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Abstract

This paper describes two initial steps towards the realization
of a plausible model of natural visual classification. As a first
step, we extend the recently developed Natural Input Mem-
ory (N1M) model (Lacroix, Murre, Postma, & van den Herik,
2006) to a classification model of natural visual input called
NIM-CLASS and evaluate the model in a face-classification ex-
periment. Our experimental results show that NIM-CLASS is
able to recognize and classify faces after a single encounter. In
addition, NIM-CLASS is insensitive to variations in facial ex-
pressions, illumination conditions, and occlusions. As a sec-
ond step, we extend NIM-CLASS to NIM-CLASS A by adding
an active top-down fixation-selection mechanism. We then as-
sess to what extent NIM-CLASS A improves the performance
on the face-classification task. The results show that the in-
corporation of a selection mechanism improves classification
performance, particularly when a limited number of fixations
are taken during the classification process. Our results lead us
to the conclusion that NIM-CLASS A may provide a suitable
basis for a model of natural visual classification.

Keywords: Perception, memory, classification, gaze control.

Introduction

Traditional computational models of cognition (e.g., Shiffrin
& Steyvers, 1997) generally operate on an abstract represen-
tation space, because they lack a mechanism to derive rep-
resentations from the physical features of stimuli, i.e., they
are not grounded in the real world. In sharp contrast, natural
systems ground representations in physical interaction with
the world. Acknowledging the importance of the environ-
ment for natural cognition, a recent trend in psychologically
motivated cognitive models is to focus on grounding repre-
sentations in terms of their real-world referents (e.g., Pecher
& Zwaan, 2005). Following this trend, the recently proposed
Natural Input Memory model (N1M; Lacroix et al., 2000) re-
alizes a memory model that operates directly on real-world
visual input (i.e., natural digitized images). It builds feature-
vector representations on the basis of local samples (i.e.,
eye fixations) from natural images and uses these to make
recognition-memory decisions (e.g., Lacroix et al., 2006).
We aim at extending N1M (Lacroix et al., 2006) to a model
of natural visual classification. This paper provides two initial
steps towards achieving this objective. The outline of the re-
mainder of this paper is as follows. As a first step, we extend
NIM into a classifier of natural images called NIM-CLASS
and assess NIM-CLASS’s performance in a face-classification
experiment. As a second step, we aim to approach the in-
teractive nature of natural vision by extending NIM-CLASS
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to NIM-CLASS A by adding an active top-down mechanism
to select fixation locations. We then evaluate to what extent
the use of the top-down mechanism improves classification
by testing NIM-CLASS A on the classification task. Subse-
quently, we discuss top-down gaze control models, and the
scalability and sensitivity to changes in viewpoint of the NIM-
CLASS models. Finally, we present our conclusion.

Extending NIM to NIM-CLASS

NIM is a model for recognition of natural images (Lacroix
et al., 2006). NIM encompasses the following two stages.

1. A perceptual preprocessing stage during which a natural
image is translated into feature vectors.

2. A memory stage comprising two processes:

(a) astorage process that stores feature vectors in a straight-
forward manner;

(b) a recognition process that compares feature vectors of
a newly presented image with previously stored feature
vectors.

Inspired by eye fixations in human vision, the perceptual pre-
processing stage selects image samples (i.e., fixations) ran-
domly along the contours in the image. For each fixation,
visual input is translated into a feature vector that resides in
a similarity space. The translation is realized using a biolog-
ically informed method that involves a multi-scale wavelet
decomposition (see, e.g., Rao & Ballard, 1995) followed by a
principal component analysis. This method from the domain
of visual object recognition models the first stages of process-
ing of information in the human visual system (i.e., retina,
LGN, V1/V2, V4/LOC; (Palmeri & Gauthier, 2004)). NIM
applies the method in a saccadic based manner to build rep-
resentations of fixated image parts that together constitute
the feature-vector representation of an image. The memory
stage stores the feature-vector representation (the storage pro-
cess) and makes recognition decisions by matching an incom-
ing feature-vector representation with previously stored rep-
resentations. For a more detailed description and a schematic
overview of NIM we refer to Lacroix et al., 2006. While NIM
is a model for recognition of natural images, here we show
that it can readily be adapted into a model for classification
of natural images which we call NIM-CLASS. The feasibility



of adapting NIM for classification has been shown recently
by Barrington, Marks, and Cottrell (2007) who presented a
Bayesian version of NIM called NIMBLE and successfully
applied it to face classification. NIM-CLASS uses a slightly
different approach that adopts NIM’s perceptual preprocess-
ing stage (i.e., the perceptual front-end), but introduces a new
memory stage that is expected to be suitable for classifica-
tion. Below, we discuss the two processes of the NIM-CLASS
memory stage: the storage process and the classification pro-
cess.

The Storage Process

The NIM-CLASS storage process retains (i.e., stores) prepro-
cessed samples of natural images (i.e., fixations) that belong
to a certain class. Each natural image is represented by a
number of low-dimensional feature vectors (one for each fix-
ation) in a similarity space. In contrast to the original NIM
that stores unlabeled feature vectors, NIM-CLASS stores class
labels with each feature vector corresponding to the class as-
sociated with the image (i.e., ‘1’ for class 1, ‘2’ for for class
2, and so forth).

The Classification Process

The NIM-CLASS classification process employs a naive
Bayesian method that is based on an incremental estimate
of the class-dependent probabilities (Duda, Hart, & Stork,
2001). During the classification process, each fixation of the
test image (i.e., each test feature vector) contributes to an n-
bin histogram, the bins of which represent the ‘beliefs’ in the
n different classes. For each test feature vector, the bin that
corresponds to the label of its nearest neighbouring stored la-
beled feature vector (acquired in the storage process) is in-
cremented (e.g., if the stored labeled feature vector that is
closest to the test feature vector has label ‘1°, bin 1 is in-
cremented). Finally, upon the last fixation, the class with
the largest bin (i.e., belief) determines the classification de-
cision. This heuristic classification process could readily be
extended into a Bayesian approach in which each fixation up-
dates class-conditional probabilities according to the Bayes
update rule.

The Classification Experiment

The experiment evaluates NIM-CLASS’s ability to classify
natural images of faces. Below, we discuss the classification
task, the data set, and the experimental procedure.

The Classification Task

The classification task entails the identification of a natural
image of a frontal face with variations in facial expressions,
illumination conditions (location of the light source), and oc-
clusions (sun glasses and scarf). Humans are generally able
to identify a face after a single encounter only, despite varia-
tions in appearance (e.g., Burton, Jenkins, Hancock, & White,
2005). Inspired by this fact, NIM-CLASS is evaluated on a
task in which the training set (i.e., the study list) consists of a
single image for each class and the test set (i.e., the test list) of
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Figure 1: Example of the 13 views of one individual from the
AR data set.

the twelve remaining images. In this respect, our evaluation
differs from most evaluations in machine learning, where the
training set consists of a much larger fraction of the data set.

The Data Set

For the face-classification task, a data set with different im-
ages of the same individual was needed. We chose to use
the AR data set created by Martinez and Benavente (1998)
that contains over 4,000 images corresponding to the faces
of 126 individuals. For each individual, the AR data set in-
cludes a sequence of 13 images featuring frontal view faces
with different facial expressions, illumination conditions, and
occlusions. For the experiment, we selected the sequence of
13 images (i.e., views) of the first 10 male individuals of the
AR data set as our data set. Fig. 1 shows an example of the
sequence of 13 views of one individual. The first (standard)
view of each individual was selected for the study list, the
remaining 12 views were assigned to the test list.

The Experimental Procedure

The face-classification experiment entailed a study and a test
phase. During the study phase, NIM-CLASS was presented
with the images from the study list containing the first view
of each of the n = 10 individuals (i.e., the study faces). For
each study face, NIM-CLASS extracted and stored s labeled
feature vectors. Then during the test phase, the model was
presented with the 120 images from the test list (i.e., the 12
test faces of each of the n = 10 individuals). For each of the
test faces, the model extracted ¢ test feature vectors to classify
the face as one of the n = 10 individuals that it had previously
encountered. To assess how the NIM-CLASS classification
performance varied as a function of the number of storage
fixations s and the number of test fixations #, the experiment
was repeated for values of s and ¢ in the range 10 to 100, i.e.,
s,t € {10,20,...100}.

Classification with NIM-CLASS

Below, we present the NIM-CLASS results for the face-
classification task! and compare these with human face-
identification results.

Classification Results
Table 1 presents the percentages of test faces classified cor-

rectly by NIM-CLASS for a range of values of the number

IThese results were partly presented at the workshop Towards
Cognitive Humanoid Robots of the IEEE-RAS International Con-
ference on Humanoid Robots 2006



of storage fixations s and the number of test fixations ¢. Fig.
2(a) presents the same results as a surface plot. The NIM-
CLASS classification performances range from just above
chance level (16%) for s = t = 10 and reach a good perfor-
mance of 89.0% for s =t = 100. Evidently, NIM-CLASS is
capable of exhibiting a good performance provided that a suf-
ficient number of fixations is made.

The results show, not surprisingly, that the performance
increases both with the number of storage fixations and the
number of test fixations. Increasing the number of storage
fixations s, improves the performances more than increasing
the number of test fixations ¢. For small s values, perfor-
mance hardly increases with ¢. Evidently, taking more test
fixations is only useful when a sufficient number of feature
vectors were stored previously. From a statistical perspective
this makes sense. A proper approximation of the true distribu-
tion of feature vectors in a similarity space associated with a
single face requires a sufficient number of samples (fixations)
of that face.

Table 1: Percentages of faces classified correctly by NIM-
CLASS for a range of values for the number of storage fixa-
tions s and the number of test fixations 7.

60

16.0 23.6 237 255

20 21.3 26.3 29.5 32.1 35.5 38.3 39.3 41.1 42.7 43.5
30 26.5 32.8 38.1 42.5 46.3 49.0 52.0 53.3 55.5 573
40 30.0 39.5 457 51.1 55.1 58.6 60.8 63.1 64.5 66.8
50 34.0 452 51.7 57.0 61.8 64.9 68.0 70.0 71.5 73.7
60 36.7 49.2 57.0 62.7 66.9 70.7 73.7 75.3 77.3 78.5
70 39.8 529 61.8 67.7 71.2 753 77.8 79.6 80.9 82.5
80 42.7 57.0 65.9 70.9 75.4 779 80.7 829 84.3 85.4
90 45.7 60.1 68.3 73.8 78.3 81.1 83.3 84.8 859 87.4
100 47.6 63.1 71.3 77.0 80.6 83.2 84.7 87.1 87.8 89.0

o °
3 8

Percentage correct
Percentage correct

Figure 2: The classification performance as a function of the
number of storage fixations s and the number of test fixations
t of NIM-CLASS (left), and NIM-CLASS A (right).

To provide some insight into the distribution of beliefs in
the different classes for each of the 120 test faces (i.e., 12 test
views for each of the 10 individuals in the data set), Fig. 3
presents an overview of the histograms for each of the 120 test
faces for s = ¢ = 100. Each histogram represents the belief in
class 1 (leftmost bin in each histogram) to 10 (rightmost bin
in each histogram). In other words, the histograms represent
the frequency counts of the labels of the nearest neighbours of
the test feature vectors. Each row of histograms corresponds
to the view depicted to the left of that row and each column of
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histograms corresponds to the individual depicted at the top
of that column. A face is classified correctly when the index
of the largest bin corresponds to the class of the particular
face. From Fig. 3 it can be seen that, in most cases, the largest
bin corresponds to the class of the test face. Where this is not
the case, the largest bin is not considerably larger than the
other bins. Therefore, the faces classified falsely can be said
to be classified with less certainty than the faces classified
correctly.

Comparison with Human Face Identification

Since this paper addresses the suitability of NIM-CLASS as
a cognitive controller of a humanoid robot, we compare the
NIM-CLASS performance with that of human face identifica-
tion in a natural setting.

The number of storage and test fixations extracted by NIM-
CLASS can be interpreted as the amount of viewing time
of the image during study and test, respectively. Dividing
the number of fixations by five provides a rough estimate
of the number of seconds the image is inspected, since hu-
mans make about five fixations per second (see, e.g., Hen-
derson, 2003). As the results show, the NIM-CLASS perfor-
mance relies heavily on the amount of viewing time during
the study phase. This accords with results from several psy-
chological studies indicating that memory for visual informa-
tion increases with viewing time during study (e.g., Méntyla
& Holm, 2006; Melcher, 2006). Moreover, it is interesting
that a considerable percentage of faces (say > 75%) is clas-
sified correctly after a short viewing time of about 8 seconds
(40 fixations) during the test phase, provided that there was a
sufficiently long viewing time of about 20 seconds (100 fix-
ations) during the study phase. In additional simulations, we
assessed in more detail to what extent NIM-CLASS is able to
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Figure 3: Overview of the histograms across the 120 test faces
(i.e., 12 views of each of the 10 individuals) for s = ¢ = 100.



classify the test faces correctly on the basis of a brief viewing
time during the test phase of only 1 second (t = 5). The sim-
ulation results show that NIM-CLASS is able to reach a con-
siderable classification performance on the basis of a view-
ing time of 1 second during the test phase, provided that the
viewing time during the study phase, s, is sufficiently long
(mean percentages of faces classified correctly across all the
views ranged from 36.9% to 74.0% when the number of stor-
age fixations s were varied in the range 100 to 1000 , i.e.,
s €{100,110,...1000}, corresponding to about 20 to 200 sec-
onds of viewing time). The same holds for human vision, for
which it is known that a brief viewing time will allow for cor-
rect identification, provided the face is sufficiently familiar to
the observer (e.g., Burton et al., 2005).

Overall, the NIM-CLASS classification results demonstrate
that natural images of frontal faces under a variety of poten-
tially disturbing conditions can be classified correctly using a
classification process that compares (a sufficient number of)
stored local image samples (i.e., fixations) acquired during
one encounter (i.e., one stored view) to incoming local sam-
ples. NIM-CLASS uses a bottom-up fixation-selection mecha-
nism that selects fixations on the basis of their visual saliency
(contours). While bottom-up processes are important in hu-
man vision too, they are integrated with top-down processes
that direct the gaze to relevant locations on the basis of cogni-
tive systems (see, e.g., Henderson, 2003). Below, we explore
the use of top-down fixation selection and investigate to what
extent top-down fixation selection aids performance on the
classification task.

Top-down Fixation Selection: Extending
NIM-CLASS to NIM-CLASS A

Several studies showed that human gaze control relies more
on top-down processes than on bottom-up processes when
performing an active visual task with meaningful stimuli (see,
e.g., Henderson, Brockmole, Castelhano, & Mack, to appear).
The top-down processes are driven by several cognitive sys-
tems, including: (1) short-term episodic memory for previ-
ously attended visual input, (2) stored long-term knowledge
about visual, spatial, and semantic characteristics of classes
of items or scenes acquired through experience, and (3) the
goals and plans of the viewer (e.g., Henderson, 2003; Mintyla
& Holm, 2006). Inspired by fixation selection in human vi-
sion, this section extends NIM-CLASS to NIM-CLASS A by
introducing a top-down fixation-selection during the classifi-
cation process. In order to do so, we rely on the short-term
episodic knowledge about previously attended visual input
(see, e.g., Henderson, 2003; Méntyld & Holm, 2006) that is
known to operate in human gaze control. Below, we discuss
the two processes of the memory stage of NIM-CLASS A: (1)
the storage process and (2) the classification process.

The Storage Process

NIM-CLASS A extends NIM-CLASS with top-down fixation
selection during the classification process, while featuring
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the bottom-up (i.e., contour-based) fixation selection of NIM-
CLASS during the storage process. Therefore, the storage
process is similar to that in NIM-CLASS, except that NIM-
CLASS A stores the coordinates of each fixation along with
the class label. The coordinate labels are used for the top-
down fixation selection during the classification process.

The Classification Process

For the implementation of the top-down fixation selection in
NIM-CLASS A, we rely on the notion of Shannon’s (1948)
entropy. Shannon introduced entropy as a measure of uncer-
tainty. In order to decide in the most efficient way to which
class a new item belongs, a system should select new in-
put that minimizes the entropy, i.e., the uncertainty about the
class membership. In NIM-CLASS, uncertainty is represented
by the histogram in which the heights of the bins represent the
beliefs in the different classes. Considering the uncertainty,
the top-down fixation-selection mechanism selects those lo-
cations that contain the most relevant information to decide
upon the class of the face under consideration (i.e., that min-
imize the entropy or uncertainty about the class). In order
to do so, the mechanism relies on short-term episodic knowl-
edge about attended parts of recently encountered faces which
is represented by the labeled feature vectors that were ac-
quired during the storage process directly preceding the cur-
rent classification process.

For each fixation, the top-down fixation selection mech-
anism first chooses the two most likely classes, A and B, by
selecting the two highest bins in the histogram. Subsequently,
it selects the fixation location that best discriminates between
the two classes A and B (i.e., contains the most relevant visual
input with respect to A and B). The idea behind the selec-
tion is that spatially adjacent fixations within one class give
rise to similar feature vectors. Hence, the fixation mechanism
searches for a pair of feature vectors a and b coming from
classes A and B, respectively, that originate from relatively
close spatial locations and at the same time are relatively dis-
tant from each other in the representation space. A detailed
specification of the implementation of this idea can be found
in Lacroix, Postma, Murre, and van den Herik (in prepara-
tion).

Classification with NIM-CLASS A

Below, we present the results for the face-classification task
performed with NIM-CLASS A and compare the classification
performances of NIM-CLASS and NIM-CLASS A.

Classification Results

Table 2 presents the percentages of test faces classified cor-
rectly by NIM-CLASS A for a range of values of the number
of storage fixations s and the number of test fixations #. In ad-
dition, Fig. 2(b) displays the classification performances as
a function of s and ¢ for NIM-CLASS A. The NIM-CLASS A
classification performance ranges from 25.2% for s =t = 10
to a performance of 91.0% for s =t = 100. Overall, the NIM-
CLASS A performance is improved compared to the origi-



Table 2: Percentages of faces classified correctly by NIM-
CLASS A for a range of values for the number of storage fix-
ations s and the number of test fixations ¢.

75.3

. 79.3
77.1

.3 82.7
81.5

A 86.6
84.4

87.8

87.6
88.9

nal NIM-CLASS performance. As for NIM-CLASS, the re-
sults of NIM-CLASS A show that performance increases with
the number of storage fixations s and the number of test fix-
ations ¢ and the performance increases more with s than with
t. As was demonstrated for NIM-CLASS, the results of NIM-
CLASS A show that taking more test fixations ¢ becomes use-
ful when a sufficient amount of feature vectors were stored
previously.

Comparison of Classification Results

The results show that extending NIM-CLASS with top-down
fixation selection to direct the gaze towards relevant loca-
tions, improves the performance on the classification task.
In NIM-CLASS A, the top-down fixation selection actively
constructs a fixation sequence based on: (1) the task to be
solved (i.e., classification), and (2) the stored episodic knowl-
edge about previous encounters with particular faces (i.e.,
the stored labeled feature vectors). By combining top-down
and bottom-up processes for the selection of fixations, NIM-
CLASS A acknowledges the influence of the episodic short
term knowledge and the goals (i.e., classification) that are
known to play a role in human gaze control (see, e.g. Hen-
derson, 2003). The active strategy employed by NIM-CLASS
A ensures that the locations are fixated which are known to
discriminate well among the two classes considered to be the
most likely at that time by the model. Therefore, the model
more often makes the correct classification decision. This
is particularly so, when a limited number of fixations are
taken during the classification process. With a large num-
ber of fixations during the classification process, a sufficient
amount of relevant visual information is gathered for cor-
rect classification even when fixations are taken randomly
along the contours. With fewer fixations during the classi-
fication process, the probability that a sufficient amount of
relevant visual information is gathered for correct classifica-
tion decreases. Therefore, performance differences between
the original NIM-CLASS and the NIM-CLASS A models are
most pronounced for small ¢ values.

Discussion

Below, we compare top-down gaze control in NIM-CLASS
A with other top-down gaze-control models, and discuss the
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scalability of the NIM-CLASS models and their sensitivity to
changes in viewpoint.

Top-down Gaze-Control Models

NIM-CLASS A that employs a top-down fixation-selection
mechanism based on episodic short-term knowledge about
previously attended image parts, may be related to probabilis-
tic active vision models for classification (for an overview
see, de Croon, Sprinkhuizen-Kuyper, & Postma, 2006). Prob-
abilistic active models either consider all possible fixation
selections at each time step (e.g., Denzler & Brown, 2002),
consider all possible fixation selections in advance (e.g., Ar-
bel & Ferrie, 20006), or use a fixation selection policy that is
acquired on the basis of an extensive training (e.g., reinforce-
ment learning, see, Paletta, Prantl, & Pinz, 1998) or on the
basis of an evolutionary algorithm (e.g., de Croon, Postma,
& van den Herik, 2006). In contrast, top-down fixation se-
lection in NIM-CLASS A relies solely on the feature vectors
that were stored during one encounter with the class instance
(during the storage process).

Scalability

In our classification task, NIM-CLASS and NIM-CLASS A
deal with 130 objects (i.e., faces) coming from 10 different
classes. Obviously, this limited number of objects can hardly
be considered to be representative for the enormous number
of objects that natural systems encounter in the real world.
Ideally, a plausible classification or recognition model should
be able to distinguish among large numbers of objects. How-
ever, since the different NIM-CLASS models store the com-
plete encountered visual input, classification time grows lin-
early with the number of encountered objects (see also Ba-
jramovic, Mattern, Butko, & Denzler, 2006). In order to deal
with this problem, mechanisms can be incorporated that en-
sure an efficient use and maintenance of the representation
space, e.g., neurally inspired representation techniques in-
cluding self-organizing maps, radial basis function networks,
and spiking neural networks.

Viewpoint Invariance

We have not tested the model’s sensitivity to changes in view-
point. For many object recognition techniques, changes in
viewpoint cause major degradations in performance. It has
been suggested that the brain brings about invariance across
viewpoint through interpolation across the responses of a set
of stored global shape templates corresponding to prototyp-
ical object views (e.g., Edelman & Duvdevani-Bar, 1997).
In contrast, the classical recognition-by-components theory
attempted to deal with invariance by representing objects
in terms of their invariant parts (Biederman, 1987). How-
ever, the extraction of invariant parts from natural images
has proved to be computationally challenging, if not infea-
sible. NIM-CLASS combines both approaches by extracting
both local and more global shape information (Lacroix et al.,
2006). Further studies should address to what extent this



combined approach copes with the weaknesses of the sep-
arate approaches in dealing with invariance. Also, we may
consider extending NIM-CLASS with existing statistical tech-
niques that operate on the representation space in order to en-
hance viewpoint invariance (e.g., Prince & Elder, 2006).

Conclusion

This paper presented two initial steps towards the realization
of a plausible model of natural visual classification. As a
first step, we extended the recently developed NIM model
to a model for classification of natural images called NIM-
CLASS. The results obtained by testing NIM-CLASS in a
face-classification experiment, demonstrate that NIM-CLASS
is able to recognize and classify faces after a single en-
counter despite variations in facial expressions, illumination
conditions, and occlusions. As a second step, we extended
NIM-CLASS to NIM-CLASS A by adding an active top-down
fixation selection mechanism. The results obtained with
NIM-CLASS A demonstrate that using a top-down fixation-
selection mechanism can enhance performance on the face-
classification task by selecting actively the most relevant fix-
ations. From our results, we may conclude that NIM-CLASS
A provides a suitable basis for a model of natural visual clas-
sification.
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