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How does Bayesian reverse-engineering work? 
 

Carlos Zednik (czednik@uos.de) and Frank Jäkel (fjaekel@uos.de) 
Institute of Cognitive Science, University of Osnabrück 

49069 Osnabrück, Germany 
 

Abstract 

Bayesian models of cognition and behavior are particularly 
promising when they are used in reverse-engineering 
explanations: explanations that descend from the 
computational level of analysis to the algorithmic and 
implementation levels. Unfortunately, it remains unclear 
exactly how Bayesian models constrain and influence these 
lower levels of analysis. In this paper, we review and reject 
two widespread views of Bayesian reverse-engineering, and 
propose an alternative view according to which Bayesian 
models at the computational level impose pragmatic 
constraints that facilitate the generation of testable hypotheses 
at the algorithmic and implementation levels. 

Keywords: Bayesian modeling; rational analysis; reverse-
engineering; Marr’s levels; mechanistic explanation 

Introduction 
Bayesian models describe cognitive and behavioral 
phenomena as a form of optimal statistical inference. Using 
the methodology of rational analysis (Anderson, 1990), 
researchers attempt to specify the statistical inference task to 
which a particular phenomenon is adapted. This task is 
defined formally, in terms of a cognitive system’s prior 
knowledge about its environment, recent evidence collected 
within that environment, hypotheses being compared, and 
the relative cost or benefit of particular actions. Once the 
task has been defined in this way, the mathematical 
framework of Bayesian decision theory can be used to 
derive an optimal solution to the task: how to ideally 
adjudicate between hypotheses using Bayes’ rule to 
combine prior knowledge with recent evidence, and how to 
select actions so as to minimize cost or maximize benefit. If 
the task has been specified correctly, such optimal solutions 
often provide descriptively adequate and predictively 
powerful models of the phenomenon being investigated. 

Many researchers regard the methodology of Bayesian 
modeling as a way to reverse-engineer the mind. In 
cognitive science, reverse-engineering is often associated 
with David Marr (1982), who proposed that cognitive 
systems ought to be studied at three distinct levels of 
analysis. At the computational level, researchers seek to 
understand what a system is doing and why. At the 
algorithmic level, they describe how the system does what it 
does. Finally, at the implementation level, they identify 
where in a particular physical system that algorithm is 
realized. Reverse-engineering explanations involve 
descending “a triumphant cascade” of these three levels 
(Dennett, 1987, p. 227). That is, they begin with a 
computational-level analysis of a particular cognitive or 
behavioral phenomenon, and invoke that analysis to 

articulate and test possible algorithms and implementations 
of that phenomenon. 

What role do Bayesian models play in reverse-
engineering explanations? It is widely agreed that Bayesian 
models figure at the computational level of analysis. They 
help researchers understand what a cognitive system 
actually does, because they describe and predict its 
behavior. Moreover, these models allow researchers to 
understand why a system does what it does, because they 
show that the system’s behavior is an optimal solution to a 
particular statistical inference task. But how can Bayesian 
models at the computational level of analysis be used to 
identify algorithms and implementations at lower levels? 

In what follows, we review three different answers to this 
question. The first two answers—Bayesian Realism and 
Instrumentalist Bayesianism—are well-represented in the 
literature, but are ultimately unsatisfactory. Thus, we 
propose a third answer—Pragmatic Bayesianism—
according to which Bayesian models are tools for 
hypothesis generation: they facilitate the development of 
novel algorithmic-level and implementation-level analyses. 

Bayesian Realism 
According to Bayesian Realism, Bayesian models at the 
computational level of analysis contribute to reverse-
engineering explanations because their mathematical 
structure is reflected in the functional and physical structure 
of the mechanisms described at the algorithmic and 
implementation levels. Insofar as a particular cognitive or 
behavioral phenomenon can be modeled as a (nearly-) 
optimal solution to a statistical inference task, Bayesian 
Realism implies that the mechanisms responsible for this 
phenomenon themselves perform Bayesian inference. That 
is, they execute algorithms that invoke (or closely 
approximate) Bayes’ rule to combine prior knowledge with 
new evidence, and are implemented by neural structures that 
represent prior and posterior probability distributions, as 
well as likelihood and loss functions. 

Two arguments speak in favor of Bayesian Realism. The 
first argument is inspired by the classic “no-miracles” 
argument for scientific realism in philosophy of science. 
The no-miracles argument seeks to explain the observation 
that many well-confirmed scientific theories are exceedingly 
accurate descriptive and predictive devices. Barring 
miracles, the best explanation seems to be that these theories 
are true: their theoretical posits successfully refer, and the 
structures they describe accurately reflect the structure of 
the world. In much the same way, Bayesian Realism is 
motivated by the desire to explain the descriptive and 
predictive successes of Bayesian models at the 
computational level of analysis. Barring miracles, the best 
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explanation seems to be that the mathematical structures and 
processes used to describe cognition and behavior at this 
level are reflected in the functional processes and physical 
structures at the algorithmic and implementation levels of 
analysis. 

This argument is most clearly at work in current 
neuroscientific research on perception. Following a series of 
psychophysical studies demonstrating that perceptual cue-
combination is performed with near-optimal efficiency 
(Ernst & Banks, 2002), neuroscientists have sought to 
identify the neural structures and processes responsible for 
this efficiency. More often than not, the observed behavioral 
optimality motivates the Bayesian Coding Hypothesis (Knill 
& Pouget, 2004), which claims that the relevant neural 
structures and processes represent probability distributions, 
and combine these distributions by applying Bayes’ rule. 
Consider: 

“Recent psychophysical experiments indicate that humans 
perform near-optimal Bayesian inference in a wide 
variety of tasks, ranging from cue integration to decision 
making to motor control. This implies that neurons both 
represent probability distributions and combine those 
distributions according to a close approximation to Bayes’ 
rule.” (Ma, Beck, Latham, & Pouget, 2006, p. 1432, 
emphasis added) 

How else, if not by representing probability distributions 
and computing over them with (close approximations to) 
Bayes’ rule, could this kind of behavioral optimality be 
achieved? 

The second argument for Bayesian Realism cites the 
relative ease by which Bayesian inference could be 
implemented in the brain. Consider the idea of probabilistic 
population coding. Traditionally, it is thought that a 
population of neurons represents (in a distributed fashion) 
exactly one value, such as the direction of perceived motion. 
It is not hard, however, to interpret the population as 
representing a full probability distribution over the variable 
in question. Thus, the neurons that have less probable 
characteristic stimuli fire less than neurons that represent 
more probable stimuli. On the assumption that neural 
populations encode information probabilistically in this 
way, it is also quite easy to explain how they might be 
combined using Bayes’ rule. For example, if population 
codes exhibit Poisson-like variability—i.e. the ratio of spike 
count to spike variance is near 1.0—Bayes’ rule can be 
applied to them by simply adding or subtracting their 
activation levels (Ma et al., 2006). Notably, it has been 
observed that sensory neuron populations do in fact exhibit 
Poisson-like variability (Tolhurst, Movshon, & Dean, 1983). 

If Bayesian inference is so easy to implement, it would 
seem surprising to find that the brain—subject to countless 
evolutionary and developmental constraints—does not 
actually do so. Thus, Poisson-like variability and similar 
measures of brain activity are sometimes referred to as 
signatures of Bayesian inference in the brain: neural 

processes or properties that, although not yet demonstrably 
related to any particular cognitive or behavioral 
phenomenon, are suggestive of Bayesian inference. 

These arguments for Bayesian Realism promise a bright 
future for reverse-engineering explanations in cognitive 
science. This is because, if true, Bayesian Realism can be 
used to justify inferences from the mathematical structure of 
the cognitive, perceptual or behavioral task being solved to 
the functional and physical structure of the mechanisms 
solving it. If it can be shown that overt behavior is a form of 
optimal statistical inference that combines evidence with 
prior probabilities and likelihood functions, Bayesian 
Realism implies that the neural mechanisms responsible for 
this behavior will do so as well. Even before consulting the 
neuroscience, Bayesian Realists have a pretty good 
understanding of how the brain works!  

Unfortunately, empirical support for Bayesian Realism is 
weak: critics have questioned the quality of evidence 
typically cited in its favor. For example, Bowers & Davis 
(2012) argue that Poisson-like variability and other neural 
signatures of Bayesian inference are consistent with several 
(non-Bayesian) alternatives, and moreover, suggest that Ma 
et al. over-estimate the prevalence of these signatures in the 
brain. Similarly, Maloney & Mamassian (2009) demonstrate 
that many different algorithms can perform optimal 
Bayesian inference, though not all of them invoke Bayes’ 
rule and represent prior probability distributions. In 
particular, “any observer that can combine cues linearly and 
somehow select the correct weights for the linear 
combination can duplicate the performance of the Bayesian 
observer”—even a suitably rigged-up lookup table 
(Maloney & Mamassian, 2009, p. 149). 

Without empirical support, the arguments favoring 
Bayesian Realism are unsound: it is no longer clear whether 
Bayesian inference really is as easy as Ma et al. contend, 
and it is unclear whether Bayesian Realism really is the best 
(as opposed to a merely possible) explanation of the 
descriptive and predictive success of Bayesian models. 

Instrumentalist Bayesianism 
Bayesian Instrumentalism is the view that Bayesian models 
at the computational level are mere descriptive and 
predictive devices, and that they are compatible with a wide 
variety of algorithms and implementations at lower levels of 
analysis. As Colombo & Series (2012) have already 
observed, many proponents of Bayesian modeling seem to 
adopt such an instrumentalist perspective. In one of the 
original discussions of rational analysis, John Anderson 
suggests that this methodology “provides an explanation at a 
level of abstraction above specific mechanistic proposals” 
(Anderson, 1991, p. 471). Similarly, Griffiths et al. (2010) 
argue that “Using probabilistic models to provide a 
computational-level explanation does not require that 
hypothesis spaces or probability distributions be explicitly 
represented by the underlying psychological or neural 
processes, or that people learn and reason by explicitly 
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using Bayes’ rule” (Griffiths, Chater, Kemp, Perfors, & 
Tenenbaum, 2010, p. 362).  

The most compelling evidence favoring Bayesian 
Instrumentalism is the formal independence of levels. In one 
oft-cited passage David Marr states: 

“The three levels are coupled, but only loosely. The 
choice of an algorithm is influenced, for example, by 
what it has to do and by the hardware in which it must 
run. But there is a wide choice available at each level, and 
the explication of each level involves issues that are rather 
independent of the other two.” (Marr, 1982, p. 25) 

It is a well-known mathematical fact that every function can 
be computed by an infinite number of non-equivalent 
algorithms. Because Bayesian models specify mathematical 
functions, they are compatible with any number of 
algorithms. Thus, although the algorithmic level of analysis 
is minimally constrained insofar as only those algorithms 
come into question that actually compute the function 
specified at the computational level, there are still an infinite 
number of algorithms to choose from. In much the same 
way, there are innumerable ways in which any particular 
algorithm might be implemented in physical hardware. 
Thus, the formal independence of levels implies that 
developers of Bayesian models at the computational level of 
analysis ought to be agnostic about the kinds of algorithms 
and implementations that can be posited at lower levels. 

Great care must be taken not to confuse agnosticism about 
lower levels with a rejection of their explanatory relevance. 
In an influential recent critique, Jones & Love (2011) 
outline a position they disparagingly call Bayesian 
Fundamentalism. Like Instrumentalist Bayesianism, this 
position denies that Bayesian models at the computational 
level constrain the lower levels of analysis. Rather than be 
agnostic about these lower levels, however, Bayesian 
Fundamentalists deny that lower levels of analysis are 
explanatorily relevant: “human behavior can be explained 
through rational analysis…without recourse to process 
representation, resource limitations, or physiological or 
developmental data” (Jones & Love, 2011, p. 170). This 
radical position, Jones & Love argue, smacks of 
behaviorism, and ought to be avoided: “it would be a 
serious overreaction simply to discard everything below the 
computational level. As in nearly every other science, 
understanding how the subject of study (i.e., the brain) 
operates is critical to explaining and predicting its behavior” 
(Jones & Love, 2011, p. 177, original emphasis). 

The most common response to this worry has been to 
deny that proponents of Bayesian modeling in cognitive 
science are correctly associated with Bayesian 
Fundamentalism. In a direct response to Jones & Love’s 
target article, Chater et al. characterize Bayesian 
Fundamentalism as “purely a construct of Jones & Love’s 
imagination” (Chater et al., 2011, p. 194). Indeed, given 
their intellectual debt to David Marr—who stresses that a 
cognitive system must be studied at all three levels “before 

one can be said to have understood it completely” (Marr, 
1982, p. 24)—such an association would be surprising. 

But there are more significant worries than the false 
specter of fundamentalism. According to Instrumentalist 
Bayesianism, it is unclear that systematic reverse-
engineering is possible: it would seem exceedingly unlikely 
that a “triumphant cascade” can be descended in a 
principled way. Although research into the neuroscientific 
underpinnings of Bayesian inference might be inspired by 
the descriptive and predictive success of Bayesian models of 
cognition and behavior, such research would not be justified 
by this success. Given the formal independence of levels, 
there is no reason to believe that the mathematical structure 
of Bayesian models at the computational level of analysis is 
reflected at lower levels. Of course, the lower levels should 
somehow compute and implement the function specified by 
the Bayesian model, by mapping stimuli onto responses as 
the model predicts. But there is no reason to believe that e.g. 
neural populations encode loss functions, posteriors, 
likelihoods and priors, as opposed to reproducing the 
modeled stimulus-response behavior in some other way. 
Thus, even if future neuroscientific research were to 
eventually confirm the Bayesian Coding Hypothesis, this 
confirmation would not result from a systematic reverse-
engineering effort. 

Pragmatic Bayesianism 
Bayesian Realism and Instrumentalist Bayesianism are the 
two most widely-held views on how Bayesian models at the 
computational level relate to the algorithmic and 
implementation levels of analysis. Unfortunately, neither 
view accounts for the possibility of reverse-engineering 
explanations in cognitive science. Whereas the arguments 
favoring Bayesian Realism are as of yet inconclusive due to 
lack of empirical evidence, Instrumentalist Bayesianism 
makes systematic reverse-engineering impossible. 

This section introduces an alternative view. According to 
Pragmatic Bayesianism, Bayesian models at the 
computational level make reverse-engineering possible by 
facilitating the generation of novel hypotheses at the 
algorithmic and implementation levels of analysis. Although 
levels of analysis may be formally independent, they are 
pragmatically dependent. If a particular cognitive or 
behavioral phenomenon can be modeled as a form of 
Bayesian inference, it will be considerably easier to identify 
possible algorithms to perform this kind of inference, and to 
identify ways in which these algorithms might be 
implemented in physical hardware. How so? Because 
practicing researchers are (a) guided by pragmatic 
considerations such as their interdisciplinary colleagues’ 
previous research activity, ingenuity and communicative 
ability, and (b) influenced in their scientific decision-
making by the conceptual and theoretical framework of 
Bayesian statistical inference. 

An effective segue into Pragmatic Bayesianism is 
Colombo & Series’ defense of Instrumentalist Bayesianism. 
Although they do not identify it as such, Colombo & Series 
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describe one important pragmatic influence on reverse-
engineering: “the predictive success of a Bayesian model in 
a given psychophysical task can motivate us to investigate 
why this is the case” (Colombo & Series, 2012, p. 17, 
original emphasis). Undeniably, researchers’ motivations 
critically influence the development of algorithms and 
implementations for a particular kind of Bayesian inference. 
At the same time, however, Colombo & Series claim that 
“the discovery that people behave as though they were 
Bayesian observers does not compel us to make any specific 
claim at the neural level of implementation” (Colombo & 
Series, 2012, p. 17). The supposed reason for this is the 
aforementioned formal independence of levels. However, 
although there may be no theoretical limit to the number of 
algorithms that compute a particular mathematical function, 
pragmatic considerations impose considerable limits on the 
number of algorithms and implementations that will actually 
be considered. Importantly, although these algorithms and 
implementations might reflect the mathematical structure of 
Bayesian models at the computational level, they need not 
do so. 

Constraints on algorithm-development 

Consider recent attempts to develop algorithmic-level 
analyses to accompany John Anderson’s (1991) rational 
analysis of categorization. One such analysis is developed 
by Anderson himself, and centers on “a type of iterative 
algorithm that has appeared in the artificial intelligence 
literature” (Anderson, 1991, p. 412). By reviewing the 
categorization literature of the time, Anderson shows that 
the iterative algorithm accurately predicts qualitative and 
quantitative human data. Moreover, Anderson suspects (but 
does not prove) that the iterative algorithm closely 
approximates the optimal assignment of objects to 
categories within the constraints of the task environment. 
Sanborn et al. (2010) later demonstrate that although the 
iterative algorithm approximates optimal Bayesian inference 
in the task environments Anderson considers, there is no 
guarantee that it will do so in general. Thus, Sanborn et al. 
present two alternative algorithms—particle filtering and 
Gibbs sampling—both of which “can approximate the 
optimal inference to any desired level of precision” 
(Sanborn et al., 2010, p. 1145). Ultimately, by comparing all 
three candidate algorithms to experimental data, Sanborn et 
al. propose particle filtering as the most plausible 
algorithmic-level analysis of human categorization. 

Two things are worth noticing about this series of articles 
(See also: Griffiths, Vul, & Sanborn, 2012). First, each one 
of the three proposed algorithms is adapted or 
straightforwardly coopted from existing research in the 
discipline of artificial intelligence. Second, although each 
one of these algorithms approximates Anderson’s model of 
categorization, neither one of them requires explicit 
representations of the full hypothesis space, prior 
probability distributions and likelihoods, nor directly 
invokes Bayes’ rule to compute over these representations. 

Researchers working in the discipline of artificial 
intelligence (including machine learning and statistics), 
have developed many different algorithms for optimally and 
efficiently computing or approximating Bayesian inference, 
only a limited number of which directly apply Bayes’ rule to 
full  probability distributions. It seems natural to wonder 
whether algorithms already developed for theoretical 
reasons or real-world applications might serve double-duty 
in cognitive science. As the series of articles on 
categorization demonstrates, describing a particular 
cognitive or behavioral phenomenon as a form of Bayesian 
statistical inference at the computational level allows 
researchers in cognitive science to consider existing 
artificial intelligence research not just for motivation in the 
way suggested by Colombo & Series, but for articulating 
testable hypotheses at the algorithmic level of analysis. As 
is exemplified by the particle filtering algorithm advanced 
by Sanborn et al., these hypotheses need not reflect the 
mathematical structure of Bayesian models at the 
computational level of analysis. 

There is a clear sense in which any pragmatic 
consideration that contributes to the generation of testable 
hypotheses might be thought to facilitate reverse-
engineering explanations in cognitive science. At the same 
time, recall that one of the worries about Instrumentalist 
Bayesianism was that, although lower-level analyses may be 
inspired by Bayesian models at the computational level, 
they are not justified by these models. In what sense are 
psychologists justified in invoking algorithms developed by 
artificial intelligence researchers who are unconcerned with 
matters of psychological and biological plausibility? 

A useful framework for answering this question is Herbert 
Simon’s influential account of scientific discovery (Simon, 
Langley, & Bradshaw, 1981). Simon views scientific 
discovery as a form of problem-solving, in which 
researchers are tasked with exploring the conceptual space 
of possible solutions to a particular scientific problem. 
Because this space is often vast and multidimensional, 
researchers rely on heuristic strategies that highlight 
particular areas within the space to the exclusion of others, 
thereby limiting the number of possible solutions they 
actually need to consider. Although these heuristic strategies 
are fallible—they might erroneously highlight an irrelevant 
area within the space or exclude a relevant one—their use is 
justified insofar as they allow researchers to efficiently and 
systematically traverse the space of possible solutions to a 
particular scientific-discovery problem. 

The appeal to existing research in artificial intelligence, 
statistics, and machine learning that is facilitated by 
Bayesian models in cognitive science can be understood as 
a heuristic strategy of this kind. Modeling a particular 
cognitive or behavioral phenomenon as a form of Bayesian 
inference is tantamount to defining a particular scientific-
discovery problem: the problem of selecting, from among 
the set of algorithms that possibly perform or approximate 
such inference, the algorithm that actually does so in the 
particular cognitive system being studied. Unfortunately, 
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because every function can be computed by an infinite 
number of algorithms, the solution-space is infinite in 
expanse. Nevertheless, by appealing to the existing 
literature in artificial intelligence, researchers can 
concentrate their efforts on particular regions of the space—
those regions that have already been explored in theoretical 
work or real-world applications. Because only a limited 
number of algorithms have actually been articulated and 
studied, researchers in cognitive science are able to select 
from (and if necessary adapt) a handful of well-understood 
alternatives. Interestingly, this means that the reverse-
engineering explanations in cognitive science are 
constrained in an irreducibly pragmatic way, by the research 
output of other scientific disciplines. 

Constraints on implementation-description 

Bayesian models at the computational level of analysis also 
pragmatically constrain the implementation level of 
analysis. In order to provide an analysis of implementation, 
(neuro-)scientists must identify and describe the particular 
physical structures and processes which realize the 
algorithm that computes a particular mathematical function. 
In order to do so, they have several decisions to make: what 
are the relevant physical structures and processes? Which 
aspects of these structures and processes should be 
emphasized? How should they be described? Bayesian 
models at the computational level often directly influence 
the outcome of these decisions, but also influence them 
indirectly, by way of the algorithmic level.  

As the previous discussion shows, Bayesian models at the 
computational level pragmatically constrain the selection of 
algorithms at the algorithmic level of analysis. In turn, the 
algorithms considered at this level influence the description 
of implementing neurobiological mechanisms. Consider 
once again the particle filtering algorithm proposed by 
Sanborn et al. (2010). Particle filtering is an example of a 
general class of algorithms known as Monte Carlo 
sampling. Recently, Fiser et al. (2010) have appealed to this 
class of algorithms to interpret spontaneous neural activity 
in the absence of sensory stimulation: 

“Under a sampling-based representational account, 
spontaneous activity could have a natural interpretation. 
In a probabilistic framework, if neural activities represent 
samples from a distribution over external variables, this 
distribution must be the so-called ‘posterior distribution’. 
The posterior distribution is inferred by combining 
information from two sources: the sensory input, and the 
prior distribution describing a priori beliefs about the 
sensory environment. Intuitively, in the absence of 
sensory stimulation, this distribution will collapse to the 
prior distribution, and spontaneous activity will represent 
this prior.” (Fiser et al., 2010, pp. 125–127) 

The presence of spontaneous neural activity has long been 
interpreted as stochastic noise (Tolhurst et al., 1983). In 
contrast, by appealing to the framework of Monte Carlo 

sampling, Fiser et al. advance an interpretation according to 
which “a very large component of high spontaneous activity 
is probably not noise but might have a functional role in 
cortical computation” (Fiser et al., 2010, p. 125). Thus, 
because they adopt a theoretical perspective that is 
“colored” by a particular class of algorithms, Fiser et al. 
arrive at a very different way of describing particular neural 
structures and processes. Indeed, on their interpretation, 
spontaneous neural activity is not merely a neural signature 
of Bayesian inference, but of Bayesian inference by way of 
Monte Carlo sampling. Insofar as Bayesian models at the 
computational level suggest Monte Carlo sampling (or more 
specifically according to Sanborn et al., particle filtering) as 
a possible algorithmic-level account of behavior and 
cognition, these models also indirectly suggest particular 
ways of interpreting, individuating and describing certain 
neurobiological structures and processes. 

Bayesian models at the computational level may also 
influence the implementation level quite directly. In recent 
philosophical research on mechanistic explanation in 
neuroscience, Carl Craver (2013) identifies three ways in 
which neuroscientists’ decision-making is influenced by 
available characterizations of a mechanism’s function. First, 
mechanisms are defined in functional terms: they are always 
mechanisms for something. Thus, neurotransmitters are 
“used to send signals from one cell to another” (Craver, 
2013, p. 135), much like soda machines are used to dispense 
cans of soda in exchange for money. Second, mechanisms 
are typically delineated by appealing to functional 
characterizations which serve to distinguish a mechanism 
from its background or environment. In Craver’s words: 

 “it takes considerable scientific effort, abstraction, and 
idealization to distinguish components from contraband, 
activities from incidental interactions, and causes from 
background conditions. And this filtering process requires 
(essentially) fixing on some behavior, process, or function 
for which a mechanistic explanation will be sought” 
(Craver, 2013, p. 140). 

Third and finally, the way mechanisms are decomposed also 
typically relies on characterizations of function. Following 
Craver, such characterizations determine the particular 
physical structures and processes that are actually relevant 
to the production of the phenomenon being investigated. 

Notably, each one of these three constraints is pragmatic 
in character: it concerns influences on a researcher’s 
decision-making, focus of research, and descriptive 
emphasis. Although the neural structures and processes that 
compose a mechanism are real things in the world, the 
particular way in which they are described is invariably tied 
to previously available characterizations of function. Now, 
recall that Bayesian models figure at Marr’s computational 
level not just because they allow researchers to describe 
what a cognitive system actually does, but also because they 
help them understand why the system behaves as it does. 
Specifically, Bayesian models show that the system behaves 
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as it does because this particular behavior is an optimal 
solution to the task environment within which the system is 
situated. Thus, Bayesian models seem ideally suited for 
imposing the kinds of pragmatic constraints on 
implementation identified by Craver. 

Consider again the work in theoretical neuroscience 
discussed in the context of Bayesian Realism above. Much 
of this research is inspired by the descriptive and predictive 
success of Bayesian models in cognitive psychology and 
psychophysics. Notably, this success not only motivates 
neuroscientists to look for possible neural implementations 
of Bayesian inference, but also regularly suggests the 
particular form these implementations might take: the 
functional and physical structure of mechanisms at the 
implementation level is assumed to reflect the mathematical 
structure of Bayesian models at the computational level. 
Thus for example, in a passage already quoted above, Ma et 
al. (2006) claim that the descriptive success of Bayesian 
models “implies that” neurons represent probability 
distributions and implement Bayes’ rule.  

Although this kind of research has yet to provide 
conclusive evidence in favor of the Bayesian Coding 
Hypothesis, it confirms Craver’s philosophical analysis. 
Specifically, it shows that characterizations of function—in 
this case, Bayesian models—influence neuroscientists’ 
decisions about how to define, delineate, and decompose 
mechanisms. Thus, Bayesian models at the computational 
level of analysis directly influence the implementation level 
by suggesting possible ways of interpreting the activity of 
certain neural mechanisms, but also by suggesting which 
particular neural structures and processes to include in 
descriptions of these mechanisms. Because Bayesian 
models at the computational level pragmatically constrain 
algorithmic and implementation level analysis, they are a 
viable starting point for reverse-engineering explanations in 
cognitive science. 

Conclusion 
Although Bayesian Realism makes reverse-engineering 
explanations easy, empirical support for this position is 
weak. Many practicing researchers have therefore endorsed 
Instrumentalist Bayesianism. Unfortunately, this position 
makes systematic reverse-engineering impossible. Unlike 
these more established alternatives, Pragmatic Bayesianism 
both provides a satisfying account of scientific practice and 
allows for systematic reverse-engineering in cognitive 
science. 
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