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Abstract 

One of the important aspects of human causal reasoning is 

that from the time we are young children we reason about 

unobserved causes.  How can we learn about unobserved 

causes from information about observed events?  Causal 

Bayes nets provide a formal account of how causal structure 

is learned from a combination of associations and 

interventions.  This formalism makes specific predictions 

about the conditions under which learners postulate hidden 

causes.  In this study adult learners were shown a pattern of 

associations and interventions on a novel causal system.  We 

found that they were able to infer hidden causes as predicted 

by the Bayes net formalism, and were able to distinguish 

between one hidden common cause and two hidden 

independent causes of the observed events. 

Introduction 

Causal reasoning is an important tool with which we make 

sense of relationships between objects and events in the 

world.  Once we have a causal model of the world, we can 

make predictions, generate explanations and reason about 

the consequences of possible actions.  How do we go about 

acquiring such models?  Because the data available to our 

senses are often imperfect and incomplete, our causal 

learning system has to be flexible about the kind of 

information it requires.  First of all, many of the causal 

relations we observe have no obvious spatio-temporal 

connection.  We must, and indeed we do, learn about 

causation by observing associations, and psychological 

research has described this learning process in detail (Cheng 

1997; Gopnik, Sobel, Schulz & Glymour, 2001; Shanks & 

Dickinson, 1987).   In addition, our causal learning system 

should be able to postulate new objects/events without 

observing them directly.  This is important both for 

discovering new observable causes and reasoning about 

phenomena that cannot be directly perceived. How we learn 

about hidden entities from observable ones is a topic that 

has not been given much attention in psychological 

research, and is the focus of this investigation.

There is a wealth of evidence that adults and even very 

young children learn and reason about unobserved causes.  

We appeal to unobserved mental states to explain human 

behavior (Gopnik & Wellman, 1994; Ross 1977; Wellman, 

1990).  Unobserved causes underlie our representations of 

basic categories (Gelman & Wellman 1991; Murphy & 

Medin, 1985).  We also reason about physical forces that we 

cannot see (Shultz, 1982; Schlottmann & Surian, 1999).  

Scientific research is entirely devoted to explaining 

observed events by appeal to hidden theoretical entities 

(Gopnik & Melzoff, 1997).   Often, as technology advances, 

these entities turn from hidden to observable, though it is 

their theoretical existence that prompts us to look for them 

in the first place. 

A perfect example of this is a classic study in the field of 

epidemiology.  In the 1850s, there were a series of cholera 

epidemics in London.  In order to test a theory that cholera 

was a waterborne disease, a doctor named John Snow spent 

almost a decade meticulously recording where cholera 

victims lived, and which of several companies was 

supplying them with water.  He was able to confirm his 

theory by using this statistical information to eliminate all 

other possible causes, such as those related to poverty, 

gender or occupation. It was not until much later that direct 

microscopic evidence confirmed what he was able to figure 

out using indirect evidence alone (Snow, 1855). 

Snow’s account demonstrates how powerful the 

combination of data and good scientific intuition is for 

learning about hidden causes.  However, what we call “good 

scientific intuition” for interpreting data has traditionally 

had no formal account.  Recently, though, a convergence of 

statistical models from several fields (machine learning, 

epidemiology, social science, statistics) has resulted in a 

formal account of causal learning and inference known as 

causal graphical models, or causal Bayes nets (Pearl, 2000; 

Spirtes, Glymour & Scheines, 1993).  The successes of 

these models in aiding scientific research have prompted a 

recent effort in cognitive science to use causal Bayes nets to 

model human causal reasoning (Glymour, 2001; Gopnik, 

Glymour, Sobel, Schulz, Kushnir & Danks, in press; 

Steyvers, Tenenbaum, Wagenmakers & Blum, in press; 

Tenenbaum & Griffiths, 2001; Waldmann & Hagmayer, 

2001).    

Bayes nets represent joint probability distributions in their 

simplest form by exploiting the set of conditional 

independence relations among the variables (Jordan, 1998).  

Causal Bayes nets apply this theoretical framework to sets 

of variables that are causally related.  Algorithms have been 

developed along these lines that use the conditional 

independence relations from a combination of observed 

associations and interventions to infer causal structure.   

Besides accounting for well-known findings in cognitive 

psychology on the role of observational data in learning 
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causal relations (see Gopnik et al, in press), these models 

provide the first formal account of the role of interventions 

in causal learning and inference (Pearl, 2000; Spirtes et al, 

1993).  

So far, there is evidence that both adults and young 

children can learn the causal structure of a set of observed 

events using patterns of conditional probability in a manner 

consistent with the Bayes net formalism. Both children and 

adults can use information about conditional independence 

and dependence to discount (or “screen off”) spurious 

associations in favor of true causes (Gopnik et al, 2001; 

Cheng 1997; Shanks & Dickinson, 1987; Spellman, 1996).  

Recently, several researchers (Gopnik et al, in press;  

Schulz, 2001; Lagnado & Sloman , 2002, Steyvers et al, in 

press) have also demonstrated that adults and young 

children can use information from interventions to learn the 

causal relations between observed variables. For example, 

Schulz (2001) showed 4-year-olds and adults two objects (A 

& B) that moved simultaneously without touching (no 

spatio-temporal cues), and asked them to determine which 

object caused the movement.  Participants then saw that 

intervening on object B did not result in the movement of 

object A.  Both children and adults inferred that object A 

was the cause.  The same pattern of movement (A & B 

together, then B alone) without an intervention resulted in 

chance responding.   

The formal story, according to the theory of interventions 

on causal graphs (see Spirtes et al, 1993; Pearl, 2000) is 

this: Before the intervention was performed, participants 

had information about P(A|B) and P(B|A), namely that both 

were equal to 1.  This, however, is very different from 

P(A|do(B)) (where do(X) notes an intervention on X).  The 

intervention do(B) sets B to a fixed value determined by the 

intervener, thus effectively removing all other causes of B in 

the system (represented by removing the arrow from A to 

B).  If A is a cause of B, then P(A|do(B))  P(A|B).  If A is 

an effect of B or is independent of B, then P(A|do(B)) = 

P(A|B).  Since the former is true in this case, the learner 

should conclude that A causes B. 

In another condition, participants (both children and 

adults) saw three objects (A, B & C) moving together 

simultaneously and were asked which was the cause of 

movement.  An intervention on object A didn’t result in the 

movement of either B or C.  An intervention on C left A & 

B unmoving.  Children as young as 4 came to the (formally) 

correct conclusion that B was the cause.  Again, the same 

pattern of associations without interventions resulted in 

chance responding.   

If object B were hidden from view, the Bayes net learner 

would infer that a hidden common cause for A & C must 

exist given the same pattern of interventions as in the above 

example.  Since the interventions on A & C are independent 

of each other, then only a common cause of A & C can 

produce the dependency between them that was initially 

observed.  If that cause is hidden, then it must be inferred 

given the Bayes net modeling assumptions (see Gopnik et 

al, in press for a formal analysis).  Moreover, in addition to 

simply inferring that there is an unobserved variable, 

learners should also be able to infer that this unobserved 

variable is a common cause of A and C, and to differentiate 

this hypothesis from the hypothesis that A and C are the 

result of two independent unobserved causes. 

There is some preliminary evidence that children can 

infer an unobserved cause when the causal relations 

between the objects are deterministic (Gopnik et al. in 

press). A stronger test of the hypothesis would be to see if 

learners can also do this when the relations are probabilistic, 

and can differentiate common and independent unobserved 

causes. However, before asking whether children can infer a 

hidden cause in the above scenario, we need to investigate 

whether adult learners will do so -- a question that has never 

been investigated.  In the following studies, we show that 

adults can infer a hidden cause from conditional 

probabilities without temporal or mechanistic cues, and can 

differentiate common and independent unobserved causes.  

In particular, we will show that, as predicted by Bayes net 

models, a combination of observations and interventions can 

lead to such a conclusion – even when each alone is 

insufficient to learn the correct causal structure. 

Experiment 1 

In this experiment, we showed participants two objects, 

colored balls on sticks, moving simultaneously up and down 

due to being placed in a “stick-ball machine.”  The stick-ball 

machine could have one of several possible mechanisms 

operating within it on any given trial.  In one trial, the 

evidence presented was similar to that in the above 

experiment (Schulz 2001, condition 2).  Participants 

observed balls A & B move together.  They then observed 

interventions on ball A and on ball B, neither of which 

resulted in the movement of the alternate ball.  If the Bayes 

net account is correct, this should lead to the conclusion that 

one hidden mechanism causes both balls to move. 

As one comparison, we presented participants with the 

identical intervention information but different initial 

observations – balls A and B moved independently most of 

the time.  This observational information should lead to the 

conclusion that there is no association between A and B, and 

thus they are not caused by a common mechanism. 

Because the apparatus had a hidden mechanism, we 

performed another control to insure that participants did not 

favor an unobserved causal explanation when an observed 

cause could account for the movement.  In this condition, 

we constantly intervened on one of the balls, which should 

lead to the conclusion that it is the cause of movement. 

In addition, we told participants that the balls were 

probabilistically causally effective and demonstrated this in 

a familiarization trial beforehand.  This way, failed 

interventions could be interpreted as having failed by 

chance, thereby leaving open the possibility that the 

observed balls could still be the causes of movement. 
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Method

Participants:  Participants were 48 undergraduates 

recruited from the research participation pool at an urban 

university.  

Materials:  The stick-ball machine (shown in figure 1) was 

a 3’ x 1’ x 1’ wooden box with two holes at the top and an 

open back which faced the experimenter and was hidden 

from participants. Two colored rubber balls attached to 

wooden sticks could be placed in the holes.  The mechanism 

in the box allowed the experimenter to move the stick-balls 

up and down either together or one at a time. 

                      

Front V iew

B ack V iew

Figure 1: The stick-ball machine 

Procedure:  Each group of participants was seated facing 

the two experimenters so that they could only see the front 

of the stick-ball machine.  One experimenter narrated the 

task and performed interventions while the other operated 

the machine.  Participants were told that there was a 

mechanism behind the machine that could change from trial 

to trial, and that their job was to figure out the mechanism 

that made the stick-balls move on each trial.  They were also 

told that the mechanism “almost-always” worked. This  

allowed for the possibility that balls could fail to move by 

chance. The experiment included one familiarization trial 

and three test trials.  On each trial two new stick-balls of 

different colors were introduced. Each stick-ball was given a 

name based on its color and this name was used to refer to 

the stick-ball throughout  (eg This is Reddy and this is 

Bluey). The stick balls could be moved by a hidden machine 

operator from behind (observations) or the experimenter 

could move them by pulling on the top of the stick from 

above (interventions). Order of trials was counterbalanced, 

with the familiarization trial always first.  The types of 

movement (interventions and observations) on each trial 

were intermixed.  The interventions were counterbalanced 

by side so that no ball (right or left) was always intervened 

on first. 

Familiarization trial:  On this trial alone the experimenter 

explicitly told participants that ball A almost always caused 

ball B to move.  This was then demonstrated by showing 

both balls moving together four times and ball A moving 

alone twice. 

 1. Common unobserved cause:  The stick-balls moved 

together four times.  The narrator intervened on ball A twice 

and each time ball B didn’t move.  The narrator intervened 

on ball B twice and each time ball A didn’t move. 

2. Independent unobserved causes:  The stick-balls each 

moved separately twice, and they moved together once.  The 

narrator intervened on ball A twice and each time ball B 

didn’t move.  The narrator intervened on ball B twice and 

each time ball A didn’t move. 

3. One observed cause:  The narrator intervened on ball A 

six times.  Four of those times, both ball A and ball B 

moved.  The remaining two times ball A moved and ball B 

didn’t move. 

After each trial, participants were given an answer sheet 

with a choice of four possible mechanisms: A causes B, B 

causes A, one hidden cause or two hidden causes (see figure 

2) and asked to circle the one that was operating on that 

trial.

Reddy  makes Bluey move Bluey makes Reddy move 

Something makes them 

both move together 

Two things make each of 

them move separately 

Figure 2: A sample answer sheet for one trial.  

Results & Discussion 

The results confirmed the predictions of the Bayes Net 
model. Overall, participants’ responses matched the 
normative response for each type of trial. Table 1 shows the 
percentage of participants that chose each picture in the 
three test trials.  The majority response for each trial is in 
boldface.  In trial 1 (common unobserved cause), 63% chose 
the common cause picture.  In trial 2 (independent 
unobserved causes) 96% chose the separate causes picture.  
In trial 3 (One observed cause), 65% chose “A makes B 
move,” where A was the ball that the experimenter 
intervened on.  All three response distributions are 
significantly different from chance ( 2 = 26.38, 40.33, 42.50 
respectively, all p < .001).   

Participants’ responses to trial 1 (common unobserved 
cause) were compared with their responses to the two other 
types of trials.  Participants were more likely to pick the 
common cause picture in trial 1 than in trial 2 (McNemar’s  
test, p<.001) or in trial 3 (McNemar’s test, p<.001).  
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Table 1:  Percentage of responses in each of the test trials in 
Experiment 1. 

 1 - Common 

unobserved 

2 - Independent 

unobserved 

3 - One 

observed * 

A causes B 0 0 65

B causes A 2 0 6 

Common cause 63 4 8 

Separate causes 35 96 21
2 (df) 26.38 (2)** 40.33 (1)** 42.50 (3)** 

*Intervention on ball A 

**p < .001 

The data show that adult learners inferred a hidden 

common cause when they observed that two events were 

associated with each other, but the association was not 

preserved when the experimenter intervened to cause either 

event.  If the events are not associated to begin with, adults 

attribute their occurrence to independent hidden causes, 

regardless of the fact that they witness the same pattern of 

interventions. Also, participants clearly inferred that one 

observed event cause the other when it was appropriate to 

do so, rather than defaulting to some hidden mechanism. 

Interestingly, a portion of the participants seemed to default 

to the “separate causes” response – it was the second most 

frequent response in both trials 1 and 3.  This may have to 

do with the fact that it is the safest response (could always 

be true) though not the most parsimonious one. 

Experiment 2 

In experiment 2 we explored whether adults would make 

similar judgments when they saw the same pattern of 

associations between the objects, but those patterns were not 

due to interventions. The Bayes net models should generate 

different results in these two cases. Other accounts, such as 

a simple associationist account, should not distinguish 

between observations and interventions in this way. In this 

experiment participants were shown the same hidden 

common cause task as in Experiment 1.  They were also 

shown the same pattern of events without any interventions.  

Instead of intervening, the experimenter pointed at each 

object as it moved by itself. The pointing made each stick-

ball salient in exactly the same way that the intervention did, 

and was a very similar perceptual event to direct 

intervention.  However, in this case, since participants 

observe that the movement of A & B is associated only half 

of the time, they should be just as likely to infer two 

unobserved causes as one common unobserved cause. 

Method

Participants:  Participants were 24 undergraduates 

recruited from the research participation pool at an urban 

university.  

Materials:  The stick-ball machine and stick balls were the 

same as in experiment 1. 

Procedure:  Participants were introduced to the stick-ball 

machine in the same manner as in experiment 1. After the 

familiarization trial, there were two test trials, 

counterbalanced across groups of participants. 

Common unobserved cause:  The stick-balls moved 

together four times.  The narrator intervened on ball A twice 

and each time ball B didn’t move.  The narrator intervened 

on ball B twice and each time ball A didn’t move. 

Pointing control:  The stick-balls moved together four 

times.  The narrator pointed at ball A twice as it moved 

alone. The narrator pointed at ball B twice as it moved 

alone.  Pointing always began slightly after the movement 

(to rule it out as a cause). 

After each trial, participants were asked to circle the 

mechanism behind the machine on the answer sheet (same 

as experiment 1). 

Results & Discussion 

As in Experiment 1, participants’ responses matched the 
predictions of the Bayes net model for each trial.  Table 2 
shows the percentage of participants making each type of 
response.  In trial 1, 67% of participants chose the common 
cause picture (replicating the findings in Experiment 1).  In 
trial 2, 79% chose the separate causes picture.  Participants 
were more likely to pick the common cause picture in trial 1 
than in trial 2 (McNemar’s test, p<.01).  

This experiment again shows that, with the right 
combination of observations and interventions, adult 
learners inferred an unobserved common cause for the two 
events.  Without interventions, adult learners were most 
likely to view the identical pattern of events as arising from 
separate hidden mechanisms.   

Table 2:  Percentage of responses in each of the test trials in 
Experiment 2. 

 1 - Common 

unobserved 

2 – Pointing 

Control 

A causes B 0 0 

B causes A 0 4 

Common cause 67 17

Separate causes 33 79
2 (df) 2.67 (1) 23.25 (2)** 

*Intervention on ball A 

**p < .001 

General Discussion 

In both experiments participants were able to infer an 
unobserved common cause, and to distinguish unobserved 
common causes from unobserved independent causes.  
Neither identical data from observed associations without 
interventions (Experiment 2) nor identical interventions 
with different observed associations (Experiment 1) lead to 
the same conclusion.  This investigation showed that, given 
certain patterns of evidence, adult learners will infer 
unobserved causes for observed events.  In order to do this, 
learners relied on the crucial distinction between observed 
associations and interventions.  Causal Bayes nets are the 
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only formal models that currently make this distinction and 
that provide algorithms for how causal structure learning 
takes place based on both types of evidence.  

However, the undergraduate participants in this 
experiment had extensive experience of causal inference, 
and often had some explicit tuition in causal reasoning. For 
this reason, it is important to ask whether even young 
children, with relatively little prior experience, would infer 
hidden causes under the same circumstances. Such evidence 
would at least suggest that a general learning mechanism is 
more likely than a rule based on years of experience. 

Another possibility is that adults only infer hidden causes 
when they are explicitly presented as options.  In this 
experiment, participants were given pictures of mechanisms 
with either one or two unobserved causes in them.  Further 
research is needed to investigate other circumstances under 
which people will spontaneously infer a hidden cause 
without being given any explicit cues to do so. 
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