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Abstract

The pattern of implicatures of modified numeral ‘more than
n’ depends on the roundness of n. Cummins, Sauerland, and
Solt (2012) present experimental evidence for the relation be-
tween roundness and implicature patterns, and propose a prag-
matic account of the phenomenon. More recently, Hesse and
Benz (2020) present more extensive evidence showing that im-
plicatures also depend on the magnitude of n and propose a
novel explanation based on the Approximate Number System
(Dehaene, 1999). Despite the wealth of experimental data, no
formal account has yet been proposed to characterize the full
posterior distribution over numbers of a listener after hearing
‘more than n’. We develop one such account within the Ratio-
nal Speech Act framework, quantitatively reconstructing the
pragmatic reasoning of a rational listener. We show that our
pragmatic account correctly predicts various features of the ex-
perimental data.
Keywords: modified numerals; more; rational speech act;

Introduction
Traditional pragmatics mostly limited itself to qualitative ac-
counts of implicatures, in which an utterance in a context im-
plicates some propositions, excluding or including some pos-
sible world states. For instance, ‘most cats knit’ implicates
that it is not the case that all cats knit. In the last twenty
years, new experimental and statistical methods have been
applied to capture subtler patterns in speaker behaviour (see
e.g. Cummins and Katsos (2019) for an overview). In partic-
ular, the development of Bayesian cognitive models of prag-
matic language use and sophisticated experimental designs
have allowed researchers to test more fine-grained hypothe-
ses about graded notions of implicature (Franke & Bergen,
2020).1 In this picture, rather than a qualitative difference be-
tween states pragmatically compatible or incompatible with
an utterance, a pragmatic listener has a full prior over states
which is updated after receiving the utterance. The semantic
and pragmatic content of the utterance contributes to the lis-
tener’s estimated probability of each possible state, allowing
for a graded and quantitative notion of compatibility between
an utterance and a possible state.

As a case study in this approach to pragmatics, in this pa-
per we look at modified numerals, i.e. expressions such as

1For lack of conventional and apt terminology, in the following
we will use slightly abuse the term ‘implicature’, using it for phe-
nomena that might not traditionally count as such. We will for in-
stance speak of an ‘accumulation of implicatures’. The context and
model will clarify what is meant in each case.

‘more than 3’. Modified numerals usually convey informa-
tion about the cardinality of the intersection of two sets. For
instance, ‘about 4 Frenchmen yawn’ conveys that the cardi-
nality of the intersection of the set of Frenchmen and the set
of yawning things is not far from 4. Examples of modified
numerals are ‘at least 4’, ‘exactly 1’, ‘more than 3’. In this
paper, we focus on the latter expression: ‘more than n’ (for
some integer n). We develop an account of the shape of the
posterior distribution over numbers of a language user upon
hearing an expression containing a modified numeral.

While the meaning of ‘more than n’ might at first appear
straightforward, the usage of the expression is in some re-
spects puzzling. First, as noticed already in Krifka (1999)
and experimentally confirmed in Geurts (2010), the standard
Horn account is at odds with the behaviour of modified nu-
merals. Specifically, modified numerals do not seem to elicit
some of the predicted scalar implicatures, e.g. ‘more than 3’
does not seem to implicate ‘not more than 4’. Second, as
discussed in Cummins et al. (2012) the implicatures drawn
from ‘more than n’ are influenced by the roundness of n. For
instance, ‘more than 10’ seems to implicate ‘not more than
20’, although not ‘not more than 13’. This might be a con-
sequence of ‘20’ being more round than ‘13’. Third, as dis-
cussed in Hesse and Benz (2020), the range of numbers for
which ‘more than n’ is used is influenced by the magnitude
of n. Specifically, the greater the magnitude of n, the greater
the range of numbers above n to which ‘more than n’ still
probably applies. For instance, ‘m is more than 10’ prima fa-
cie would not be used when m = 1010, but ‘m is more than
25000’ seems appropriate for m = 26000, although the differ-
ence between m and n is the same in the two cases.

The three patterns discussed above constitute qualitative
differences between the implicatures induced by various
modified numerals. However, the three discussed factors,
among others, follow from the full posterior distribution over
numbers induced in a listener after hearing ‘more than n’:
p(·|Speaker uttered ‘more than n’), which we abbreviate to
p(·|MT n). In other words, p(·|MT n) describes the proba-
bility that the listener attributes to m being each number after
hearing ‘m is more than n’ (with n known and m unknown).

p(·|MT n) could prima facie take various shapes. For in-
stance, p(·|MT n) could approximate a discrete approxima-
tion of a (lower-truncated) normal distribution with mean m,
where m > n and the distance m− n could depend on the
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Figure 1: Three possible usage distributions patterns for mod-
ified numerals ‘more than 10’ to ‘more than 19’ (the distribu-
tions are over integers albeit showed as continuous for ease of
visualization). Each line corresponds to a different utterance
of the form ‘more than n’, and shows the posterior distribu-
tion of a listener after hearing the signal. The n is shown
above each distribution’s peak. Blue lines are used for the
numerals of lowest roundness level, red line is used for ‘more
than 10’, which is more round.

roundness of n and its magnitude (option a in Figure 1). A
second option is that p(·|MT n) could resemble an discretized
exponential distribution shifted to start at n, with a variance
that again depends on granularity and magnitude of n (option
b in Figure 1). A third option is that p(·|MT n) looks like a
discrete uniform distribution from n to m, with m depending
on granularity and magnitude of n (option c in Figure 1).2

The three categorical implicature effects we discussed are
compatible with all three options from Figure 1. First, for all
three options ‘more than n’ can in general cover n+2, imply-
ing that ‘not more than n+ 1’ is not implicated. Second, in
all options ‘more than 10’ can behave differently from ‘more
than n’, with n less round than 10. Lastly, in all three op-
tions the relevant parameters can be sensitive to the n’s mag-
nitude. This demonstrates that accounting for categorical im-
plicatures is not enough to fully characterize the information
conveyed by modified numerals.

Little works has been done to predict, characterize, or de-
scribe this distribution as a result of pragmatic reasoning.3

The main aim of this paper is to propose a quantitative model
of p(·|MT n) which can account for the previously discussed
qualitative patterns as well as experimental data in previous
literature, and that can generate novel empirical predictions.
We start by discussing previous literature more in detail, and
we identify how previous accounts fall short of a full char-
acterization of a listener’s understanding of ‘more than n’.
Then, we present a model in the Rational Speech Act frame-
work, and show how it can account for previously puzzling
phenomena.

2As we discuss below in more detail, experimental work in Hesse
and Benz (2020) shows that option b, with some caveats, is in fact
closest to how ‘more than n’ is actually interpreted.

3Hesse and Benz (2020) give a partial characterization which we
discuss below. Moreover, Benz (2015) gives an account of impli-
cature patterns of ‘more than n’ for round ns which is some ways
similar to the one presented in this paper, but stops short of charac-
terizing the whole listener’s posterior.

Previous literature and data
Granularity-based approaches
Early work on ‘more than n’ focused on roundness as a pos-
sible factor to explain the unusual implicature patterns dis-
cussed above. The concept of roundness can be analysed in
terms of the concept of scale. Scales consist of the set of mul-
tiples of certain numbers, e.g. 5, 10, 50, 100, which are par-
ticularly cognitively simple.4 One scale is more granular than
another if it divides the number scale in points that are closer
together. The roundness of a numeral can then be thought of
as the level of the least granular scale that the numeral be-
longs to. As an example, consider 30 and 200. 200 belongs
to many scales—e.g. the ones containing the multiples of 1,
of 2, of 10—but the least granular scale it belongs to is ar-
guably the scale of multiples of 100. On the other hand, the
least granular scale 30 belongs to is that of the multiples of
10. 200 is therefore more granular than 30 because the former
belongs to a scale that is less granular than the most granular
scale where the latter figures.

Cummins et al. (2012) argue that roundness plays a role
in the pattern of implicatures of modified numerals.5 For in-
stance, ‘more than 1000’ lacks the implicature ‘not more than
1001’. In order for the implicature to be calculated, the lis-
tener would have to assume that, had the speaker observed
e.g. 1002, they would have said ‘more than 1001’. However,
1000 is rounder than 1001, and therefore uttering 1001 comes
at an additional cognitive cost compared to 1000. For the
speaker, the additional cognitive cost is too great for the lit-
tle additional information conveyed by uttering ‘more than
1001’. The listener cannot therefore infer that the speaker
would have said ‘more than 1001’ had they observed a state
(e.g. 1002) for which ‘more than 1001’ would have been only
slightly more informative than ‘more than 1000’.

Crucially, Cummins et al. (2012) note that the same argu-
ment does not apply when the implicated sentence contains a
numeral at the same roundness level as n. For instance, af-
ter observing 2300 a speaker would rather utter ‘more than
2000’ than ‘more than 1000’, everything else being equal,
because the two involved numerals are cognitively equally
costly, but the former utterance is more informative. There-
fore, the listener would have reason to infer that if the speaker
uttered ‘more than 1000’, they did not observe a state for
which ‘more than 2000’ applies. More generally, ‘more than
n’ should generate a scalar implicature to ‘not more than m’,

4Note that not all possible scales are used to determine round-
ness. For instance, 202 is less round than 200, despite being divis-
ible by a number, 101, which is greater than the greatest divisor of
200, namely 100. This indicates that the scale of multiples of 101
does not play a role in determining roundness. We do not develop
an account of which scales influence roundness, but rather rely on
previous characterizations from the literature.

5Cummins (2013) give a more theoretically grounded and pre-
cise account of the implicature patterns for modified numerals based
on Optimality Theory (Prince & Smolensky, 2008). While these
previous accounts include more phenomena than are discussed here,
they do not provide a full characterization of p(·|MT n). Therefore,
here we focus on the experimental results.
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where m is the next numeral at the same roundness level of n.
Moreover, Cummins et al. (2012) point out that, for similar
reasons, ‘more than n’ should also implicate ‘not more than
m’ for any m at a higher roundness level than n. For instance,
‘more than 90’ is predicted to implicate ‘not more than 100’.

Based on these arguments, Cummins et al. (2012) makes
two experimental predictions. First, the rounder the n, the
higher responders’ estimates will be compared to n. Second,
in the range condition typical estimates will be of the form
‘n+1 to m’, where m is the value after n with the same gran-
ularity as n or higher.

Cummins et al. (2012) then present an experiment to test
the two prediction. Participants (n = 1200) were presented
with 16 contexts. The following is one such context (varying
by condition as indicated):

Information A newspaper reported the following.
“[Numerical expression] people attended the public
meeting about the new highway construction project.”

Question Based on reading this, how many people do
you think attended the meeting?

Between and people attended [range con-
dition].

people attended [single number condition].

The numerical expression consisted of a quantifier (either
‘more than’ or ‘at least n’) and a numeral belonging to one
of three levels of granularity (multiples of 100, multiples of
10 but not 100, and non-round such as 93).

Overall, the results confirmed the two experimental predic-
tions. The range of interpretation increases with the round-
ness of the numeral. Moreover, most responses in the range
condition were as predicted. For instance, ‘more than 100’
typically conveyed an upper bound at 150.

Hesse & Benz (2020)
Hesse and Benz (2020) consider two empirical predictions
from Cummins et al. (2012). First, the rounder the n in ‘more
than n’, the wider the range of potential values. Second,
the rounder the n, the further away from n will be the sin-
gle most likely value. In a series of experiments, Hesse and
Benz (2020) test these two predictions for a wider range of
numerals than Cummins et al. (2012), and find that they are
not borne out.

The first experiment identifies some domains for which
participants do not have strong prior beliefs as to the size of
the involved numerals. In such contexts, prior belief does not
play a strong role in the estimation of the numerals, and there-
fore the effect of roundness and magnitude can be isolated
from other prior factors. Four such domains are identified:
petition signatures, audience size at a music concert, votes in
an election, spectators at a sporting event.

The second experiment is a replication of the experiment in
Cummins et al. (2012) for a wider range of numerals at four
different roundness levels (50, 90, 93, 100, 110, 130, 150,
200). Results do not corroborate the two predictions based on

Cummins et al. (2012): the (median) distance between n and
the guessed number in the single number condition does not
increase the rounder the n is, and neither does the (median)
range in the range condition.

In the third experiment, numerals of a wider range of mag-
nitudes are tested (20, 30, 40, 60, 70, 80, 120, 140, 160,
170, 180, and 190) and only the four contexts identified in
experiment 1 are used. In the combined data from the second
and third experiments (as well as in the data from the second
experiment alone), magnitude is a stronger predictor of the
range of produced values than roundness. The second and
third experiments in Hesse and Benz (2020) fail to find evi-
dence for two the effects predicted by Cummins et al. (2012).
However, two different patterns emerge. First, the median
numbers in the single number condition are a constant dis-
tance of 10 above the modified numeral. Second, participants
tend to guess numbers with an upper bound located at the
next round number above the modified numeral. For instance,
when presented with ‘more than 120’, ‘more than 130’, or
‘more than 140’ participants tend to guess numbers up to 150
(a round numeral). This produces a ‘squeezing’ effects for
modified numerals immediately below a round number. Both
patterns can be observed in the left plot in Figure 2.

In the fourth and last experiment, Hesse and Benz (2020)
focus on larger numerals. They administer the same task,
with 6 contexts (number of signatures on a petition, size of
the audience at a music concert, turnout at an election, num-
ber of spectators at a sporting event, size of a meeting, and
budget for a reception) and larger numerals (1k, 1.1k, 1.4k,
15k, 16k, 19k, 20k, 21k, 24k, 25k). Like in the previous ex-
periments, greater roundness does not per se cause a greater
range of guessed numbers or wider ranges in the range condi-
tion. Moreover, the two new patterns noticed in the previous
experiments persist, but scale proportionally to the magnitude
of the involved numerals. While in the 1-100 range the me-
dian guessed number was around 10 above the modified nu-
meral, in the range of thousands it is 100 above, and in the
range of tends of thousands it is 1000 above. While the up-
per boundaries participants tend to select are at the roundness
level of multiples of 50 or 100 in the 100 interval, they are
multiples of e.g. 500 in the 1000 range and multiples of 5k in
the tens of thousands range. Both effects can be seen in the
right plot in figure 2.

Hesse and Benz (2020) also give a characterization of their
data in terms of a boundary function, and they propose an
explanation for the fact that larger ns lead to guesses with
a proportionally greater variance. The explanation relies on
the Approximate Number System (ANS), namely the cogni-
tive mechanism that underlies the approximate perception of
magnitudes. When using the ANS, numbers are not encoded
precisely, but rather as distributions over numbers. Moreover,
the variance of this distribution increases with the magnitude
of the number. Hesse and Benz (2020) argue that, as the mod-
ified numeral gets larger, participants will associate the nu-
meral with increasingly wide distributions, and therefore the
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Figure 2: Some participants’ responses from the single num-
bers condition in experiment 2 (left, low magnitude) and
3 (right, large magnitude) in Hesse and Benz (2020). Re-
sponses for ‘more than n’ are shown on the right side of the
grey line, and n is shown on the top right of each subplots.

spread of their guessed numbers will also increase.
The account developed in Hesse and Benz (2020) paints a

clear picture of the patterns in production for modified nu-
merals of the form ‘more than n’ and ‘less than n’. However,
the paper does not give a full model of the way a listener cal-
culates a posterior over numbers. In order to evaluate their
proposal quantitatively, more detail would be needed for the
implementation, specifically concerning the relation between
the ANS component of their account and roundness. For in-
stance, a bare ANS account alone leaves unexplained why
participants tend to produce signals at higher levels of round-
ness when dealing with larger numbers, rather than simply
producing from a distribution with greater variance. Among
the one thousand numerals guessed in the fourth experiments
for n ≥ 15000, only 88 were at a level of roundness lower
than 500. As we argue in the next section, a simple model
of recursive mindreading can explain various patterns in the
data.

A Unified Model
The Rational Speech Act Framework
The RSA framework is meant to model the process of re-
cursive mindreading that lies behind the pragmatic interpre-
tation or production of utterances (Frank & Goodman, 2012;
Goodman & Frank, 2016; Franke & Jäger, 2016). RSA mod-
els usually start with a pragmatic listener who interprets ut-
terances based on the simulated behaviour of a pragmatic
speaker. The pragmatic speaker in turn given an observation
tends to choose the most useful utterance for a literal listener
who interprets it based solely on its literal meaning. We will
first explain the simplest type of RSA model, and then a mod-
ification that will be useful to model modified numerals.

The simplest RSA model starts with a set of utterances u
and a set of possible states s. The meaning of each utterance
can be encoded as the set of those states that verify the utter-
ance. The pragmatic listener L1 receives an utterance u and

Figure 3: Simple RSA model with three possible utterances
u (y-axis) and three states s (x-axis). L1 calculates a scalar
implicature for utterances u1 and u2 (α = 4). The left, cen-
tral, and right plots correspond to L0, S1, and L1 respectively.
The color indicates the probability of guessing a state given a
signal for L0 and L1, and the probability of producing a signal
given a state for S1.

calculates a posterior over states by Bayesian update, combin-
ing their prior over states with the probability that the prag-
matic speaker S1 would have produced the utterance given
each state:

pL1(s|u) ∝ pL1(s)pS1(u|s) (1)

The pragmatic speaker in turn observes a state and pro-
duces an utterance with a probability that depends on a cost-
related salience utterance prior (see Chapter 3 in Scontras,
Tessler, and Franke (2018)):

p(u;C) ∝ exp(−c(u)) (2)

and on the utility U(u|s) for a literal listener L0 given the
state:

pS1(u|s) ∝ exp(αU(u|s))p(u;C) (3)

where α is the speaker’s rationality parameter: the higher
the value of α, the more the speaker’s distribution will be
peaked at the most useful utterances. The utility U(u|s) is the
negative surprisal of the state given the utterance, so that the
speaker favours utterances that make the state less surprising
for the literal listener:

U(u|s) = log(pL0(s|u)) (4)

Finally, the probability that literal listener L0 attributes to
each state given an utterance is simply 0 if the utterance is not
verified by the state, and proportional to the prior for the state
otherwise:

pL0(s|u) ∝

{
pL0(s) if s verifies u
0 otherwise

(5)

Figure 3 shows L0, S1, and L1 in this simple RSA model. The
crucial phenomenon that can be observed in figure 3 is that L1
calculates a scalar implicature: although utterance u1 is, in its
literal sense, compatible with both s1 and s2, S1 tends to pro-
duce u1 mostly for s2, because when s1 is observed S1 tends
to use the more useful signal u1. Therefore, when hearing u1
L1 is more likely to guess s2.
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A Simple Model of Modified Numerals
We make a few simple changes to the basic RSA model
above. First, rather than the 3 states in the toy model above,
the states in our model are the integers up to 10000, and the
signals all the expressions ‘more than n’ with 0≤ n≤ 10000.

Second, we let cost depend on the roundness level in a way
consistent with Hesse and Benz (2020)’s measure of round-
ness, itself based on the measure in Cummins et al. (2012)
and inspired by Jansen and Pollmann (2001). Specifically,
we calculate cost as the inverse rank of roundness, in the fol-
lowing way:

Least
Granular

Scale Cost c(n)

Least
Granular

Scale Cost c(n)
1000 0 50 4
500 1 10 5
200 2 5 6
100 3 1 7

For instance, according to this measure 3000—whose great-
est divisor in the table is 1000—gets cost 0, while 350—
whose greatest divisor in the table is 50—gets cost 4. The
relation between roundness level and cognitive cost is con-
firmed (for a different but related construal of roundness) by
Solt, Cummins, and Palmović (2017), which gives experi-
mental evidence that the level of granularity influences cog-
nitive complexity of the expressions.

Third, we specify a prior for both the literal listener, pL0

and the pragmatic listener, pL1 . For simplicity, we assume
that the two priors are identical. This corresponds to the de-
fault assumption that the literal listener assumes that the prag-
matic speaker has an accurate representation of the listener’s
prior. Moreover, we assume for simplicity that this prior has
a geometric distribution.

Lastly, we assume that when higher numerals are men-
tioned, the distribution over the true state covers higher mag-
nitudes. For instance, upon hearing ‘more than 4 people came
to the concert’, I attribute small variance to the number of
people that possibly came, and upon hearing ‘more than 10k
people signed the petition’, I attribute large variance. Note
that this is independent of the roundness effect: upon hearing
‘more than 10004 people came to the concern’, I still attribute
a priori high variance to audience size. Rather, this could be
an effect of ANS, as argued in Hesse and Benz (2020), or
an effect of knowledge about the underlying data-generating
process. This latter explanation is particularly plausible for
the items used in Hesse and Benz (2020), and provides an al-
ternative to their ANS account. The number in most of the
contexts shown to participants, e.g. the size of the audience
at a music concert, are approximately Poisson distributed.
This implies that the larger the magnitude of the number, the
greater the plausible range of the number. The ANS account
and the generative-model account make different predictions
for cases where the variance does not increase with the mean
of a random variable, which could be tested experimentally.

Practically, in the model the listeners’ expectation about n

Figure 4: Prior for small (blue) and large (red) numerals.

depends on the modified numeral n itself. Specifically, lis-
teners in the model distinguish two types t of events, T =
{small, large}, e.g. small and large concerts.6 Listeners have
one prior distribution over the true state for small events—
with the geometric distribution’s k = 0.007—and another dis-
tribution over states for large events—k = 0.0002 (Figure 4).
We assume that when n is small, the listener concludes that
the event is small, and when the n is large, the listener con-
cludes the event is large, and use the respective prior over s.
Formally, p(t = large|u) = 1 iff u contains a number in the
hundreds or smaller, and p(t = small|u) = 1− p(t = large|u).
Equation 1 then becomes:

pL1(s|u) ∝ ∑
t∈T

pL1(t|u)pL1(s|t)pS1(u|s) (6)

The results of these modifications for small n can be seen
in figure 5.7 Some crucial features of the data are predicted.
First, as observed in the data in Hesse and Benz (2020), the
distribution for ‘more than n’ resembles option b in Figure
1. The reason for this, which as far as we are aware has not
been discussed in the literature, is an accumulation of very
weak scalar implicatures. If the listener hears ‘more than n’
and consider whether the true state is m, then they reason that
for all j such that n < j < m, the speaker had to choose to not
utter j, since all expressions ‘more than j’ would also be true.
Therefore, the greater the number of js, the less plausible it
is that the true state is m.

A second feature in the data that our model correctly mod-
els is the spread of the distribution as a function of the nu-
meral’s roundness. In partial agreement with Cummins et al.
(2012), some round numbers have a greater variance than less
round numbers. For instance, ‘more than 0’ is predicted to
have greater variance than ‘more than 20’. However, con-
tra Cummins et al. (2012) and consistently with Hesse and
Benz (2020), the effect is small for all numbers except 0 in
the model.

A third feature in the data captured by our model is the
squeezing effect. As the signal approaches a round number
from below, the probability mass becomes more concentrated
between n and the round number. This is clear in the right plot
in Figure 5 for numerals approaching 150 and 200. The effect
also exists, but to a lesser extent, for numerals of lower round-

6In a more sophisticated and realistic version of the model, rather
than few event types there would more fine grained variation.

7https://github.com/thelogicalgrammar/
modifiedNumerals contains all the code needed to reproduce
the results.
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Figure 5: Left: listener’s posterior probability p(·|MT n) over
numbers, given each signal. The squeezing effect can be
visualized as the increasing concentration of posterior mass
approaching round numbers from below (α = 7). Right:
p(·|MT n) for n at intervals of 10. The squeezing effect—the
posterior distribution concentrating between n and the closest
round number above—is particularly clear for n = 140,190.

ness levels. As already described in Cummins et al. (2012),
the effect is a consequence of an implicature. If the true num-
ber had been higher than a round numeral higher than the one
the speaker chose, the speaker would have chosen the higher
round numeral instead. Therefore, the number has to be lower
than any round numeral above the one actually chosen by the
speaker.

While the simple pragmatic listener model can account for
some feature in the experimental data, it differs in a crucial
way from the participants in the experiment. Namely, the
RSA pragmatic listener is a pure listener, while the partici-
pants were asked to produce a guess, and therefore are also
in a certain way speakers. In order to make predictions com-
parable to the experimental data presented in Hesse and Benz
(2020), we also propose a simple way that the listener might
use their posterior over states given a modified numeral to
give a response in the experiment. In our participant model,
listeners tend to produce states that have a high probability,
with an additional utterance prior against producing signals
with high cost:

p(Producing m | u) ∝ exp(ρ log(pL1(m | u))− c(m))

where u is the utterance shown to the participant and ρ is
the softmax (inverse temperature) parameter, encoding a ten-
dency of the listener to select the signal with the highest pos-
terior probability. This model of participant production re-
flects the speaker model of pragmatic RSA agents, for a lis-
tener who is asked to make a guess as to the world state.
Figure 6 shows the predicted production probabilities for a
participant in the single number condition. The predictions
resemble the observed data shown in the left plot of Figure
2, both in terms of which numerals are produced and more
generally in terms of the shape of the produced numerals.

Figure 7 shows the results for greater magnitudes (4k-5k
interval), using the prior for large numbers described above.
With a higher variance prior, the listener infers a greater pos-
sible range for each numeral. The figure shows that the as-
sumption of a prior which increases with the magnitude of

Figure 6: Predicted production probabilities for a simple
production model based on an RSA pragmatic listener L1
(α = 7,ρ = 3). The production model correctly describes the
participants’ tendency to guess a round number above the ob-
served number.

Figure 7: Results for large numerals (α = 10). The squeezing
effect is stronger for numerals of higher roundness (e.g. 5000)
than lower roundness (e.g. 4500).

the numeral can explain the increasing ranges of guesses for
greater numerals observed in the data (right plot in Figure 2).

Conclusions
Overall, our account provided a quantitative account of some
aspects of the way participants understand the modified nu-
meral ‘more than n’. Various feature of the data are predicted
by our model. First, and most importantly, the general shape
of the guesses are predicted to be similar to option b in Fig-
ure 1, which is consistent with the data in Hesse and Benz
(2020). Second, the model captures the patterns of implica-
ture discussed at the beginning of the paper: the prima facie
surprising lack of strong implicatures for successive numerals
and the dependency of implicatures on roundness and magni-
tude. Third, a simple extension of the model captures some
crucial features of the production behaviour of participants in
experimental data. The model predicts the squeezing effect
below round numerals (Figure 5), an addition of a preference
for producing round numerals predicts the observed produc-
tion patterns (Figure 6), and a prior with a larger variance
for the listeners produces the observed change in production
range for greater numerals 7).

The work in this paper could be extended in various ways.
First, a Bayesian statistical model can be developed to fit the
data in Hesse and Benz (2020), and Bayesian model com-
parison can be used to compare our account to the ANS ac-
count. The account proposed in Hesse and Benz (2020) is not
a quantitative account of production, and therefore it would
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have to be extended to directly predict experimental data.
Second, the model could be extended to include more mod-

ified numerals. For instance, Hesse and Benz (2020) also
includes modified numeral ‘less than’. Other modified nu-
merals that could be modelled are ‘at most n’ and ‘at least
n’, which has been shown to differ from ‘less than n+1’ and
‘more than n−1’ in interesting ways (Spector, 2020).

Third, a simplifying assumption in the model above is that
we only used two priors, one for small numerals and one for
large numerals. However, it is more plausible that the prior
changes continuously as a function of the numeral. Future
work can explore the functional relation between the prior
parameters and the magnitude of the modified numeral.

The model also makes some assumptions and predictions
beyond the data in Hesse and Benz (2020) that could be tested
experimentally. For instance, it assumes that listeners end up
with a full posterior distribution over numbers after hearing a
modified numeral. However, it is not obvious that language
users would possess representations of this kind, especially
over a infinite set of numbers. Moreover, a listener would in
principle need to calculate implicatures over an infinite set of
possible utterances, which is implausible from a processing
point of view. While we see the RSA model as a computa-
tional level model, these considerations should be taken into
account if the gap to the algorithmic level is to be bridged.8

We leave all these possibilities to future work.
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