UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Songbirds can learn flexible contextual control over syllable sequencing

Permalink

https://escholarship.org/uc/item/5nq2c9vk

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN

1069-7977

Authors

Veit, Lena Tian, Lucas Yanan Hernandez, Christian et al.

Publication Date

2021

Peer reviewed

Songbirds can learn flexible contextual control over syllable sequencing

Lena Veit

Uni Tübingen, Tübingen, Germany

Lucas Tian

Rockefeller University, New York, New York, United States

Christian Hernandez

Washington University, St. Louis, Missouri, United States

Michael Brainard

University of California, San Francisco, San Francisco, California, United States

Abstract

The flexible control of sequential behavior is a fundamental aspect of speech, enabling endless reordering of a limited set of learned vocal elements (syllables or words). Songbirds are phylogenetically distant from humans but share both the capacity for vocal learning and neural circuitry for vocal control that includes direct pallial-brainstem projections. Based on these similarities, we hypothesized that songbirds might likewise be able to learn flexible, moment-by-moment control over vocalizations. Here, we demonstrate that Bengalese finches (Lonchura striata domestica), which sing variable syllable sequences, can learn to rapidly modify the probability of specific sequences (e.g. 'ab-c' versus 'ab-d') in response to arbitrary visual cues. Moreover, once learned, this modulation of sequencing occurs immediately following changes in contextual cues and persists without external reinforcement. Our findings reveal a capacity in songbirds for learned contextual control over syllable sequencing that parallels human cognitive control over syllable sequencing in speech.