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Abstract

Are human contingency judgments based on associationistic
principles such as cue competition or on normative principles
as specified by rational-cognitive models? In this study, par-
ticipants learned to predict an outcome from several simulta-
neously presented cues. They were asked to judge the cues in
regard to causal power or statistical concepts such as prob-
ability or relative frequency. Uniform application of associa-
tionistic principles implies cue-interaction effects of blocking
(Experiment 1) and conditioned inhibition (Experiment 2) for
all judgments. A rational-cognitive framework predicts cue-
interaction effects for causality judgments, but not for prob-
ability and relative frequency judgments. The results support
the rational-cognitive framework on all accounts.

Introduction

The ability to detect causal relations in the environment is of
utter importance to all organisms. Fortunately, at first glance,
at least, we seem to adjust well to such demands. We readily
formulate hypotheses about plausible causal relationships
and contingencies. Research deriving from the associationist
tradition, however, suggests that this optimistic view is un-
warranted. It is proposed that, because of cue-interaction
effects, our representations are distorted. This study pits a
more optimistic view of human contingency judgment based
on the metaphor of the mind as an “intuitive scientist”
against this associationist view. It does so by comparing
causality judgments with probability and relative frequency
judgments in an inductive contingency judgment task.
Imagine that you suffer from an allergic reaction, which
you believe originates from eating shellfish. It seems reason-
able to assume that this hypothesis of causality originates in
your recollection of similar events, in this case your memory
of eating shellfish and suffering from allergic reactions. Of
course, most meals that you have eaten contained neither
shellfish nor resulted in allergic reactions. Still your memory
tells you that the allergic reaction on numerous occasions co-
occurred with dishes that included shellfish. You also recall
dinners which included shellfish but which did not lead to
allergic reaction, and times when the allergy sprung up in the
absence of shellfish. One popular notion is that memories of
previous events are categorized in what resembles a 2x2
matrix. In this contingency matrix the presence and absence

of a predictor event and an outcome event constitute the
two axes.

Table 1: A contingency matrix.

Outcome No outcome
Predictor present A B
Predictor absent C D

According to a normative model, judgments of covaria-
tion are based on conditional contingency: that is, on the
probability of the outcome (e.g., allergy) in the presence
and absence of the predictor (e.g., shellfish). Formally,
this can be expressed by the Ap algorithm:

a c
A]’—(m)—(m) 5 (1)

where a, b, ¢, and d are the number of times that events A,
B, C, and D in the contingency matrix have occurred. A
positive contingency is perceived if Cell A and D contain
more occurrences than Cell B and C (Ap > 0). Similarly, a
negative contingency is indicated by a negative Ap and a
zero Ap indicates no contingency. Perceptions of causal
relations are thought to be based on observed covariation
registered in a form equivalent to the contingency matrix,
and computed by the Ap algorithm. Chapman and Rob-
bins (1990) examined two effects that in a conspicuous
way violate the normative Ap model: the cue interaction
effects referred to as blocking and conditioned inhibition.

Cue Interaction Effects

The allergic reaction used in the example exemplifies a
simple causal relation where one potential cause is evalu-
ated with respect to its assumed effect (C — E). However,
such occurrences of unambiguous sole cues seldom arise
beyond the realms of clinical test scenarios. Instead, we
often evaluate complex situations where multiple potential
causes may produce an effect (C,, C,... C, = E). In Ex-
periment 1 of Chapman and Robbins (1990) participants
examined the relationship between the change in prize of
four individual stocks (predictors) and the stock market as
a whole (outcome). In the first phase, either stock A in-
creased in value, followed by an increase in the value of
the market, or stock C increased without a market in-
crease. In the second phase, either of pairs of stocks AB or



CD increased, in both cases followed by a market increase.
On one third of the trials in Phases 1 and 2 no stocks in-
creased and the market remained unchanged. After each
phase, participants rated the extent to which an increase in
each stock predicts a market increase on a scale from -100 to
100. (See Table 2.)

Table 2: The design in Chapman and Robbins (1990).

Phase 1 Phase 2 Test 2
A+, C-, O- AB+, CD+, J-  B<D

Note. (+) = outcome, (-) = no outcome, & = predictor absent.

If the normative Ap model is correct the frequency of oc-
currences between each predictor and the outcome is
mapped within separate contingency matrices. This means
that each predictor is evaluated in isolation with contingency
judgments based on the recollection of frequencies. Because
the Stocks B and D appear an identical number of times,
always in the presence of the outcome, these two stocks
should receive identical ratings of predictability in Test 2.

As it turns out, the ratings for individual predictors inter-
act. In this case the interaction is blocking: of two cues with
identical contingencies with the outcome, systematically
lower ratings are given to the cue presented with a previ-
ously established predictor than to the cue presented with a
non-predictor. In a second experiment, Chapman and Rob-
bins examined conditioned inhibition. In this design, a pre-
dictive cue is followed by the outcome, except when it oc-
curs with a second cue. The second cue, referred to as the
inhibitor, is rated lower in predictability than a control cue
that has the same objective contingency with the outcome.
Cue-interaction such as blocking and conditioned inhibition
casts doubt on the Ap model as a descriptive model of human
judgment of causation and covariation. The question is
whether these results are best explained by an associationist
or, what we refer to as, a rational-cognitive framework.

Associationist Framework

Cue-interaction is routinely observed in studies of animal
learning. This has been taken to indicate that human behav-
ior in contingency judgment tasks is best described by a
“grand theory” of learning based on the principles that apply
to animal conditioning. Associationistic models therefore
adhere to a strong analogy between conditioned (CS) and
unconditioned (UCS) stimuli in classical conditioning and
predictors and outcomes in human contingency judgments.
Contingency judgments are seen as being based on the asso-
ciative strength of the relationship between conditioned
stimuli (predictors) and the unconditioned stimuli (out-
comes). In a multiple-cue task, each CS-UCS association is
based on the informative strength of CS, with respect to the
US, in competition with all the CSs present.

The model most often called upon to explain cue interac-
tion effects is the Rescorla-Wagner model (Rescorla &
Wagner, 1972), hereafter referred to as the R-W model.

Formally, the model states that:

AV;H—I = axﬁl (2“1 - Vtgml) > (2)

where Ay is the change in associative strength (V) of
CS, as the result of pairing it with UCS; on trial n+1, o,
is a learning rate parameter representing the associability
of CS;, and B, is the corresponding parameter for UCS,
4, is the maximum associative strength that the UCS can
support, called the asymptote (A4, =1 in the presence of
the UCS}, 0 in its absence), and y” , is the total associa-

total

tive strength of all CSs on trial n+1.

Equation 2 describes the change in associative strength
of a CS as a function of the current associability of the
UCS and CS, in relation to the remaining associability of
the UCS (1,-v?,)- A consequence of Equation 2 is that
learning will occur only when an outcome is unexpected
or surprising in the light of one’s expectations.

According to the R-W model, the blocking described by
Chapman and Robbins (1990) is due to cue competition.
Once a CS;-US association is established, any new CS,
that is presented with the previous association (CS;, CS, =
US) will not become associated with the outcome. Equa-
tion 2 states that the change in associative strength on trial
n+l is defined by the difference between the asymptote
(M) and the total associative strength (v ) on trial n.
Since CS; already predicts the outcome there is no room
for CS, to become associated with the US. In comparing
CS, with another stimulus CS, that has an identical out-
come contingency the R-W model thus predicts that CS,
will be valued as less associative than CS..

Conditioned inhibition is seen as the opposite of excita-
tion. According to the R-W model this phenomenon is
expressed by (4, -v,, <0). Since the asymptote itself can
never be negative, the expression will only be true when
vr ., 1is larger than zero, that is, when some excitation
already has occurred. Say that stimulus CS, leads to an
outcome E, while stimulus compound CS, CS, leads to
absence of the outcome. If later tested individually, CS,
receives an exhibitory value, while CS, receives an
equally strong inhibitory (negative) value, making the
total associative value equal to zero. A number of alterna-
tive models have surfaced within the associationistic tra-
dition (e.g., Gluck & Bower, 1988; Pearce, 1994; Van
Hamme & Wassermann, 1994). Siegel and Allan (1996)
singled out the R-W model as the most successful model
and, for the purpose of this paper, the R-W model will
represent the associationist framework.

Rational-Cognitive Framework

A number of theoreticians (Waldmann & Holyoak, 1992;
Cheng, 1997) propose that the observation of cue interac-
tion effects does not pose a threat to models based on the
Ap algorithm. These results merely indicate the inapplica-
bility of the contingency matrix model to situations in-
volving multiple causes. Imagine that someone claims that
alcohol consumption causes lung cancer. In support for
this claim it is noted that consumers of alcohol more often
suffer from lung cancer than others. With the knowledge
that alcohol consumption often is accompanied by smok-
ing this line of reasoning may strike you as odd. Instead it



seems reasonable to assume that smoking is the real cause
for the increased risk of cancer.

The difference is that your antagonist is considering a
simple causal relationship (unconditional contingency) while
you apply a more complex analysis of causal relationships,
taking into account the conditional contingency. This means
that the causal relationship is viewed in the context of the
presence and absence of alternative causes. In the smoking
example, it is nearly impossible to incorporate all of the
potential alternative causes. However, the idea is that, like
“intuitive scientists” (Kelley, 1967), we have the capacity to
control, at least, for “likely” alternative causes (see also
Spellman, 1996).

According to a cognitive-rational approach people store
information about events in frequency format. This informa-
tion is available for different forms of analyses by applica-
tion of cognitive algorithms. Complex causal relationships
require a more sophisticated algorithm than the simple Ap
rule (Cheng & Novick, 1990; Cheng, 1997). In Power PC
theory (Cheng, 1997), for example, the strength of a causal
factor is estimated by the conditional contingency: that is,
the_contingency when other potential causes are controlled
for. According to this view, cue interaction is viewed as a
consequence of the participants’ attempts to control for
alternative causes. In Chapman and Robbins (1990), Ex-
periment 1, for example, the participants may have arrived at
the conclusion that the causal relationship between Stock B
and the outcome event ( E) is uncertain, since its effect is
nullified once control for Stock A is performed by a condi-
tional contrast; ( pE AB)—p(E\A):O)- Applying the same
algorithm to Stock D indicates that D is a strong causal fac-
tor ( p(E‘CD)— p(E‘c)=1). The controlling for alternative
causes would thus lead to results that coincide with the
blocking effect predicted by the R-W model.

The same line of reasoning is applicable to conditioned in-
hibition. Participants conclude that a stimulus has negative
causal power (i. e. power to prevent an effect) due to its
conditional contingency with respect to other causes (for a
discussion, see Cheng, 1997). Because people are assumed
to act like scientists in applying rational arguments and in-
terpreting patterns of covariation in terms of unobservable
causes, we refer to this as the rational-cognitive framework.

The Effect of Judgment Type

If the assumption of veridical representation of frequencies
in models like power PC-theory is correct, we should not
expect interaction effects for judgments of probability or
relative frequency (at least, to the extent that that probability
ratings are based on representations of relative frequencies).
This is a crucial difference between the R-W model and
power-PC theory. An orthodox interpretation of the R-W
model, which presupposes that the same processes underlie
judgments of causality and covariation, predicts that there

"t is important to note, however, that covariation is merely one
component of the process of causal induction in power PC theory.
Another important component is an a priori framework for inter-
preting input in terms of causal mechanisms (Cheng, 1997).

should be no difference between conceptually distinct
ways of probing for the relationship between cue and
outcome. The judgments are mapped from associative
strengths and we expect interaction effects for judgments
of causality, probability, and frequency alike. In contrast,
the rational-cognitive framework presupposes correct
representations of environmental frequencies, which devi-
ate from causality ratings in predictable ways. In short:
With power PC-theory there is a distinction between
judgments of causality and covariation, with the R-W
model there is not.

Cue interaction has occasionally been reported also with
judgments of probability or frequency (Chapman, 1991,
Price & Yates, 1995). Nevertheless, the main body of
empirical findings on blocking and conditioned inhibition
rests on assessments of often vaguely defined judgment
scales (e.g., predictability). We know of no study of con-
ditioned inhibition with relative frequency or probability
judgments. In this study, we thus compared judgments of
a) the causal power of the predictor on the outcome, b)
the probability of the outcome given the event, and c) the
relative frequency of the outcome given that the predictor
was present on the trial, in a between-subjects design. The
associationist account suggests cue-interaction effects
with all three judgments. The rational-cognitive approach
implies cue interaction effects for causality judgments, but
an absence of this effect with the other two judgments.

Experiment 1: The Blocking Effect

Experiment 1 of Chapman and Robbins (1990) examined
the blocking effect in a multiple cue task involving stock
market predictions (Table 2). Participants were asked to
rate the “predictability” of each stock on a scale from -100
to 100. The present experiment applies the design from
Chapman and Robbins’ Experiment 1, with the addition
of three new groups. In addition to predictability (to repli-
cate their results), the participants judged either explicit
causality, explicit probability, or relative frequency.

Method

Participants. Participants were 64 undergraduate students
from Uppsala University. They received either course
credit or a movie ticket in exchange for their participation.
Materials and procedure The experiment was divided in
two learning-phases (L,, L,) and two test-phases (T,, T,)’,
appearing in the order L, T, L,, T,. In each learning-
phase participants were to assess whether the stock market
as a whole would change in value based on the individual
movement of four fictional stocks (see Table 2). L, con-
tained 36 trials (12xA+, 12xC-, and 12xJ-). L, contained
76 trials (24XAB+, 24x CD+, 24xJ-). In each test phase,
participants assessed the relationship between the increase
of each separate stock and an increased stock market. One
group rated the stocks according to their predictability on

: Only the most central results, that is, those of the second test
phase are included in the present paper.



a scale from -100 to 100, in accordance with Chapman and
Robbins (1990). The other three groups rated either relative
frequency (In what percentage of the occasions on which the
stock X increased, did the outcome occur?), probability
(Given that stock X increases, what is the probability of the
outcome?), or causality (To what degree does stock X cause
the outcome?) with respect to an increased market on a scale
from O to 100 (a bi-directional scale does not apply to fre-
quency and probability). The judgments were varied be-
tween groups.

Results

The results from Experiment 1 are presented in Table 3. A
blocking index was calculated by subtracting ratings to pre-
dictor B from ratings given to predictor D, where a positive
score indicates a blocking effect. As illustrated in Figure 1A,
both the mean predictability blocking index 27.2 and the
mean causality blocking index 24.3 show significant block-
ing. In contrast, the mean probability blocking index 5.7 and
the mean frequency blocking index -15.2 show no sign of
the blocking effect (the latter is even negative).

Table 3: The average rating of stimuli A through D during
test Phase II. 95% confidence intervals within parentheses.

Predictor
A B C D
Predictability 53.1 35.9 -10.6 63.1
(21.4- (10.2- (-35.3-  (35.9-
84.8) 61.7) 14.0) 90.2)
Causality 89.3 49.3 27.1 73.6

(78.133- (34.7- (10.1- (55.4-
100.4) 63.8) 44.1) 91.8)

Probability 69.7 523 36.7 58.0
(55.1- (43.4- (19.5- (43.2-
84.2) 61.3) 53.8) 72.8)

Frequency 87.5 98.4 71.6 83.2
(70.8- (95.4- (52.0- (67.0-

104.2) 101.5)  91.1)  99.5)

We replicate the findings by Chapman and Robbins (1990)
with blocking effects for predictability judgments, and the
effect is even more consistent with the causality scale. These
results support the idea that the judgment labeled predict-
ability is interpreted as a mix of causality and covariation.
Within the same settings we fail to observe cue interaction
effects for probability and relative frequency judgments.
This predicted pattern is significant as concluded from a
plﬁmed comparison of means analysis, F (1, 57) = 9.8, p<.
01

The results thus support theories such as power PC theory
with respect to its analysis of causal reasoning, as well as the
more general notion in rational-cognitive models that
(roughly) veridical representations of event frequencies are
preserved. At the same time the results are in opposition to
the R-W model. To extend and validate the result from the

? Because the predictability group used a bi-directional scale
whereas the other groups used unidirectional scales, the scores for
all groups were standardized within each condition before they
were entered into the planned comparison.

first experiment, a second experiment was conducted in
order to examine conditioned inhibition.

Blocking
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Figure 1: Panel A: Blocking effect in Experiment 1 as a
function of judgment. Panel B: Conditioned inhibition in
Experiment 2 as a function of judgment.

Study 2: Conditioned Inhibition

Experiment 2 of Chapman and Robbins (1990) was the
first study to examine the conditioned inhibition effect in
humans. The results showed clear signs of conditioned
inhibition. Williams, Sagness, and McPhee (1994) report
several failures to replicate Chapman and Robbins’ (1990)
cue interaction effects. They reasoned that these failures
might be due to the way participants approach the task.
People can either interpret a stimulus compound (A, B) as
one distinct stimulus (AB) or as the combination of the
two stimuli (A and B). The former is termed a configural
encoding while the later is referred to as an elemental
encoding. In a multiple cue task conditioned inhibition
can not be obtained with configural encoding: the effect
demands that the participants view each stimuli in isola-
tion. Williams et al. therefore tried to experimentally
encourage participants to engage in elemental encoding.
After a couple of fruitless attempts to replicate the ef-
fect we therefore abandoned the design of Chapman and
Robbins (1990). Inspired by Williams et al.’s (1994) Ex-
periment 2, we attempted to promote elemental strategies
in favor of configural strategies. In order to take every
measure to obtain an effect we made some additional
changes. In the original task the outcome always occurs
with the positive predictor alone, but never with this pre-
dictor in conjunction with the inhibitor. The deterministic
design may promote the learning of explicit rules, which



might diminish a true effect. Furthermore, floor effects
might mask a real effect since both the inhibitor and the
control cue can be expected to be rated at the lower end of
the scale.

We therefore made the task probabilistic. The outcome oc-
curred with a probability of .95 in the presence of the posi-
tive predictors alone, and with a probability of .3 in the pres-
ence of the positive predictor in conjunction with the inhibi-
tor. This modification deals with both of the unfortunate
characteristics of the Chapman and Robbins (1990) design.
In addition, separate single presentations of the negative cue
which have been found to increase an effect (Williams,
1995) were added. Finally, the content of the task was
changed. In the original task, the content consists of stocks
that change. It could be argued that this content does not
encourage inhibition since it may be hard to create a mental
model of a causal mechanism of how a particular stock hin-
ders the outcome to occur. We used a task of evaluating
experimental fertilizers (cf. Spellman, 1994) where it is
easier to for model of how a particular substance may
hinder growth”. To summarize: Study 2 was designed to
investigate whether conditioned inhibition effects will occur
also for probability and relative frequency judgments or if a
dissociation will be observed between these and judgments
of causality.

Method

Participants Seventy-five undergraduates from Uppsala
University took part in the study. They received a movie
ticket or course credit in exchange for their participation

Materials and procedure The experiment was divided in
two tasks. The first (pretraining) involved one learning phase
and one test phase, the second (main experiment) was di-
vided in two learning-phases (L,, L,) and two test-phases (T,
T,), appearing in the order L,, T,, L,, T,. Both the pretest and
the experiment involved the prediction of whether a plant
would produce flowers or not after an observation of which
fertilizers that had been added to an irrigation fluid. The
learning phase of the pretraining was identical to the Explicit
Condition of Williams et al. (1994). It consisted of 12xX+,
12xXY+, 12xY- and 12XZ- trials. When finished, participants
were asked to rate each fertilizer with respect to the outcome
according to either causality, probability, or relative fre-
quency on a scale from 0-100. The purpose of the pretreat-
ment was to encourage an elemental encoding and results of
this phase were not investigated further. In Phase L, of the
main experiment either of fertilizers A through E were added
to the liquid 20 times each. In the case of fertilizers A and B
the plant produced flowers in 19/20 (95%) of the occasions.

‘A change of content should not affect the result according to
associative models, which imply independence of content. In
cognitive-rational models on the other hand content may play an
important role since prior causal models potentially can affect
interpretation according to these.

* Due to the similar results for predictability and causality ratings in
Study 1 and the deviating scale for the predictability ratings, the
latter were dropped in Study 2.

Fertilizers C, D, and E were coupled with the outcome on
6/20 (30%) occurrences. In L, three constellations of
fertilizers were followed by the outcome with a base rate
of 19/20. These were A, B, and AF . Fertilizer E, as well
as fertilizer combinations AC and DE was coupled to the
outcome with a base rate of 6/20. Thus, in this design,
predictor C is the inhibitor and predictor D is the control,
with exactly the same contingency with the outcome and
number of occurrences. Table 4 describes the conditioned
inhibition design in the experiment. After the learning
phases, participants rated the relationship between each
fertilizer and the outcome based on causality, probability,
or frequency with the same scale as described in Study 1.
Throughout Study 2, each participant only made judg-
ments for one of the three scales.

Table 4: Conditioned inhibition design in Experiment 2.

Phase 1 Phase 2 Test 2
A+ B+ C-D-E- A+ B+ E- AB+ C(C<D?
AC- DE-

Note. (+) indicates a probability of outcome of .95, (-) indicates
a probability of outcome of .3.

Results

Table 5 presents the results of Experiment 2. To repeat,
conditioned inhibition is observed if stimulus C is rated
lower than stimulus D. A significant conditioned inhibi-
tion effect was found in the causality group (average dif-
ference between D and C = 12.4: See Figure 1B). In nei-
ther of the other groups is there conditioned inhibition.
Both groups have higher ratings for the C than the D pre-
dictor (difference between D and C = -9.5 in the fre-
quency group and -7.2 in the probability group.). In fact,
this reversed difference is significant in the frequency
group. A planned comparison shows that the predicted
difference between the causality group and the probability
and frequency groups is significant (F (1, 72) = 13.7, p <.
001). The reason for the significant difference in the op-
posite direction in the frequency group is unclear, but
interestingly the trend was the same in Experiment 1. An
explanation, (undeniably speculative) could be that higher
level deductive reasoning influence frequency ratings;
Maybe participants reason that since predictor A occurred
often together with the outcome and predictor C often
occurred in conjunction with predictor A, then predictor C
probably occurred quite often together with the outcome.
Note, however, that the observed significance in no way
indicates that the frequency ratings are severely distorted.
A comparison between true frequencies vs. rated prob-
abilities and frequencies show that these agree approxi-
mately (although the ratings are moderately regressive). In
neither case are the true frequencies excluded by the con-
fidence intervals for the ratings, making it impossible to

® The conjunction of the positive predictors AB was included in
order to eliminate the possibility that participants learned a rule
implying that a conjunction of any two predictors was fol-
lowed by a decreased probability of the outcome.



reject the hypothesis that these are made on basis of undis-
torted representations of the true frequencies. These results
are in line with predictions of a rational-cognitive model,
with conditioned inhibition effects only for judgments of
causality.

Table 5: The average rating of stimuli A through E during
test Phase II (95% confidence intervals within parentheses).

Predictor
A B C D E
Causality 83.9 88.2 23.80 36.2 36.0
(78.1-  (82.0- (16.3- (28.8- (27.8-
89.7) 94.5) 31.3) 43.5) 44.2)
Probability 82.0 90.1 32.8 25.6 33.3
(73.9-  (85.0- (24.3- (17.9- (23.8-
90.1) 95.1) 41.2) 33.2) 42.8)
Frequency 79.8 87.4 33.2 23.7 29.9
(71.8- (81.6- (249- (16.3- (21.4-
87.7) 93.2) 41.5) 31.2) 38.4)
Discussion

In this paper, we have contrasted two different frameworks
for the processes that underlie human contingency judgment.
An associationist account which stresses the similarity to the
processes derived from learning in animals, as epitomized in
the R-W model, and one rational-cognitive account that
relies on the metaphor of the mind as an intuitive scientist.

The rational-cognitive account implies that the participants
can appreciate a distinction between judgments that concern
the causal power of a factor, and judgments that pertain to
covariation, such as probability and relative frequency. On
this view, blocking and conditioned inhibition arise from
appropriate considerations of the confounding between mul-
tiple potential causes. This reasoning is compatible with—
and indeed presupposes—availability of  accurate
information about frequencies. An orthodox interpretation of
the R-W model, presuming the same process behind
judgments of causality and covariation, suggests no effect of
the judgment type manipulation. On any account, the model
does not provides an explanation for the observed effect. The
results from two separate experiments, with fairly disparate
designs covering the two most well known cue interaction
effects clearly favor the rational-cognitive account. The
participants seem to appreciate the distinction between a
judgment of causality and judgments of probability and
relative frequency.

These results suggest that, functionally the same behavior
may be implemented by different mechanisms in different
organisms. The same behavior that is computed by associa-
tionist processes in lower animals may be the results of high-
level reasoning in humans. This conclusion may come as no
surprise: Regardless of our ontogenetic sophistication we all
share the challenge of dealing with a complex and uncertain
environment, and the evolutionary and adaptive pressures we
face may thus be very similar in the end.
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