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Sensitivity to statistical regularities: People (largely) follow Benford’s law 
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University of Sydney, NSW 2006, Australia 
 
 

Abstract 

Recent decision making research has emphasized people’s 
sensitivity to statistical relationships in the environment. A 
little-known relationship is Benford’s law, that the first digits 
of numbers representing many natural and human phenomena 
have a logarithmic distribution (Benford, 1938). Benford’s 
law is being used to help detect fraudulent financial data, but 
this assumes that people will not follow Benford’s law when 
generating data. In two studies I examined whether people 
follow Benford’s law. In Study 1 participants were given nine 
questions (e.g., “Length of the Indus river:  km”) chosen to 
have a flat distribution of first-digits for correct answers. The 
generated distribution was close to Benford’s law. In Study 2 
the results for generated data were replicated with new 
questions, and a selection task was also given in which 
participants selected from nine possible answers. Selected 
answers were a poor fit to Benford’s law. Taken together the 
results suggest that Benford’s law is a product of the way 
people generate responses, rather than sensitivity to the 
relationship itself. 

Keywords: Benford’s law; randomness; decision making; 
forensic accountancy. 

Introduction 
A common theme in recent research into reasoning and 
decision making has been that people are influenced by 
statistical relationships in the environment. This is a key 
part of adaptive approaches to decision making such as that 
of Gigerenzer, et al, (1999) and it underpins apparent 
automaticities in everyday life (Bargh & Ferguson (2000). 
Key to these approaches is that people follow statistical 
relationship of which they have little awareness. Rarely 
though is it possible to test if people are truly acting 
precisely in accord with an unknown pure statistical 
relationship, rather than just following heuristics broadly 
consistent with measurable relationships. There are usually 
too many issues around conditions and sampling that 
exactly what the statistical relationship a person may have 
experienced cannot be stated precisely. Therefore Benford’s 
law (also called the first-digit law) offers an interesting test 
case, because it is a precise statistical relationship that is 
both universal and little known.  

 
Table 1: Percentage frequency of each first digit from 
theory (Newcomb, 1881) and data (Benford, 1938). 

 1 2 3 4 5 6 7 8 9 
Newcomb 
(BND) 

30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6 

Benford’s 
data 

30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 

History. Benford’s law is named after the physicist Frank 
Benford, who gathered data supporting a proposal by 
Newcomb (1881). Newcomb noted that the first pages of 
logarithmic tables seemed to wear out faster, and deduced 
that the frequency of the first digit in numbers from nature 
are logarithmic. In its most general form as stated by Hill 
(1995), the leading digit d (d ∈ {1, …, b − 1} ) in base b (b 
≥ 2) occurs with probability P(d)=logb(d + 1) − logbd = 
logb((d + 1)/d). For a base 10 number system this gives the 
distribution Newcomb first proposed and which I will refer 
to as the Benford / Newcomb distribution (BND).  

Benford (1938) empirically demonstrated the validity of 
the law by collecting first-digit distributions for a number of 
quantities, both natural and human. For 20 different 
quantities with an average of 1011 data points each he found 
the mean distribution shown in Table 1, which for each digit 
was within the margin of error of Newcomb’s (1881) 
prediction. These quantities included rivers, physical 
constants, cost data, populations and newspaper circulations. 
Because logarithms yield the only frequency distribution 
that is invariant under transformation, it does not matter 
what units these quantities are expressed in or even if they 
are expressed as reciprocals. Benford noted that the poorest 
fitting data was data such as physical data (e.g., weights) 
and the best was for numbers generated by no known 
relationship (such as river lengths), so he called it the law of 
anomalous data. Since Benford’s demonstration this 
logarithmic relationship has been shown to apply to many 
types of naturally occurring data such that its validity is not 
disputed, though its scope is a more open question. Not all 
data would be expected to follow Benford’s law, for 
example telephone numbers, lottery numbers, and 
populations of villages under 1000 would not.  

Benford's law long remained just a curiosity for 
mathematicians who argued over how it could be derived 
from more general mathematical principles (see Raimi, 
1976). Hill (1995) seems to have resolved the mathematical 
issue somewhat by deriving Benford’s law from the 
assumption of scale invariance. Further, Hill (1998) argued 
that because a distribution seems to fit better the more it 
arises from completely unrelated data (e.g, batting averages, 
areas of rivers); the critical point may be that the data is a 
combination of different distributions. So he proposed a 
theorem, “If distributions are selected at random (in any 
‘unbiased’ way) and random samples are taken from each of 
these distributions, then the significant-digit frequencies of 
the combined sample will converge to Benford's 
distribution, even though the individual distributions 
selected may not closely follow the law.” (p. 6).  
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Interest in Benford’s law rose when it was demonstrated 
that it could be used to detect fraudulent data, such as in tax 
returns. Nigrini’s (1992) PhD thesis advanced the idea that 
Benford’s law could be used to detect fraud on the basis that 
fraudulent data would not fit the law. The Wall Street 
Journal (Berton, 1995) reported that the chief financial 
officer for the district attorney’s office in Brooklyn had 
detected company check fraud using Nigrini’s analysis. 
Nigrini (1996) analyzed a sample of over 100,000 unaudited 
US tax returns and found that digit-1 occurred slightly 
higher than expected for interest received and slightly lower 
for interest paid, consistent with under-reporting of income 
and over-reporting of expenses. Nye and Moul (2007) found 
that GDP number follow Benford’s law unless they are from 
Africa, where economic data had already been considered 
suspect. Mlodinow (2008, pp. 83-84) reports the case of 
Kevin Lawrence, an entrepreneur jailed after an 
investigation sparked by a forensic accountant who found 
that his company’s various checks and wire transfers did not 
fit Benford’s law. Benford’s law has now become a standard 
tool of forensic accountancy (Zikmund, 2008). Its uses 
though go beyond fraud detection. For example, Hassan 
(2003) suggests that Benford’s law could be used to help 
with the problem of detecting inaccuracies in databases.  
Previous empirical research. The usefulness of Benford’s 
law as a tool for fraud detection partly rests on the 
assumption that people are poor at deliberately generating 
numbers that conform to it, just as they are generally poor at 
generating random numbers (Rapoport & Budescu, 1992). 
As Bolton & Hand (2002) point out in their review of 
statistical fraud detection, “The premise behind fraud 
detection using tools such as Benford's law is that 
fabricating data which conform to Benford's law is 
difficult.” (p.238) So several attempts have been made to 
test whether people generate Benford’s law (see Table 2).  

Hsü (1948) asked 1044 participants to “write a 4-digit 
number that must be original, i.e., created in your own 
mind” but found no relationship between the first-digit and 
Benford’s law.  Hill (1988) asked mathematics students to 

generate a 6-digit number “out of their heads” and found 
very similar data to Hsü. The two studies differed in that the 
largest frequency in Hsü was for digit-4 (i.e., the digit “4”) 
and for Hill it was for digit-6. This could be explained by 
Kubovy’s (1977) results for priming. In his Experiment 3 
participants were asked to generate a 4 digit number and 
produced the biggest peak for digit-4, whereas when asked 
to generate a number between 1000 and 9999 they produced 
the biggest peak for digit-1.  All four of the above samples 
produced a peak for digit-1, although largest for Kubovy 
(perhaps because asking for the “first” number that came to 
mind produced more priming), but none were a fit to 
Benford’s law. Thus the consensus has been that just as 
people are poor at producing random data, they are poor at 
producing data that fits to Benford’s law.  

However, Diekmann’s (2007) data challenged this 
conclusion. He first showed that unstandardized regression 
coefficients reported in journals were a good fit to Benford’s 
law. He then asked students in sociology or economics to 
fabricate multiple four-digit “plausible values” of regression 
coefficients that would support a hypothesis. He found a 
reasonable fit to Benford’s law (see Table 2). Interesting 
there was no evidence of a priming effect for digit-4 despite 
participants being asked to generate a 4-digit coefficient. 
However the samples were small (10 or 13 participants) and 
the pattern could be due to knowledge about regression 
coefficients, such that they tend to be low for data in social 
science. Thus in two studies I further investigated people’s 
ability consistency with Benford’s law.  

Understanding whether (or when) people follow 
Benford’s law is important for both practical and theoretical 
reasons. Practically, the value of Benford’s law as a detector 
of fraud or error is a product of being able to predict when 
invalid data will nevertheless fit it. Theoretically, it is 
valuable because it is a precise distribution that every person 
has had exposure to over their lives. Thus it could be a 
useful test case for how sensitive people are to a statistical 
relationship that they are not consciously aware of. 

 
 
Table 2. Percentage frequency of each first digit reported in previous studies, indicating the question that was asked. Kubovy 
(1977) data is from his Experiment 3 and were estimated from measurements of his graph for all digits except 1, 4 and 5. 

 1 2 3 4 5 6 7 8 9 
Hsü (1948): 4-digit “created in 
your own mind” (n=1044) 

13.3 9.2 14.3 15.5 6.6 9.3 12.6 9.1 10.5 

Hill (1988): 6-digit “out of their 
heads” (n=742) 

14.7 10.0 10.4 13.3 9.7 15.7 12.0 8.4 5.8 

Kubovy (1977): first 4-digit that 
comes to mind (n=190) 

24.2 12.1 11.1 27.4 2.6 6.4 7.8 5.7 2.7 

Kubovy (1977): first number 
between 1000 and 9999 that 
comes to mind (n=116) 

51.7 5.3 11.7 4.3 10.3 0.8 6.1 5.3 4.4 

Diekmann (2007, Exp. 1): 4-digit 
regression co-efficients (n=10x10) 

37 21 10 11 9 2 3 6 1 

Diekmann (2007, Exp. 2): 4-digit 
regression co-efficients (n=13x10) 

26.2 19.2 10.8 5.4 12.3 5.4 5.4 10.8 4.7 
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Study 1 
Perhaps the critical difference between earlier studies and 
Diekmann (2007) was that the latter asked about something 
meaningful rather than a random number. So to test 
Benford’s law I asked students to estimate the types of 
quantities that Benford had gathered data on, such as river 
drainage areas and newspaper circulations. If people are 
sensitive to statistical relationships in the environment then 
the best test of consistency with BND would be asking them 
to generate data that is known to fit Benford’s law, rather 
than data that is know to not fit it such as random numbers. 

Method 
Participants. The task was given to 127 students (101 
female, 26 male) in a psychology class as part of a set of 
tasks designed to illustrate reasoning phenomena.  
Procedure & Materials. Using the types of quantities used 
by Benford (1938), a set of nine questions was constructed. 
Answers were drawn from entries in Wikipedia on 
28/5/2008. The nine questions were selected so that one had 
a correct answer with each of the first-digits 1 through 9. 
Thus either correct or random answers would yield a flat 
distribution of first-digits. Questions were not selected 
completely randomly as I tried to avoid well known items or 
the largest or smallest examples of a category. The selected 
questions were as follows, with correct answers (not shown 
to participants) displayed in squared brackets. 

 
1. US gross national debt: $ [9] trillion 
2. The number 2 raised to the power of 33: [8,589,934,592] 
3. The peak summer electricity consumption of Melbourne: 
[7000] MV 
4. Atomic weight of zinc: [65.39] 
5. Population of the urban area of Philadelphia, USA: 
[5,330,000] 
6. Area drained by the Pearl (Xi Jiang) river: [437,000]   
km2      
7. Length of the Indus river: [3,180]  km 
8. Daily circulation of UK newspaper The Daily Mail: 
[2,340,255] 
9. Infant mortality rate of Afghanistan: [157.43] deaths per 
1000 live births 

 
Participants were presented with the nine questions on a 

computer screen with an answer box next to each. They 
were asked to “Please try to estimate the following values. 
Even if you have no idea, just guess.” They could not 
proceed to the next task until a legitimate number had been 
entered for each question.  

Results 
The first digit of each participant’s answer was extracted 

and the percentage of their nine answers which used each 
digit was calculated. Figure 1 shows the mean percentages 
for each first-digit together with lines representing the 
distribution for Benford’s law and for correct answers.  

As can be seen from Figure 1 the data was a reasonable fit 
to Benford’s law, except for digit-5. The data is a much 
better fit to Benford’s law than the flat distribution that 
would represent random or correct responding. To test fit 
we calculated for each participant a root-mean square 
(RMS) relative to Benford’s law (RMS-Benford) and 
relative to the flat distribution (RMS-flat). RMS-Benford  
(M = 11.9, sd = 3.5) was lower than RMS-flat (M = 13.2, sd 
= 3.5), t(126) = 4.19, p < .001.  
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Figure 1: Distribution of first-digits for all Study 1 data, 

elaborated only data, Benford’s law, and the distribution for 
the correct answers. 

 
With 127 participants choosing 10 numbers there is 

enough power for the first-digit distribution to be 
statistically significantly different from BND. Descriptively 
though the data looks to be a good fit to BND, except for 
digit-5. An oversupply of digit-5 was also present in the 
fraudulent financial data reported by Hill (1998), but it is 
unknown if that is generally characteristic of fraudulent 
data. Another data set in which there are peaks at digit-5 is 
that of Scott, Barnard & May (2001). They asked 
participants to provide numbers within various constraints, 
and like the studies described in Table 1 they did not find 
fits to BND (which was not their focus), but often they 
found a peak at digit-5. However they made an interesting 
distinction between unelaborated numbers (numbers 
consisting of only one digit that was not zero) and 
elaborated numbers (those containing at least two nonzero 
digits). They found that the peak at digit-5 was largely due 
to unelaborated responses, which they argued was because 
elaborated responses arose from more use of executive 
processes. So that greater processing should yield 
distributions less likely to be the result of a single bias. 

Therefore I separated elaborated from unelaborated 
numbers. The distribution of the elaborated numbers is 
shown in Figure 1 (representing 37% of the data). As can be 
seen the peak at digit-5 is reduced. The elaborated 
distribution is still significant different from BND, X2(7) = 
19.6, p < .05, but the data appears to be a better fit. The 
equivalent test against the correct (flat) distribution yields, 
X2(7) =  144.9, p < .05. 

2874



Diekmann’s (2007) data also produced a slight peak at 
digit-5 but more in line with that found in my elaborated 
data than the whole data set. This could be because it is a 
reasonable assumption that most of his data was elaborated. 
He asked participants to fabricate four-digit regression 
coefficients and they were probably aware that such values 
rarely containing three zeros. 

It is possible that people just happen to better know the 
low-digits answers and that produced the observed 
distribution. To check for this I removed answers with the 
correct first-digit, but there was little change to the 
distribution. 

Discussion 
Study 1 suggests that although people are not aware of 

Benford’s law their estimates fit reasonably well to the 
BND. So it represents a regularity of the environment that 
people are not aware of, yet largely conform to. The main 
discrepancy is for digit-5. Scott, et al. (2001) found various 
biases in how people generate numbers, one of which was a 
focus on magnitude. To the extent that participants in Study 
1 were focused on magnitude it would increase digit-1 
responses but also it might increase digit-5 responses 
because they would represent half magnitudes. A participant 
deciding between two different magnitudes may have split 
the difference and thus have digit-5 as the first digit. This is 
however purely speculation. 

Why then do people appear to produce reasonable fits to 
the BND? There seem to be at least two possibilities. First, 
it could be that due to participants’ lifelong exposure to data 
that fits to Benford’s law they may have become sensitive to 
this distribution, even if not conscious of it. Second, it could 
be due to some fundamental property of how people 
generate numbers. That there are biases in number 
generation is well know from research into people’s failure 
to generate truly random numbers (see Rapoport & 
Budecsu, 1992). One way to try to address whether 
conforming to Benford’s law is due to learning or is a 
property of number generation itself is to see if it holds for a 
selection task as well as a generation task. 

Study 2 
The second study presented a selection task as well as a 
generation task. The generation task was intended to deal 
with a possible weakness of Study 1, which was that it 
presented everyone with the exact same nine questions. 
Therefore it is possible that the apparent fit of the data in 
Figure 1 was an artefact of those particular questions. So in 
Study 2 participants did a generation task with better 
randomization of questions.  

The selection task gave participants the same types of 
questions as the generation task and asked them to choose 
from amongst possible answers. If people fit to the BND 
because they are sensitive to that distribution, then their 
chosen answers to difficult questions should also fit to this. 

Method 
Participants. The task was given to 335 students (243 
female, 92 male) in a psychology class as part of a set of 
tasks designed to illustrate decision making phenomena.  

 
Materials. For the generation task open-ended questions 
were asked about nine different domains (e.g., river lengths 
in km) and nine different targets (e.g., Indus). Targets were 
selected so that one each started with each digit 1 through 9. 
Targets for the nine domains questions were not widely 
spaced, did not include the largest or smallest case for a 
domain, and the highest value target for each question was a 
different first-digit. All data was drawn from Wikipedia 
pages on 24/8/2008. These constraints were designed to 
allow more complete randomisation of the first-digit of 
correct answers. The nine questions used were similar to 
Study 1 but some had to be replaced to fit to new 
constraints. The new set (indicating location of targets) was: 

 
1. Infant mortality rate (deaths/1000 live births) for 
[target1]? __________ 
2. Atomic weight of [target2]? __________ 
3. In square kilometers, the area drained by the river 
[target3]? __________ 
4. In MILES, length of the river [target4]? __________ 
5. Total energy consumption per capita (kg of oil 
equivalent) for [target5]? __________ 
6. External debt per capita ($US) for [target6]? __________ 
7. Expenditure on US TV advertising (US$millons) by 
[target7]? __________ 
8. Population of metropolitan area of [target8]? __________ 
9. Daily newspaper circulation of [target9]? __________ 

 
All participants received all nine domain questions but for 

each the targets were randomized with the constraint that for 
each participant they would receive a target with each of the 
number 1-9 as first digit of the correct answer. Thus if a 
participant knew all the correct answers they would produce 
a flat distribution. 

For the selection task the same nine domain questions 
were asked but different targets were selected (still with the 
constraint that each had a different first-digit). However 
instead of having to type in a number as their answer, the 
correct quantities for all nine potential targets were 
presented as possible answers. For each question 
participants had to chose one of the nine quantities. 

 
Procedure. In class participants completed on a computer a 
set of tasks designed to illustrate well known heuristics and 
biases in decision making. Early in the set they did the 
selection task (one question per screen), and then after a 
further set of tasks they did the generation task. Although 
the two tasks asked about the same nine domains, for each 
individual participant the tasks asked about different targets. 
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Results 
Generation task. Some participants did not get to the end 
of the set of tasks, so only 290 completed the generation 
task that came late in the sequence. As shown in Table 3, 
the distribution of first-digits in the generation task was very 
similar to Study 1, despite utilizing new questions and 
proper randomization. 

To test fit I again calculated each participant’s root-mean 
square (RMS) relative to Benford’s law (RMS-Benford) and 
the flat distribution (RMS-flat). RMS-Benford (M = 12.2, sd 
= 4.1) was lower than RMS-flat (M = 13.1, sd = 4.4), t(289) 
= 4.16, p < .001. Again digit-5 deviated the most from 
BND, so I examined the distribution of elaborated responses 
(46% of all responses). As shown in Table 3, elaborated 
responses again had a greatly reduced peak for digit-5 and 
appear to more closely approximate the BND. As would be 
expected with this much statistical power, the elaborated 
distribution is still significant different from BND, X2(7) = 
51.9, p < .05, but the equivalent test against the correct (flat) 
distribution yields, X2(7) = 403.2, p < .05. 

 
Table 3: First-digit distributions for Study 2 generation 

(plus elaborated responses only) and selection tasks (plus 
correct answers only). Values are mean percentages with 

standard deviations, where appropriate. 
. 

digit Study 2 
(generation) 

Study 2 
(generation: 
elaborated) 

Study 2 
(selection) 

Study 2 
(selection: 

correct) 
1 23.9  

(18.6) 
26.6 14.3 

(11.2) 
22.7 

2 15.1  
(13.4) 

16.3 13.4 
(11.3) 

14.6 

3 9.7 
(10.6) 

9.1 9.7  
(8.7) 

9.1 

4 7.6  
(9.8) 

9.6 10.1 
(9.9) 

7.8 

5 19.0  
(16.4) 

11.7 10.6 
(10.7) 

8.8 

6 9.1  
(10.8) 

8.4 9.9  
(9.8) 

9.1 

7 5.5  
(9.3) 

7.2 10.5 
(10.3) 

9.6 

8 5.8  
(8.3) 

5.7 8.7  
(9.2) 

7.1 

9 4.2  
(7.9) 

5.2 12.9 
(11.4) 

11.1 

 
Selection task. More participants (335) completed the 
selection task because it was earlier in the sequence. As can 
be seen in Table 3, the selection task yielded a much flatter 
distribution than the generation task. RMS calculated in the 
same way as for generation found that RMS-flat (M = 10.1, 
sd = 2.7) was now lower than RMS-Benford (M = 11.9, sd = 
3.1), t(334) = 12.27, p < .001. This indicates that the flat 
distribution was a better fit to the data than the BND. There 
was no correlation between the RMS-Benford scores 

calculated for the generation and selection tasks, r(290) = 
.062, p = .29. 

One reason why the selection task might lead to a flatter 
distribution than the generation task could be that multiple 
choice responses are more vulnerable to various strategies, 
such as choosing the first option. The materials were 
designed so that any such strategy would produce a flat 
distribution of first-digits, so to the extent that participants 
employed such strategies they would flatten the overall 
distribution. Giving all the correct answers would also lead 
to a flat distribution but if Benford’s law is a statistical 
relationship that people are sensitive to, maybe they are 
more likely to remember correct answers that fit to it. So 
post-hoc I looked at the first-digit distribution of all answers 
that were correct, which was 13.3% of all answers. The 
proportions displayed in Table 3 are somewhat closer to the 
BND, but note that each participant is not making an equal 
contribution to the data. 

Discussion 
The replication of the generation data from Study 1 with a 

better randomized set of questions and answers suggests that 
people’s fit to Benford’s law is a robust phenomenon for 
meaningful questions. The finding that the selection task 
does not fit to BND raises question over what is the basis of 
the fit in the generation task. It also argues against some 
possible alternative explanations of the generation task fit to 
the BND. For example, it could be argued that people just 
are expressing a belief that low numbers are more likely 
than high numbers for any quantity and this has 
consequences for the first-digit. However if this was the 
case it should be just as strong in a selection task.  

General Discussion 
These results only scratch the surface of understanding 

how people fit to Benford’s law, but by expanding on 
Diekmann’s (2007) finding they show it was premature to 
assume that the first-digits people generate have flat 
distribution for unknown quantities. Overall people’s 
generated distributions were close to Benford’s law, largely 
deviating at a specific point, digit-5. However this 
distribution did not emerge when participants had to select 
from nine answers. This argues against Benford’s law 
arising due to knowledge about the distribution of first-
digits and instead being a product of the way people 
generate quantities.  

The results have implications for both the practical and 
theoretical aspects of Benford’s law. The practical 
implications are that applications of Benford’s law to search 
for fraud need to be more nuanced, otherwise they may at 
best be a waste of time and at worst increase the confidence 
in data that is in fact invalid. Although previous research 
suggested that first-digits have a flat distribution in 
generated data, this appears to have been a product of asking 
for context-free numbers. Understanding what distributions 
people produce and under what conditions would allow 
Benford’s law to be more effectively applied to detecting 
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fraud. For example, my data and Diekmann’s consistently 
find an elevated frequency of digit-5, and the fraudulent 
data reported by Hill (1998) also showed a peak at digit-5 
(though in that case it was 61.2%). So it could be that 
financial data showing elevation at digit-5 should be flagged 
even if the overall fit to the BND is good. 

From a theoretical perspective Benford’s law offers a way 
to examine people’s sensitivity to a statistical relationship in 
the environment. To the extent people follow Benford’s law, 
why do they? One possibility is sensitivity to a statistical 
relationship present in the environment, so they have 
learned that low digits tend to start the numbers representing 
the length of rivers (as Gigerenzer et al, 1999, suggests they 
have become sensitive to the relationship between 
newspapers and size of cities). The finding that the selection 
task did not yield the BND argues against this explanation 
for Benford’s law, but perhaps there are other ways to 
present a selection task that would yield a better fit to it.  

A second possibility is that fit to the BND tells us 
something about generation, that people are Benford’s law 
generators. Hill’s (1995) “Random samples from random 
distributions theorem” proposes that Benford’s law is what 
you get when you take random samples from random 
distributions. Thus people may have a greater ability to act 
randomly than has been claimed. Rapoport and Budescu 
(1992) found that people can produce sequences that pass 
test of randomness when not asked explicitly to generate 
random numbers, but instead played a game. Similarly tests 
of Benford’s law that asked participants to generate random 
numbers found no evidence, but when asked to generate 
something meaningful then they fit better to randomness. 
Thus these results add to the picture that people can 
generate random numbers under suitable conditions. 

These two explanations are not necessarily incompatible. 
Scott, et al. (2001) used number generation to investigate 
executive functioning and argued that in particular their 
elaborated data was a result of more complex processes due 
to reconciliation of multiple biases. If such complexity is 
applied generating meaningful numbers then these biases 
should themselves have meaningful distributions. Thus if 
Benford’s law arises from the random selection from 
random distributions, as Hill (1995) argued, then when 
cognitive processes sample from random distributions 
Benford’s law could emerge. Thus it may not be that 
Benford’s law itself is a statistical regularity of the 
environment that people are aware of, instead it could just 
be the inevitable result of people’s sensitivity to many 
statistical regularity drawn on when estimating unknown 
quantities. However this is a purely speculative proposal. 
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