conditions. The difference
of the average scores between the two conditions was 12.3.
A difference of more than 5 (10%) indicates that participants
used deterministic bias to accomplish the game. This gap
is explained by the difference in the increasing rate of the
winning percentage. While the winning percentage of the
D condition rapidly reached a high value (e.g., 80% at the
sixth round), that of the P condition slowly increased (e.g.,
80% at the 35th round). The slower increase of the winning

percentage in the P condition indicates that the 10% noise in
the MRU algorithm caused the computer’s algorithm to be
difficult to identify and made the participants require longer
rounds to identify it.

Figure 2 shows the percentages of the participants who
won the round plotted against the round numbers (solid line).
The dotted line in Figure 2 represents the percentage of par-
ticipants who took a “fixed choice strategy,” indicating the
percentage of participants who became aware of the cor-
rect solution to the game. Note that the correct solution is
found not only by identifying the MRU algorithm, but also
by merely choosing the same mark without thought.

Figure 3 illustrates the computer’s algorithm identified by
participants. While 72% of participants in the D condition
correctly identified the MRU algorithm after 50 rounds, only
52% in the P condition succeeded in identifying it. However,
a chi-square test revealed that there was no statistically signif-
icant difference in the distribution of the identified algorithm
between the two conditions (χ2(4) = 3.41, p= 0.49).

Discussions
In the present study, we investigated the human capability to
understand the MRU algorithm. In particular, we expected
that inductive biases such as deterministic and Markov bias
are used to understand the algorithm. In the succeeding sub-
sections, we will discuss whether these biases were applied
to accomplish the game.

Inductive algorithm understanding
The red dotted line in Figure 2 reveals that 60% of partici-
pants (15 participants) in the D condition found the correct
solution to the game. The result of the questionnaire revealed
that while 13 of the 15 participants inferred the computer’s
algorithm as the MRU, one inferred no strategy, and one in-
ferred a fixed choice. A typical behavioral pattern for these
kinds of participants is shown in Figure 4(a). They observed
the history of the choices and might have inferred the MRU
algorithm on the basis of the obtained statistical model. How-
ever, while detecting a statistical model of the computer’s
strategy essentially requires an infinite number of trials, they
rapidly identified certain algorithms. One explanation for this
rapid identification is thedeterministic biasandMarkov bias.
If the algorithm was assumed to be deterministic, the partici-
pants did not need to take into account the six cases filled out
as zero in Table 1(a) and required at least three trials to deter-
mine the computer’s strategy. Without Markov bias, partici-
pants could not focus only on the one round past choice and
required longer rounds.

The deterministic bias also accounts for the worse perfor-
mance of those who participated in the P condition. If the
participants merely estimated the probability distribution, as
expected, an optimal strategy against a mixed strategy would
have been taken, and performance would have been at most
10% worse than in the D condition.

The lowest score for all 50 participants was 19, which was
higher than the theoretically calculated score (16.67) when
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(a) Understanding algorithm on the basis of inductive reasoning (correct identification). After eight trials of active learning
phase, the participant realized the algorithm was the MRU one.

C

H

(b) Understanding algorithm on the basis of inductive reasoning (wrong identification). The detected algorithm was “the
computer increased the number of times by repeating the same choice.”

C

H

(c) Understanding algorithm on the basis of deductive reasoning. The participants used a heuristic from the beginning:
“Adaptive system⇒ MRU algorithm.”

C

H

(d) The participant did not detect any algorithm.

Figure 4: Examples of typical behavioral pattern in the D condition. C: computer, H: human.

participants did not take any strategy, i.e., a random strat-
egy. This implies that almost all of the participants arbitrar-
ily attributed some kind of strategy to the computer’s choice.
In fact, the rules of the game allowed the participants to at-
tribute strategies other than the MRU algorithm, such as “the
computer simply selected the same mark” (fixed choice strat-
egy) and “the computer changed its choice alternatively” or
“the computer increased the number of times by repeating the
same choice such as♢♠♠♡♡♡” (increasing number strat-
egy), see Figure 4(b)). Three participants in the D condi-
tion answered that the computer’s algorithm was “increasing
number strategy.” Interestingly, they did not aware that the
timing to change the mark was determined by themselves.
They completely unaware of the rule in which the computer
changed its output according to their input.

Deductive algorithm understanding

The results also indicated that some participants understood
the algorithm on the basis of deductive reasoning. Sixteen
percent of participants (four participants) in the D condition
and four percent (one participant) in the P condition fixed
their choice in the first round and never changed during the
game (see Figure 4(c)). Surprisingly, all of them described
their identified computer algorithm as the MRU. The prior
knowledge given to the participants in the instruction phase
lead them to deduct the following logic:

Adaptive system⇒ MRU algorithm (3)

In the instruction phase, participants were explicitly in-
formed that the goal of the task was to get as much points
as possible in cooperation with the partner computer. This
top down adaptive biasmight have enabled them to identify
the algorithm immediately without exploring the computer’s
strategies. They might have logically inferred that the coop-
erative system acted adaptively to humans and that the most

efficient algorithm for human-computer cooperation was the
MRU algorithm. In fact, their MRU algorithm hypothesis
was confirmed by the computer’s succeeding choice. The
confirmation bias(Klayman & Ha, 1987) was used to con-
vince them that the computer used the MRU algorithm. They
marked the highest score 49 (all participants were sure to lose
the first round because of the game setting). There was no in-
centive to explore another strategy and gather evidence to test
another hypothesis unless their hypothesis was violated be-
cause their goal was to get as many points as possible and
not to detect the algorithm exactly. Indeed, while three par-
ticipants in the P condition started to fix their choice in the
first round, two of the three changed their choice after the
noise pattern in the computer’s choice appeared, indicating
that their confirmation bias was destroyed by the noise (falsi-
fication).

Algorithm detection fail
Surprisingly, even though the MRU has been supposed to be
one of the most predictable adaptation algorithms, the result
showed that two participants in the D condition and three in
the P condition failed to identify any strategy in the 50 rounds
(see Figure 4(d)). The visual cue shown in the history area in
the game’s interface might have been a strong cue indicat-
ing that the computer’s choice was the same as participant’s
choice one round before. However, they could not detect the
algorithm. Further investigation will be required to account
for this failure.

Summary
To the best of our knowledge, this is the first study to in-
vestigate the human capability to understand adaptive algo-
rithm in a human-computer collaboration task. In the theoret-
ical model of a human cognitive process for algorithm under-
standing, a user identifies a computer’s algorithm by estimat-
ing the conditional probability distribution associated with a
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particular strategy and restricting his/her focus on certain his-
tory data by using inductive biases. The most recently used
(MRU) algorithm, known to be one of the simplest adaptive
algorithms, was used to test the human capability to under-
stand an algorithm. The probabilistic MRU algorithm was
also used to contrast the effect of noise on the inductive rea-
soning performed to understand the MRU algorithm. The ex-
perimental results indicated that most participants correctly
identified the MRU algorithm and used deteministic bias and
Markov bias in their inductive reasoning for algorithm iden-
tification. The results also indicated that some participants
understood the algorithm on the basis of deductive reasoning.
Surprisingly, few participants failed to identify any algorithm
within 50 rounds.

The present findings implies that designed behavior of
computers is not necessarily understood correctly, suggesting
that both an understandable algorithm and transparency of the
internal state of a computer might be important for designing
effective adaptive systems.
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