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Abstract goal (intention) is not required in human-computer collabo-

ration because a goal is given and explicitly shared with both

There have been few studies on a cognitive model for algo-
rithm understanding in a human-computer cooperative situa-
tion. In the present study, we conducted an experiment with
participants to investigate the cognitive process of higher level
abstraction (algorithm understanding) performed in a human-
computer collaboration task. The most recently used (MRU)
algorithm, known to be one of the simplest adaptive algo-
rithms, and probabilistic MRU algorithm were used to test the
human capability to understand an algorithm. The experimen-
tal results showed that inductive reasoning in which partici-
pants observed the history of computer action, and they up-

a human and a computer. Instead, algorithm level abstraction
is needed. In a human-computer collaboration task, under-
standing a computer’s algorithms in order to accomplish the
given goal is quite important because a human relies on the
computer’s underlying mechanisms in order to predict its be-
haviors and to adapt to it.

One way to predict the future behavior of a target is to use
input-output association acquired on the basis@duence

dated a statistical model while restricting their focus on a cer-  |earning (Clegg, DiGirolamo, & Keele, 1998; Sun & Giles,
tain history with deteministic bias and Markov bias played key

role to correctly understand the MRU algorithm. The results 2001a; Winkl_er, Denham, & Nelken, 2009). In a typical se-
also showed that deductive reasoning was used to understand quence learning problem (Nissen & Bullemer, 1987), humans
{aﬂgorlthms when Paft'ﬂp?‘nttﬁ re||y Or!tlﬂﬂor knOWll(edge, ?ng tht%t learn a recurring loop of action sequences from given exam-
ere was a case in wnic e algorithm, even Known 1o be the : : . : _
simplest one, was never understood. ples, and as a result, .thelr re.act|_on time for the given ex
amples decreases. This learning is done both explicitly and
implicitly (sensory-motor learning), and currently, implicit
sequence learning is actively studied (Sun & Giles, 2001b).
. The situation in which humans observe only the action se-
Introduction - : : :
quences given to them is the same in both sequence learning

The number of situations in which humans collaborate withand algorithm understanding. However, the learning target
computers has been increasing with the advance of informaf algorithm understanding is procedures with variables that
tion technology. Although user-adaptive systems that adapiescribe the internal states of computers, and this target is
to a user, including adaptive user interfaces, have been a magyite different from that of sequence learning (i.e., sequence
topic in the human-computer interaction community and arti-patterns of values). Obviously, the number of hypotheses in
ficial intelligence machine learning community (Findlater & algorithm understanding is far more than that in sequence
McGrenere, 2004; Oviatt, Swindells, & Arthur, 2008; Bigde- learning, and this makes algorithm understanding very hard.
lou, Schwarz, & Navab, 2012), an adequate design policy foHence, algorithm understanding requires quite strong biases
implementing useful user-adaptive systems still remains unto find adequate algorithms. Another difference between un-
clear (Shneiderman & Maes, 1997; Lavie & Meyer, 2010;derstanding cooperative algorithms and sequence learning is
Gajos, Everitt, Tan, Czerwinski, & Weld, 2008). Further- the type of interactivity in the tasks. In algorithm understand-
more, there have been few studies on a cognitive model foing in a cooperative situation, a computer’s behaviors change
algorithm understanding in the context of human-computeflepending on the behaviors of humans because it adapts to
collaboration tasks. them. In sequence learning, sequences are given to humans
In @ human-human collaboration task, mutual intention un-2s physical stimuli.

derstanding plays the key role in accomplishing successful The research objective of this study is to build a cogni-
work (Byrne & Whiten, 1988; Call & Tomasello, 2008). tive model to describe the human capability to understand
However, in a collaboration task with a computer, the abstraceomputer algorithms in the context of a human-computer col-
tion level of behavior necessary to understand a collaboratork&boration task. We introduce one of the simplest human-
behavior is lower than that used in a human-human collaboeomputer collaboration tasks, in which a computer adapts to
ration task (Dennett, 1987). Behavior abstraction in terms ohumans who are asked to try and understand the computer

Keywords: algorithm understanding; inductive reasoning; de-
ductive reasoning; adaptive user interface;
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algorithms. Concretely, we investigated how humans under€ooperative Mark-Matching Game
stand the most recently used (MRU) algorithm (Lee et al.

1999; Find!ater_& McGrenere, 2004; Gajos et gl., 2008). Th%vith two players. Each player has the same marks (&g.,
MRU algorithm is well known to be one of the simplest adap-<>, ) and must secretly choose one of the marks. The play-

tive algarithms in which a computer's current statement SIM s then reveal their own choices simultaneously. If the marks

ply corresponds to the user’s last one. Examples of the impleﬁwatch each othehoth playersobtain a certain score, and if
mentation of the MRU algorithm are theost recently used '

. L not, nobody obtains a score. In our experiments, the two play-
files(Amer & Oommen, 2006), which lists the user's most re- y P piay

o . ers were a human and a user-adaptive system.
cently accessed files in an application, and the most recently L .
In a situation of the human-computer adaptation, a system

used menu (calle@daptive menyArcuri, Coon, Johnson, . ) : . .
Manning. & Tilburg, 2000)), which lists the user's most re- predicts the user’s next action (e.g., a menu item that will be
’ ' ' chosen next by a user in an adaptive menu (Findlater & Mc-

cently used menu.. ] o Grenere, 2004)) and adapts to him/her by modifying the user
~ The MRU algorithm has succeeded in contributing to mak-nterface (e.g., changing the menu item positions (Findlater &
ing useful interactive software that includes adaptive user inyjcGrenere, 2004)). If the prediction is correct (i.e., the two
terfaces (Findlater & McGrenere, 2004). One reason is that ity5rks of the human and user-adaptive system matched in the
can be easily understood by users. If users can not find a ame), the user and system obtain efficiency together. The
meaning (regularity or rules for computer's behaviors) frompymper of the mark corresponds to the number of menu items
a list in which the order of the items is frequently changed,i, the adaptive menu. The key difference between a cooper-
the list causes the user stress. The reason the MRU algorithggiye mark-matching game and human-computer adaptation
is easily understood is that there are explicit descriptions Ofyith AUIs is that a user can freely choose his/her next action
the algorithm, i.e., there may be a description such as *mosty him/herself in the game in contrast to the user’s action se-
recently used file.” In this work, we investigate the humanquence being determined to achieve a task with AUIs.
ability to understand an algorithm in a situation without such * \y/hije the simplest strategy for a cooperative game is for
explicit knowledge. participants in each trial to simply choose the action that
One preferable explanation of algorithm understanding isn the recent past gave the most rewards (known as rein-
inductionbecause rule finding is considered to be an inductiviorcement learning), a more sophisticated strategy is to try
process (Haverty, Koedinger, Klahr, & Alibali, 2000; Simon to predict the system’s next actions by taking into account
& Kotovsky, 1963; Verguts, Maris, & Boeck, 2002; Schmid a statistical model constructed on the basis of the history of
& Kitzelmann, 2011). In general, induction needs to be dongyrior actions. Studies on game theory (Fudenberg & Levine,
only with a small number of examples. Itis hard to induce ad-1998)(Berger, 2005) and sequence learning (Sun & Giles,
equate rules with finite examples that can cover infinite fact®001a) with an opponent player (a user-adaptive system) in a
because there is a huge number of hypotheses of rules thgame situation suggest that opponent strategy is identified on
can be induced from the examples. Thus, we need heuristigie basis of a mixed strategy, which is defined as a probabil-
(calledinductive biasesto sufficiently restrict the hypothe- ity distribution over the alternative actions available to each
sis of rules for practical induction. In algorithm understand-player.
ing, since humans have to induce computer algorithms only
with tens of examples, we consider they have a strong biaStatistical model

for algorithm understanding. In this paper, to investigate huyye hypothesize that, as mentioned earlier, a higher level ab-

man algorithm understanding, we hypothesize biases on algraction, i.e.algorithm identificatiopfor a computer's strat-
gorithm understanding and verify them in experiments withegy is carried out on the basis of biases. We set the starting

The cooperative mark-matching game is a repeated game

participants. point of our discussion to statistics in which a human updates
N . . the conditional probability distribution of the system’s next
Cognitive Model of Adaptive Algorithm choice over time.

Understanding

. . . . . p(ats|ats—17"'vajs’athflv"'vark]) (1)
Adaptive algorithm understanding is a subclass of algorithm
understanding. An adaptation in human-computer interaction , wherea, a € A, andA are available choices for both the
refers to a feature of algorithms in which strategies of a comsystem and human araf ,,---,a andal ,--- ,a? are the
puter dynamically change according to user’s input in order tgast choices of the system and human, respectively. Inglices
pursue given goals. The goals refer not only corporation buandk denote the length of the history, which the human takes
also competition (Hampton, Bossaerts, & O’Doherty, 2008).into account, and vary depending on focus. However, detect-
In the present study, we focus on a cooperative situation. Wing the computer’s algorithm on the basis of only observed
introduce acooperative mark-matching gamas a simplified  behaviors is an ill-posed inverse problem because humans do
and generalized task bfiman-computer adaptationwhich ~ not know how to restrict their focus to a certain history, and
a user adapts to a user-adaptive system. in addition, different strategies sometimes produce the same
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Table 1: Conditional probability distributions correspond to
most recently used and probabilistic most recently used algo-
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(a) MRU (b) Probabilistic MRU

history. Thus, we consider that a human does sufficiently re-
stricted exploration with inductive biases.

The MRU algorithm is formalized as the following distri-
bution.

Figure 1: Interface of on-line experimental system: 1) history
of both players’ choices, 2) choice marks (marks are click-
sih able), 3) round number and remaining time, 4) place for un-
p(aclat1) (2)  veiling players’ choice and scores for both players

The actual distribution produced by the MRU algorithm in

the cooperative mark-matching game is shown in Table 1(a)ycy4) distribution produced by the probabilistic MRU algo-
The system’s choicesf) depends only on the human’s most ithm is shown in Table 1(b).

recent cho!ceaﬂ“_l) and is independent from any other his- e p condition was prepared to contrast the effect of noise
tory of choices. If the human’s most recent choice is hearty, he inductive reasoning performed to understand the MRU
for example, the 5¥13tem'3 next choice will be heart, repréygorithm. In particular, we expected that the deterministic
sented ap(a = Vg’ , = ©) = 1. Infinite numbers of trials a5 as strongly affected by the noise and performance dete-
are, theoretically, required to convince a human that the probiq ateq in the P condition. It was also expected that the score
ability is 1. Hence, one reasonable strategy for this problenyt iose who participated in the P condition was at most 10%
is to use inductive biases to adequately control the inferencg g se than that of the D condition if the participants merely

process. As such inductive biases, we consitigerministic  ogtimated the probability distribution and did not use any bi-
biasandMarkov bias If a human has a deterministic bias that ases to identify an algorithm.

assumes computer’s behaviors are deterministic, not proba-
bilistic, only one piece of evidence is necessary to estimat&Experimental setup and measurement

the prObab”lty distribution. Markov bias, in which the condi- The game was imp|emented with Ja\/aSCript and HTML and
tional probability distribution of the next choice depends onlyplayed in a Web browser (Firefox). Figure 1 shows the game
upon the present choice, not on the sequence of events, is algflerface. The computer's choices were automatically con-
necessary to ignore any unnecessary history of choice.  trolled by a JavaScript program. Participants were instructed
. to click the mark corresponding to his/her choice within 10
Experiments seconds for every round. Scores for both players were shown
We conducted an experiment with participants to investigatén the interface. The choices of the past five rounds for both
the cognitive process of higher level abstraction (algorithmplayers remained displayed so that the participant was able to
identification) performed in the context of a human-computerecognize the computer’s strategy.
cooperation task. The MRU algorithm and probabilistic MRU A single-factor two-level between-subject experimental
algorithm was used to test the human capability of algorithndesign was used. Fifty people (9 female) aged 19 to 47 (mean
understanding. Participants were asked to play a cooperative 28) recruited via direct e-mail participated in the experi-
game with a computer, and after that they were asked to anment. All participants had moderate to high experience using
swer the computer’s algorithm. computers. Participants were randomly assigned to either a
A 50-round repeated cooperative mark-matching gameleterministic or probabilistic condition. Participants were in-
with different statistical profiles of the MRU algorithm was formed of an ostensible goal of the experiment - that the point
used. We used the following two conditions. of the experiment was to assess the usability of an on-line
Deterministic (D) condition Computer's choice is com- game system. T”hey were also informed that "the computer
. . was cooperative.” Participants were told that they would win
pletely the same as the human’s most recent choice (deter- dget as a prize according to the score (under 20 points:
ministic MRU algorithm, see Table 1(a)). aPC gadge P oo 9 . P '
around $5, 21 to 44 points: around $15, 45 to 50: around
Probabilistic (P) condition Although 90% of the com- $30).
puter’s choices are the same as the human’s most recentin the P condition, a 50-round sequence with 10% random
choices, 10% differs (probabilistic MRU algorithm). The noise, which corresponds to 5 rounds in which MRU rules
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percentage in the P condition indicates that the 10% noise in
the MRU algorithm caused the computer’s algorithm to be

difficult to identify and made the participants require longer

rounds to identify it.

Figure 2 shows the percentages of the participants who
won the round plotted against the round numbers (solid line).
The dotted line in Figure 2 represents the percentage of par-
ticipants who took a “fixed choice strategy,” indicating the

percentage of participants who became aware of the cor-
0 Frrrrrrrrrrere e O rect solution to the game. Note that the correct solution is
bos o Rzooundzjumégr 35404550 found not only by identifying the MRU algorithm, but also
by merely choosing the same mark without thought.

Figure 2: Percentage of participants who won each round Figure 3 illustrates the computer's algorithm identified by
(solid line) and percentage of participants who started td@rticipants. While 72% of participants in the D condition
take a “fixed choice strategy” (correct solution to the game)FOrTectly identified the MRU algorithm after 50 rounds, only
throughout the remaining rounds (dotted line) 52% in the P condition succeeded in |dent|fy|ng.|t._ Howe\./erz
a chi-square test revealed that there was no statistically signif-

2 VRU icant difference in the distribution of the identified algorithm
Deterministic ] m Regular pattern between the two conditiong?(4) = 3.41, p = 0.49).
No strategy . .
Probabilistic - . m Most frequent Discussions
. . | = Fixed choice In the present study, we investigated the human capability to

0% 50% 100% understand the MRU algorithm. In particular, we expected
that inductive biases such as deterministic and Markov bias
Figure 3: Computer’s algorithm identified by participants are used to understand the algorithm. In the succeeding sub-
sections, we will discuss whether these biases were applied
to accomplish the game.
are violated, is generated, and sequences that do not fit the . . .
following criteria are omitted: 1) errors do not appear in the/nductive algorithm understanding
first and last 5 rounds and 2) five errors appear within the reThe red dotted line in Figure 2 reveals that 60% of partici-
maining 40 rounds. The computer’s choice for the first roundoants (15 participants) in the D condition found the correct
was selected not to match the participant’s choice in both corsolution to the game. The result of the questionnaire revealed
ditions. that while 13 of the 15 participants inferred the computer’s
The outcomes of all 50 rounds were recorded. The rounelgorithm as the MRU, one inferred no strategy, and one in-
in which participants became aware of the correct solution tderred a fixed choice. A typical behavioral pattern for these
the game was identified by detecting the round in which parkinds of participants is shown in Figure 4(a). They observed
ticipants started to continue to select the same mark througtihe history of the choices and might have inferred the MRU
out the remaining rounds. After the game, participants wer@lgorithm on the basis of the obtained statistical model. How-
asked to answer 7-point Likert scale questions, suép&id  ever, while detecting a statistical model of the computer’s
the computer make its choices strategicallgd one open- strategy essentially requires an infinite number of trials, they
ended question if participants gave a rating of 5 to 7 (positiveyapidly identified certain algorithms. One explanation for this
to this question Describe the computer’s strategy rapid identification is theleterministic biasindMarkov bias
If the algorithm was assumed to be deterministic, the partici-
Results pants did not need to take into account the six cases filled out
The average scores were 43.7 (SD = 7.0) in the D conditioms zero in Table 1(a) and required at least three trials to deter-
and 31.4 (SD = 7.5) in the P condition. ANOVA revealed mine the computer’s strategy. Without Markov bias, partici-
that there was statistically significant differende(1,48) = pants could not focus only on the one round past choice and
3399, p < 0.01) between the two conditions. The difference required longer rounds.
of the average scores between the two conditions was 12.3. The deterministic bias also accounts for the worse perfor-
A difference of more than 5 (10%) indicates that participantanance of those who participated in the P condition. If the
used deterministic bias to accomplish the game. This gaparticipants merely estimated the probability distribution, as
is explained by the difference in the increasing rate of theexpected, an optimal strategy against a mixed strategy would
winning percentage. While the winning percentage of thenave been taken, and performance would have been at most
D condition rapidly reached a high value (e.g., 80% at thel0% worse than in the D condition.
sixth round), that of the P condition slowly increased (e.g., The lowest score for all 50 participants was 19, which was
80% at the 35th round). The slower increase of the winninchigher than the theoretically calculated score (16.67) when

80

60

40

Winning Percentage (%)

20

Correct Solution Percentage (%)
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(a) Understanding algorithm on the basis of inductive reasoning (correct identification). After eight trials of active learning
phase, the participant realized the algorithm was the MRU one.
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ERAAZZZZZTA A A A S22 22T LA AAAAAL AL A2 2222 2222222 T L Ty

(b) Understanding algorithm on the basis of inductive reasoning (wrong identification). The detected algorithm was “the
computer increased the number of times by repeating the same choice.”

2 2484888000000000000000000000000000000000000000000084
HO000909090000000000000000000000000000000000000090909090909

(c) Understanding algorithm on the basis of deductive reasoning. The participants used a heuristic from the beginning:
“Adaptive system=- MRU algorithm.”

ChPWbbdOVVIVLYLYSLhPPdbbdbdWbh VYV LOGYYLLL 949 OVVIVIYYL L
GRAZTI A A AL LA LTSI T4 LA A LEZA A LT TR 224 A A4 LT L 20

(d) The participant did not detect any algorithm.

Figure 4: Examples of typical behavioral pattern in the D condition. C: computer, H: human.

participants did not take any strategy, i.e., a random stratefficient algorithm for human-computer cooperation was the
egy. This implies that almost all of the participants arbitrar-MRU algorithm. In fact, their MRU algorithm hypothesis
ily attributed some kind of strategy to the computer’s choicewas confirmed by the computer’s succeeding choice. The
In fact, the rules of the game allowed the participants to atconfirmation biagKlayman & Ha, 1987) was used to con-
tribute strategies other than the MRU algorithm, such as “thesince them that the computer used the MRU algorithm. They
computer simply selected the same mark” (fixed choice stratmarked the highest score 49 (all participants were sure to lose
egy) and “the computer changed its choice alternatively” otthe first round because of the game setting). There was no in-
“the computer increased the number of times by repeating theentive to explore another strategy and gather evidence to test
same choice such a5#&O0Q” (increasing number strat- another hypothesis unless their hypothesis was violated be-
egy), see Figure 4(b)). Three participants in the D condi-cause their goal was to get as many points as possible and
tion answered that the computer’s algorithm was “increasingot to detect the algorithm exactly. Indeed, while three par-
number strategy.” Interestingly, they did not aware that theicipants in the P condition started to fix their choice in the
timing to change the mark was determined by themselvedirst round, two of the three changed their choice after the
They completely unaware of the rule in which the computemoise pattern in the computer’'s choice appeared, indicating
changed its output according to their input. that their confirmation bias was destroyed by the ndisisi¢
Deductive algorithm understanding flcatlo_n)' _ _

The results also indicated that some participants understod%lgor_'thm detection fail

the algorithm on the basis of deductive reasoning. SixteePUrPrisingly, even though the MRU has been supposed to be
percent of participants (four participants) in the D condition®N€ of the most predictable adaptation algorithms, the result
and four percent (one participant) in the P condition fixegshowed that two participants in the D condition and three in
their choice in the first round and never changed during théhe P condition failed to identify any strategy in the 50 rounds
game (see Figure 4(c)). Surprisingly, all of them describedsee Figure 4(d)). The visual cue shown in the history area in
their identified computer algorithm as the MRU. The prior the game’ s interface might have been a strong cue indicat-

knowledge given to the participants in the instruction phasdnd that the computer’s choice was the same as participant's
lead them to deduct the following logic: choice one round before. However, they could not detect the

algorithm. Further investigation will be required to account
Adaptive system> MRU algorithm 3) forthisfailure.
In the instruction phase, participants were explicitly in- Summary
formed that the goal of the task was to get as much point3o the best of our knowledge, this is the first study to in-
as possible in cooperation with the partner computer. Thisestigate the human capability to understand adaptive algo-
top down adaptive biamight have enabled them to identify rithm in a human-computer collaboration task. In the theoret-
the algorithm immediately without exploring the computer’s ical model of a human cognitive process for algorithm under-
strategies. They might have logically inferred that the coopstanding, a user identifies a computer’s algorithm by estimat-
erative system acted adaptively to humans and that the mostg the conditional probability distribution associated with a
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particular strategy and restricting his/her focus on certain hisGajos, K. Z., Everitt, K., Tan, D. S., Czerwinski, M., & Weld,
tory data by using inductive biases. The most recently used D. S. (2008). Predictability and accuracy in adaptive user
(MRU) algorithm, known to be one of the simplest adaptive interfaces. InProceeding of the 26th annual sigchi con-
algorithms, was used to test the human capability to under- ference on human factors in computing systéops 1271—
stand an algorithm. The probabilistic MRU algorithm was 1274).

also used to contrast the effect of noise on the inductive reddampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2008).
soning performed to understand the MRU algorithm. The ex- Neural correlates of mentalizing-related computations dur-
perimental results indicated that most participants correctly ing strategic interactions in humang$2roceedings of the
identified the MRU algorithm and used deteministic bias and National Academy of Sciencel)518), 6741-6746. (fic-
Markov bias in their inductive reasoning for algorithm iden- titious play, Reinforcement Learning)

tification. The results also indicated that some participantdlaverty, L. A., Koedinger, K. R., Klahr, D., & Alibali, M. W.
understood the algorithm on the basis of deductive reasoning. (2000). Solving inductive reasoning problems in mathe-
Surprisingly, few participants failed to identify any algorithm  matics: Not-so-trivial pursuit. Cognitive Science24(2),
within 50 rounds. 249-298.

The present findings implies that designed behavior oKlayman, J., & Ha, Y. won. (1987). Confirmation, disconfir-
computers is not necessarily understood correctly, suggesting mation, and information in hypothesis testirRgychologi-
that both an understandable algorithm and transparency of thecal Review94(2), 211-228.
internal state of a computer might be important for designind-avie, T., & Meyer, J. (2010). Benefits and costs of adaptive

effective adaptive systems. user interfacesinternational Journal of Human-Computer
Studies68, 508-524.
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