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Abstract

This paper presents a pattern of reasoning called “function-
follows-form” (FFF) uncovered through a study of
scientific problem solving. In the study we modeled eleven
“think-out-loud” problem-solving protocols taken by John
Clement (1989). Our work involved computationally
modeling the reasoning processes of eleven scientists each
attempting to solve the same problem about springs. We
describe experiments with two computational systems,
ToRQUE and ToRQUE2, which were used to model salient
reasoning found in the protocols, and we show how the use
of function-follows-form reasoning patterns enables
exploration and conceptual change.

Introduction
Our research identifies and elucidates a pattern of

reasoning we call function-follows-form (FFF) reasoning.
We have shown that this pattern of reasoning plays an
important role in exploratory problem solving, and may lead
to significant change to a subject’s mental models. Here we
present specification of FFF resulting from experiments with
two successive computational systems called ToRQUE and
ToRQUE2.   The study involved modeling the problem
solving of eleven scientists each attempting to solve the
same problem about springs.   We used “think-out-loud”
protocols collected by John Clement (1989) and performed
experiments testing the fidelity of our computational model
with the protocols.

This research represents a melding of disciplines with
the goal of understanding complex scientific problem
solving.  We have combined techniques from history and
philosophy of science, cognitive psychology, and artificial
intelligence to study the problem solving of scientists. The
focus of our effort discussed here was to capture the salient
aspects of problem solving for each of the scientists in the
form of a general competence model, encoded in a
computational system (i.e. ToRQUE2).

Background
As a first attempt at developing an interpretation of

scientific problem solving Nersessian and Greeno (1992)
examined an extensive expert problem-solving protocol
obtained in a “think-out-loud” interview conducted by John
Clement (1989).   In particular, they were interested in the
second protocol (S2), because it exhibited many of the
characteristics of James Clerk Maxwell’s problem-solving
practices in the construction of the electromagentic field

concept. As they interpret this protocol, the subject uses
what they call “constructive modeling” to satisfy himself
that his initial answer to a problem was the correct answer.
They saw this process as primarily one of arriving at a
model that is of the same kind with respect to the salient
features of the spring problem.  They argue that while this
example is much more constrained than historical cases of
scientific discoveries, it is still complex enough to require
dealing with the many quite difficult modeling issues
historical discoveries present.

Clement's own analysis of S2's reasoning focuses on a
process he calls modeling via “bridging analogies”. He
characterizes this process as one in which the subject
“produces models via a successive refinement process of
hypothesis generation, evaluation, and modification or
rejection” (p.358, Clement 1989).  It is the specific nature of
the construction and “successive refinement” process that
led Nersessian & Greeno to interpret S2’s reasoning as a
form of constructive modeling, and subsequently led to our
computational theory of generative modeling (Griffith et al
1996, Griffith et al 1997, Griffith 1999).

The Problem
According to Clement, S2 was a computer scientist who

had some training in physics. He had also passed
comprehensive examinations in mathematics in the area of
topology, which is highly significant to our interpretation of
the protocol session.

In the protocol, S2 is asked to solve the following
problem about springs:

“... a weight is hung from a spring.  The original spring
is replaced with a spring made of the same kind of wire;
with the same number of coils; but with coils that are
twice as wide in diameter.  Will the spring stretch form
its natural length more, less, or the same amount under
the same weight?  (Assume the mass of the spring is
negligible compared to the mass of the weight.) Why do
you think so?”

In our interpretation, S2 began the problem-solving session
with an intuitive understanding that the stretch of a spring is
due to its flexibility.  Then he derived a new understanding
that a spring maintains constant slope when stretched
through torsion in the spring’s wire. So, although this is a
more modest outcome of scientific reasoning than evidenced
in historical cases, for S2 it was an instance of highly
creative problem solving leading to conceptual change. To



find a satisfactory explanatory model for the problem
solution, S2 had to generate a novel representation of how a
spring works.  He did so by generating a series of successive
models through what we call FFF transformations.

Methodology
This research focuses on investigating the reasoning

processes found in all eleven protocols in order to place S2’s
creative problem-solving in a context.  In so doing, we
highlight the reasons that lead to his discovery of torsion as
a central causal element in the function of a spring.   The
additional protocols show scientists attempting to solve the
spring problem.  All the scientists were expert problem
solvers, though none were experts in the domain. The
protocols were modeled in two sets.   The first set of five
protocols (S1-S5) was used to build and refine the ToRQUE
system.   The second six protocols (S6-S11) were used to
evaluate the refined ToRQUE2 system.   Experiments were
conducted at each stage of development in order to evaluate
hypotheses with respect to the methods and knowledge used
by the subjects.   The first set of experiments, used to refine
the systems performance with respect to the first five
protocols, involved the ablation and reconfiguration of tasks,
methods, and knowledge in order to determine what aspects
of the system enabled accurate modeling of the first five
subjects.  The second set of experiments were also ablation
and reconfiguration experiments.   For these experiments the
system was left unchanged but was “reconfigured” to
account for each of the remaining six subjects. This means
that reasoning elements such as tasks, methods, or
knowledge structures were removed or reordered but not
added, and that no reimplementation was done on the
ToRQUE2 system during the testing phase.  Both sets of
experiments looked at the choice of knowledge structures
and reasoning methods used by the system, as well as the
ordering and availability of knowledge and methods.   The
system was evaluated based on its ability to accurately
model the salient reasoning of subjects.

Ontologies for Function-Follows-Form
Function-Follows-Form transformations are based upon

a series of ontological commitments with respect to the
control of processing and the representation of knowledge,
each of which is based upon past computational results.
The language for the control of processing is called the task,
method, knowledge language which is based upon a TMK
architecture, while the language for representing physical
systems is called the structure, behavior, function (SBF)
language which was first developed as part of the theory of
adaptive modeling. A reasoning packet comprises patterns
from each of these languages.

The TMK Language: The Task, Method, Knowledge
(TMK) architecture is a theory of control of processing that
was first developed by Goel & Chandrasekaran (1992) in an
analysis of the methods used for addressing complex tasks.
This work was continued in (Goel et al 1994, Punch, Goel,

& Brown 1995, Goel et al 1996).   The theory posits that
high-level tasks such as conceptual design can be broken
down into a hierarchy of methods and subtasks. Each task or
subtask may have one or more methods that can be applied
to solve the task. It also posits that each method specifies the
sub-tasks that it spawns and control information for the
ordering of those sub-tasks. Using multiple methods enables
the architecture to account for a variety of reasoning
strategies for addressing any one task, where a strategy is
some sub-hierarchy of the task-method tree whose root is a
method.

One advantage of the TMK architecture is that
knowledge can have a direct effect on which method is
selected to accomplish a particular task.  For the purpose of
modeling multiple subjects this feature is particularly
important.  In general each subject has different initial
knowledge conditions.  This means that one wants the
system to be able to select different methods based on that
knowledge in order to exhibit different reasoning traces.
The TMK architecture allows for this kind of variation.
The goal from a modeling perspective is to correctly specify
the knowledge structures, reasoning strategies, and ordering
of strategies, such that for any initial knowledge condition
the TMK model is able to accurately account for the
reasoning.

The SBF Language: As an initial attempt to address the
issues from the Maxwell case and the Clement protocols, we
attempted to model the Clement protocols using a
computational theory of device design called “adaptive
modeling” (Goel 1991b, 1996).  This attempt led to the
development of new design considerations and ultimately to
a new computational theory of scientific problem solving.
The theory of  “adaptive modeling” takes its name from the
perspective it adopts on conceptual device design.
Conceptual design generally refers to the preliminary phase
of the design process. The problem-solving task in this
phase takes a specification of the functions of the desired
device as input. It has the goal of giving a high-level
specification of a structure for the device as output, where
the structure can deliver the desired functions.

Kritik and IDeAL are operational knowledge systems
that instantiate the theory of adaptive modeling, enable
experiments with it, and provide well-defined AI languages.
Built in the late eighties, Kritik integrated case-based and
model-based reasoning for modeling evolutionary design of
simple physical devices (Goel 1989, 1991a, 1992; Goel &
Chandrasekaran 1989, 1992). The specific hypothesis in the
Kritik experiments was that since the design task is a
function � structure mapping, the inverse structure �
function map of old designs may guide the adaptation of an
old design to achieve a new functional specification. The
structure � function map of a device design in Kritik is
specified as a Structure � Behavior � Function model. In
an SBF model of a device the behavior mediates between
function and structure: it captures teleological and
compositional knowledge of a device, and provides a



functional and causal explanation of the how the structure of
the device delivers its functions.

The IDeAL system builds upon the Kritik system in
several significant ways.  Perhaps the most significant
contribution of the IDeAL system is the addition of a theory
for cross-domain analogy called model-based analogy
(MBA) (Bhatta 1995, Bhatta & Goel 1993, Bhatta & Goel
1997).   This theory enables the system to apply abstract
information that it learns in one domain such as that of
electric circuits to another domain such as that of heat
exchangers.

Kritik and IDeAL both focus on the task of conceptual
design.  In design the goal is the description of some artifact
that serves a particular purpose, i.e., it has some desired
function.  For this reason the Kritik and IDeAL systems
focus on functionally driven transformation processes. The
task in scientific discovery is often one in which changes to
the function are only realized after a structural change has
taken place.  The ToRQUE systems make use of this kind of
transformation – form-based or “function-follows-form”
transformations (see Griffith et al 1997, 1999).

In this research we have identified a series of
transformational knowledge patterns that can be used to
accomplish form-based transformations.  We have called
these patterns generic structural transformations (GSTs)
because they are generic with respect to the models to which
they may be applied and because they are first applied to the
structure of the model and then propagated to the behavior.
We have described two strategies for carrying out form-
based transformations.  The first is called Structure-Based
Model Transformation (SBMT) and the second is called
Limiting Case Analysis (LCA).

Function-Follows-Form Reasoning Packets
One important task in artificial intelligence is

identifying patterns of reasoning that are generic to a variety
of problems.  In this research we have identified several
reasoning patterns using the TMK language. These
reasoning patterns are packets of tasks, methods, and
knowledge that frequently appear together. The most
promising of these TMK reasoning packets is the FFF
packet, which appears to be a general process used by expert
reasoners to solve exploratory problems.

One important issue in both the historical and protocol
studies is to find the function of a particular physical system
given its form.  For example, in the S2 case the task is to
find the amount the spring will stretch given the diameter.
Thus far we have developed a computational system,
TORQUE2, that models S2's discovery of torque in springs.
A key computational characteristic of TORQUE2 is its
application of structural transformations to the structural and
topological elements of SBF models to generate new
models. To achieve FFF transformations TORQUE2 uses the
GST knowledge structures. After retrieving an initial source
analog via model-based analogy, TORQUE2 evaluates the
model by attempting to reduce the differences between the

target and the analog model. This evaluation process
involves retrieving generic models of physical principles
(GPPs) which can explain away the differences or applying
GSTs to transform the target or source models. These
adaptations bring new knowledge to the task that may lead
TORQUE2 towards or away from the initial goal.
TORQUE2 discovers the GPP of torque while attempting to
reduce the differences between a circular and an imaginary
square coil.

S2 protocol: line 121: Now that’s interesting…Just
looking at this it occurs to me that when force is applied
here [end segment], you not only get a bend on this
segment, but because there’s a pivot here [referring to a
connection in the hexagonal coil], you get a torsion
effect.. around there..[a center segment]

Through TORQUE2 we have established that in the S2 case
“function-follows-form” transformations play a significant
role in the exploratory process. We hypothesize that
“function-follows-form” transformations also play a
significant role in Maxwell's exploration of
electromagnetism.

In the following sections we present the function-
follows-form reasoning packet by showing the task pattern,
method pattern, and knowledge patterns that are used to
carry out the reasoning, which taken together form a
reasoning packet.

Function-Follows-Form Task Pattern
In (Griffith 1999) we hypothesize that the ordering of

high-level reasoning strategies proceeds from a strategy of
model-based search through a process of analogy and,
failing that, to processes of transformation. We are also
hypothesizing that the FFF reasoning packet is used only
under certain conditions. The conditions under which a
method takes place is a part of its task pattern.   The task
pattern for FFF can be defined formally with respect to the
models in memory, the target model, problem description.
and the solution.

The formal task pattern for FFF is: given (1) a target
model that is an element of a set of models available to the
agent, (2) some problem with respect to that target model,
and (3) that no solution can be generated using a search
method or an analogy method, return a new model that
contains a solution to the problem, such that using
analogical transfer from this new model back to the target
model provides a solution to the problem.   The task pattern
defines the problem to consist of input (the problem and the
target model) and output (the solution to the problem).  It
also defines the situation in which the task is performed – in
this case, after attempting model-based search and model-
based analogy.   We see this task pattern in several of the
subjects including S2, S6, and S8.  We also see this pattern
in Maxwell’s reasoning.



Function-Follows-Form Method Pattern
The method pattern for the FFF transformation is found

in the SBMT hierachy.  The method pattern in a TMK
reasoning packet includes the hierarchy of subtasks that the
method spawns, the ordering of these subtasks, and the
knowledge that the method acquires during its processing.
These aspects of the method are shown in Figure 1. The
dashed lines indicate the subtasks that are spawned and the
solid black lines indicate that a method or procedure is
selected.  The gray lines show the ordering of subtasks.  The
rectangles are subtasks in the method hierarchy.   The
single-line ellipses are methods, and the double-line ellipses
are procedures. Memory is indicated by the star or seal

figure and the plus sign is a specific piece of knowledge that
gets retrieved from memory.

The pattern shows that SBMT is a memory-based
process in which the retrieval of particular GSTs occurs
when no GSTs are available in working memory.  The
process then instantiates the retrieved GST for the particular
problem-solving situation, and attempts to generate a new
model by applying the GST to the model.   The process ends
with an evaluation of the model that could result in the
recognition of GPPs or in recursive application of the
SBMT method.

Function-Follows-Form Knowledge Patterns
The knowledge patterns for the FFF reasoning packet

include SBF models as well as GSTs.  GSTs are the active
knowledge element in FFF. GSTs contain indexing
information that allows them to be retrieved based on
differences between analog models and information that
indicates when they can be applied to a model.  Most
importantly they contain the processing information for
transforming the structure (including geometry and
topology) as well as the behavior of SBF models.

In Figure 2 we see one application of the function-
follows-form reasoning packet.  This reasoning packet

shows how the 3D-to-2D GST is applied to the spring
model.  First, the geometry of the spring is transformed,
which results in changes to the structure.  The changes lead
to behavior changes in the spring.  Each new component’s
behavior is consolidated to form a new behavioral pattern.

In Figure 3 we see how the function-follows-form
reasoning packet is applied to our Maxwell’s model
construction. The top figures represent one stage in
Maxwell’s reasoning about the electromagnetic aether.  He
envisioned the aether as composed of a group of fluid
vortices.  The rotating circles is our represention of a cross
section of a set of vortices packed together in the aether.
The bottom figure shows Maxwell’s representation of his
model of the aether after the application of a function-
follows-form transformation that changes the structure by
adding “idle wheel particles” to solve the problem of friction
between the vortices. The structural changes in the form of
the aether result in behavioral changes.  It is this model of
the aether that Maxwell uses to construct the equations for
electromagnetic interactions.

The significant point here is that the FFF reasoning
packet was first discovered with respect to the Clement
protocols, and then identified as potentially significant in
interpreting Maxwell’s case.

The ToRQUE System
In this section we show how the computational model

instantiated in ToRQUE2 captures the salient reasoning
processes of subjects by presenting a walkthrough of the
steps taken by the ToRQUE2 system when configured with
our interpretation of S2’s initial knowledge state.

The primary task of the ToRQUE2 system is to solve a
problem.  The problem in this situation can be characterized
as finding a relationship between a structural concept (Cs)
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Geometry Topology
Behavior

Coil 1

Coil 2

Coil 3

Weight

Ceiling
Conn.:Bolted
Flow:  Normal

Conn.:Adjoining
Flow: Normal

Conn:Clipped
Flow: Normal

Conn.:Adjoining
Flow: Normal

Rod 1

Rod 2

Rod 3

Ceiling
Conn.:Bolted
Flow:  Oblique

Conn.:Jointed
Flow: Oblique.

Conn.:Jointed
Flow. Oblique

Rod 4

Rod 5

Rod 6

Weight

Conn.:Jointed
Flow:  Oblique.

Conn.:Jointed
Flow: Oblique.

Conn:Clipped
Flow: Oblique

Conn.:Jointed
Flow: Oblique

Rod 7

Conn.:Jointed
Flow: Oblique

Different GPP

Different GPP

Different Components

Same Behavioral Pattern

Structure

Figure 2: Function-Follows-Form in S2 Protocol



(e.g. diameter) in the model and a behavioral concept (Cb)
(e.g. amount of stretch).

To achieve exploration in TMK requires a working
memory of target models (WMT), analogs (WMA), and

GSTs (WMGST).  As an agent addresses its task they may
come to a point where they do not know how to proceed.
Past reasoning stored in working memory allows the agent to
pick a GST that is related to the reasoning at hand or to
reasoning that has occurred recently.  This serves to

constrain the randomness of the selection of a GST.  In
ToRQUE2 working memory is captured in a data structure
which has a last-in-first-out (LIFO) structure. Figure 4
shows two snapshots of working memory structures.  The
snapshot labeled (A) shows the WM during the first model-
based analogy process prior to attempting any
transformations.  Snapshot B shows what transformations
are placed on the structure when the circular coil becomes
the target model.  The transformation structure between A
and B is the transformations performed between these
snapshots.  All the transformations that are retrieved are
ordered and placed onto this WMGST structure.  Thus one
can think of this structure as using the last transformation
which the agent was thinking about but did not apply. Not
all transformations can be used on all models so many
transformations may be rejected prior to being applied, e.g.,
a circle-to-square transformation is only possible if the
target model is circular.  Also, previously explored target
models are removed from the structure such as when a coil
retrieves a spring as an analog.

The exploration process proceeds through the
interaction of Model-Based Analogy (MBA) and Structure-
Based Model Transformation (SBMT) with the working
memory structures, WMA and WMGST.  MBA retrieves a
set of analog models to solve the particular problem one of
which is selected and the rest of which are placed in WMA.
The answer that is produced from these analogs is evaluated
by attempting to reduce the differences between it and the
target model.  One method of reducing these differences is
to apply SBMT to the source or target analogs.  Similarly
GSTs are indexed and retrieved by these differences and one
GST is applied while the remaining are placed in the
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WMGST structure.  As reasoning progresses, a collection of
transformations are placed into WM.  In this way WM is not
being used as a repository for knowledge that is currently
being addressed, but as a repository for knowledge which
has been retrieved but which has not been considered.

The left portion of Figure 4 depicts the models that are
initially retrieved using the spring model and the models that
are generated after transforming the initial target model in
various ways.  After the system retrieves an analog model it
then evaluates that model by attempting to reduce the
differences between itself and the analog model.  These
differences are used as indexes into a memory of generic
structural transformations (GSTs).  The SBMT process then
applies the retrieved transformations to the target model to
generate additional models.  Notice that the models that are
generated may be similar to retrieved analog models.  These
models, however, are not identical and so we have marked
the generated coil model with a G.  The figure shows the
models that are retrieved as analogs for the spring model.
These models were retrieved as functional analogs to the
spring because they each supply a restorative force.  Generic
models such as GPPs are knowledge abstractions that can
reduce the differences between two models by recognizing
that the features of the analog model are also present in the
target model.

One significant outcome of the ToRQUE2 experiments
is that ToRQUE2 is able to model the competences
exhibited by the test subjects (S6-S11) to a surprising degree
of accuracy without changing anything except for the
starting knowledge conditions.  This means that the system
could model the test subjects:

♦   without additional knowledge structures,
♦   without additional reasoning strategies,
♦   without altering the control architecture, and
♦   without altering the ordering of the strategies

Altering the starting knowledge conditions includes one or
more of the following:

♦   removal of knowledge structure,
♦   removal of reasoning strategy, or
♦   removal of an index to a knowledge structure.

This means that the ToRQUE2 system is a
representative instantiation of a general competence model
for the spring problem.  This means our model covers a
representative subset of the possible knowledge and
strategies one might used to solve the spring problem, such
that it can account for both paths to the solution and paths to
failure by the scientists.   This lends support to our claim
that “funtion-follows-form” transformations enable S2’s
conceptual change, because it is one configuration of a
representative problem-solving model.
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