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Abstract

The similarities between learned behavior in animals and
humans have often led researchers to conclude that
associative processes form the basis of many aspects of
human learning.  Such an argument has been applied in the
past to discrimination learning and the generalization of
discriminative responses to new stimuli.  However, several
experiments that have used two-choice categorization to study
post-discrimination generalization in humans have found
markedly different results to those found with animals.  We
argue that this difference occurs mainly because these
categorization procedures reflect rule-governed behavior
rather than responses based on associative learning.  In the
current experiment, participants learned to discriminate two
very similar training stimuli, differing slightly in hue, and
were then tested across a broader range of colored stimuli.
Those participants that were able to accurately describe the
difference between the training stimuli and also reported
using an appropriate rule, produced the same pattern of results
as previous categorization experiments of this nature.  Those
who were not able to identify the difference and did not report
using the correct rule produced results that better conform to
the predictions of an associative model.

Dual processes in learning
Within human learning, the distinction has often been made
between what could be termed associative learning and rule-
governed learning.  Dual process models of learning have
theoretical and explanatory appeal and although the
particulars vary substantially from one model to the next,
they generally incorporate one key dichotomy that can be
summarized as follows.  On the one hand, relatively
automatic learning processes result in the formation of
associations between representations based on the surface
features of the stimuli to which the organism is exposed.
The formation, and changes in the strengths of these
connections occurs via mechanisms that operate regardless
of the higher cognitive processes that the organism has
available to it, and can be described by well-specified
learning rules (e.g. Blough, 1975; Rescorla and Wagner,
1972).  On the other hand, humans also engage in
intentional acts of reasoning, deduction and inference,
devising verbally-mediated rules to govern their behavior
and applying such rules when deemed appropriate.  Higher
order cognition of this sort is limited by the attentional and
cognitive capacities of the individual and influenced by
motivational and contextual factors.  It might be argued, for

instance, that an undergraduate student who is aware that
they are participating in a psychology experiment and that
their responses are being recorded, will attempt wherever
possible to find a rational solution or rule to govern their
actions.  This, of course, makes it particularly difficult to
study associative learning if one cannot be sure that a
subjects’ responses are not rule-based.  It is only in
situations where an appropriate rule cannot be learned or
confidently applied that we might expect to see a pattern of
results that reflects more primitive learning processes.

Stimulus discrimination and the generalization gradient
Within animal conditioning, discrimination learning has
been studied for almost a century and the form of the post-
discrimination generalization gradient is well documented.
In such experiments, animals are typically trained to
discriminate two similar stimuli by reinforcing responses to
one (S+) but not the other (S-). When tested on a wider
range of stimuli that differ along the same dimension as S+
and S-, responding typically peaks either for a stimulus very
similar to S+ but slightly further removed from S- (i.e. a
peak-shifted gradient), or for S+ itself but with the mean
number of responses either side of S+ shifted away from S-
(i.e. a mean-shifted gradient).  Importantly, the peak of the
response gradient occurs at, or close to, S+ and then
declines as one moves to more extreme values along the
dimension.  This general form of the post-discrimination
gradient has been reliably found in several species and using
many different stimulus dimensions (for a recent review, see
Ghirlanda and Enquist, 2003).  Such results are accurately
predicted by simple models of associative learning which
represent stimuli as graded activation over a series of input
units based on the dimensional qualities of the stimulus (e.g.
Blough, 1975; Ghirlanda and Enquist, 1998).

In contrast, results from human experiments seem to be
highly contingent upon the type of task employed and quite
often produce a strikingly different pattern of results.  The
specific example that is relevant to the current study is two-
alternative forced-choice categorization, where subjects are
trained to make one response to one training stimulus, and a
different response to a second training stimulus, and are
then required to respond to each of a wider range of test
values.  An associative model designed to simulate
dimensional discrimination in animal conditioning can
easily be adapted for this type of task.  As depicted in Figure
1, such models use the graded activation of a series of
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sensory feature units, each “tuned” to a given value along a
particular stimulus dimension.  Connections to two category
units are then modified via a simple error correcting
learning algorithm such as the delta rule.  Such a model
predicts highest accuracy either for the training stimuli (S)
or for similar values that are slightly further removed from
S. The exact location of the peak depends on the amount of
overlap between the activations of the sensory units for each
training stimulus.  But in any case, a decline towards chance
responding, or 50% accuracy, would be expected towards
the extremes of the test range, provided the test range is
sufficiently broad.

Figure 1.  An associative learning model, depicting (i)
hypothetical patterns of activation for two training stimuli
(SA and SB) associated with categories A and B, and (ii) a
delta-rule network with a series of sensory feature units
linked to two category units.

However, most human categorization experiments using
simple stimulus dimensions have produced monotonic
gradients where some differential responding is evident for
the training stimuli but accuracy continues to increase the
further one moves along the dimension.  Response accuracy
peaks at the most extreme values of the test range rather
than stimulus values close to S.  Such gradients have been
obtained on numerous stimulus dimensions including
stimulus location (La Berge, 1961), auditory frequency
(Cross & Lane, 1962),  lifted weight (Capehart & Pease,
1968), light intensity or brightness (Hebert, 1970), and line
orientation (Thomas, Lusky & Morrison, 1992).

The difference between gradients produced in human
categorization and animal conditioning does not appear to
be merely a consequence of having two responses rather
than one, as similar experiments with animals have
produced peak-shifted, rather than monotonic, gradients
(e.g. Blough, 1973).  This should, of course, come as no
surprise – while there is considerable debate over the extent
to which animals can learn abstract relationships between
stimuli, there is no doubt that normal humans understand the
dimensions along which the simple discriminative stimuli in
these experiments differ. The monotonic gradient found in
human categorization conforms exactly to what would be
expected if subjects were learning a relational rule (i.e. press

Left if brighter, heavier, higher pitched, etc.; press Right if
duller, lighter, lower pitched, etc.) and applying such a rule
consistently to the novel test stimuli.  The rule applies best
to the stimuli that most obviously possess the relative
characteristics on which that rule is based, which are usually
the extremes of the test range.

The abstraction of such a relational rule presumably requires
the individual to accurately perceive the difference between
the initial training stimuli, to have the capacity to describe
the abstract relationship between them, and to be able to
derive and apply a response strategy to novel stimuli.
Where this is indeed possible, it immediately becomes
unclear what, if anything, has been learned via more
primitive learning processes – as any associatively based
generalization and discrimination may be obscured by the
fact that participants’ responses reflect the application of a
cognitive strategy.  However, it could still be claimed that in
situations where rule-based learning is restricted, one should
observe a pattern of behavior based on elementary
associative processes.  Evidence in support of this view
comes from two-choice discrimination experiments where
attempts have been made to prevent participants from
learning and applying an appropriate response rule.  Some
studies have used complicated artificial dimensions where
the relationship between successive stimuli is not easily
verbalized (e.g. Wills and Mackintosh, 1998).  Typically,
these experiments have obtained peak shifted gradients,
where peak accuracy occurs at intermediate stimuli
relatively close to S.  Others have used simple stimulus
dimensions, and have attempted to limit the opportunity for
the subject to identify or verbally characterize the
relationship between the discriminative stimuli and
consequently prevent the learning of an appropriate rule.
Jones and McLaren (1999), for instance, reported two
experiments where participants were trained on two
intermediate levels of brightness of a green stimulus, and
then tested across six stimuli covering a much wider range
of intensities.  Under normal conditions, participants
produced monotonic gradients as would be expected from a
rule-based analysis, and indeed reported using the correct
rule in a post-experiment questionnaire.  However, when the
number of training trials was halved, or when the
contingency between the training stimuli and the correct
response was reduced, participants were generally unable to
identify the appropriate rule and produced peak shifted
gradients that conformed more to the predictions of an
associative learning model.

The current study aimed to provide further evidence for dual
processes in discrimination learning, using a metathetic
stimulus dimension based on hue.  The dimension was
designed to co-vary with the wavelength of light, a stimulus
dimension extensively used in animal experiments on post-
discrimination generalization experiments, and which has,
with human subjects, produced results similar to animal
conditioning studies, albeit under very different task
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requirements (Doll and Thomas, 1967).  Participants first
learned to categorize two very similar shades of green, one
slightly more yellow, the other slightly more blue.
Participants in the “Easy” group were given an initial
discrimination with two colors that, although very similar,
differed sufficiently that the difference between them could
be identified and readily verbalized.  Participants in the
“Hard” group were given an initial discrimination based on
more similar colors such that it was possible to learn to
discriminate between them, but the difference was difficult
to characterize and thus an appropriate response rule was
difficult to establish. They were then given a range of 15
test stimuli, shown in Figure 2, including the training
stimuli (S), and were required to respond to each
individually in the absence of any feedback.  Finally, all
participants were given a structured post-experiment
questionnaire in which they were asked to report the
relationship between the training stimuli, and the strategies
they used to make their judgments.

Figure 2.  Stimuli along the hue based test dimension.
Numbers correspond to ordinal stimulus value, Hue
parameter, the Red, Green, Blue color components, and
ordinal position in terms of distance to nearest training
stimulus (S).  Note that the subjective properties of the
stimuli differ according to viewing conditions and are
presented here for illustrative purposes only.

In this situation, associative and rule-based analyses predict
markedly different generalization gradients across the full
dimension, as depicted in Figure 3.  If participants learn, for
instance, that Category A is more yellow and Category B is
more blue, and use this relational rule to govern their
responses, then one would expect a monotonic gradient with
highest accuracy at the extremes of the test range (where the
stimuli are most yellow or most blue).  Collapsing the
dimension around the trained stimuli (S), one would expect
accuracy to increase towards ceiling as the distance from the
S increases (as shown in Figure 3ii).  On the other hand, an
associative model such as that illustrated in Figure 1 would
predict highest accuracy for stimuli near S, with accuracy
falling to chance for stimulus values at the extremes of the
test range. It was predicted that the Easy group would be
more likely to both identify the relationship between the
training stimuli correctly and report using a hue-based
strategy or rule to make their judgments.  It was also
expected that those participants who reported the correct
relational rule would show post-discrimination judgments

that matched the predictions of the rule-based analysis,
while those that did not report the rule would produce
judgments that better matched the predictions of the
associative model.  In this respect, it was predicted that the
relationship between accuracy and distance from S along the
dimension would differ according to whether or not rule
learning had occurred.

Figure 3. Predictions derived from an associative model and
a rule-based analysis:  (i) across the full dimension, plotting
proportion of category A responses as a function of stimulus
value, (ii) collapsed to simplify analysis, plotting accuracy
as a function of ordinal distance form nearest S.

Method
Subjects and Apparatus  43 undergraduate students from
the University of Cambridge served as participants in the
experiment.  All reported having normal color vision.  They
were tested individually in a dimly lit room.  The
experiment was run on a Macintosh G4 Power PC with 17-
inch monitor, using REALbasic software.  Participants were
assigned to group according to time of arrival.

Stimuli  The training and test stimuli were squares of
uniform color, measuring 6cm by 6cm and appearing
individually in the centre of the computer screen.  A set of
15 such stimuli (see Figure 2 above) were created by
modifying the Hue parameter in a set of color coordinates
based on Hue, Saturation, and Brightness.  The Hue values
were equally spaced and ranged from .1701 (a greenish
yellow) to .5208 (a greenish blue) in approximately equal
steps (adjusted slightly to fit the nearest exact Red, Green,
and Blue coordinates for displaying on screen).  The Hue
parameter is designed to keep the Saturation (or
“vividness”) and Value (or brightness) of the colors
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approximately equal, and these separate values were set at
0.5 and 0.75 respectively.  Slight adjustments were made to
the exact Red, Green, Blue color coordinates of some
stimuli following an initial experiment designed to match
the subjective luminance of the colors as closely as possible.
The colors were therefore considered to be sufficiently
isoluminant when presented on screen.  Of the 15 stimulus
values, the 7th and 9th were used as training stimuli for the
Easy condition.  For the Hard condition, these training
stimuli were replaced with new values between the 7th and
8th stimuli and between the 8th and 9th stimuli, as detailed in
Figure 2.  For the Hard condition, these adjusted values
were used in both the training phase and in replacement of
stimulus values 7 and 9 during the test phase.

A concurrent task, intermixed with the hue-based trials, was
used to prevent direct comparison of the hue stimuli over
successive trials.  This task involved the categorization of
complex patterns of abstract shapes.  Details of the
construction and design of these filler stimuli were reported
previously by Livesey, Broadhurst and McLaren (2005).

Procedure  Participants were first given written and verbal
instructions explaining that they were required to complete
two concurrent, but unrelated categorization tasks, one
involving plain colored squares and the other abstract
patterns.  They were told that in the first phase they would
need to learn, through a process of trial and error, which of
two categories each stimulus belonged to and to respond
accordingly with two keys, “x” and “.” (full stop), on the
keyboard.  They were also informed that a test phase would
follow in which they would be given new stimuli and asked
to categorize them according to what they had already
learned, but would not be given any more feedback.

The training phase involved presentation of 48 hue-based
stimuli (24 of each training stimulus) intermixed with 48
filler trials.  Trial order was randomized in blocks
containing 3 presentations of each of the hue-based and
filler training stimuli (12 in total), with the restriction that
hue and filler trials alternated.  The correct category and
response for each of the two training stimuli was
counterbalanced so that for half the participants in each
group the more yellow stimulus belonged to category A and
for the other half, the more blue stimulus belonged to
category A.  Participants were given up to four seconds to
respond with either key, and on doing so received feedback
saying either “correct” or “WRONG” (accompanied by a
computer beep).  If the trial timed out, then “no response”
was displayed and the next trial followed immediately.

In the test phase, participants were given five presentations
of each of the 15 test values, and an equal number of filler
test trials (detailed in Livesey, Broadhurst and McLaren,
2005).  Presentation of stimuli was randomized in blocks
containing one each of the hue and filler test stimuli (30 in
total), again with the restriction that hue trials and filler

trials alternated.  Participants were not given any feedback
in this phase.

At the completion of the experiment, participants were
given a post-experiment questionnaire containing two
questions regarding the possibility of rules and abstract
relations for the hue stimuli:

“Did you notice a difference between the colored rectangle
stimuli that belonged to different categories in the training
phase?  If so, describe the difference between them.”

“What strategies did you use to make your judgments about
the colored rectangle stimuli in the training phase and the
test phase?”

Analysis  In order to ensure that all participants did in fact
learn something during the discrimination phase, a criterion
of 55% accuracy or higher across the second half of training
was used.  Participants who did not meet this criterion were
replaced and their data discarded, such that final analyses
were conducted on the first 16 participants to perform above
the criterion in each group.

In order to classify the responses obtained from the written
questionnaire, the questions were independently analyzed by
the first and middle authors.  The responses were classified
in terms of whether the participant had described the
difference between the training stimuli in terms of hue (i.e.
with reference to their “yellowness”, “blueness” or similar
relevant adjectives to describe variation in color) and
whether the participant had reported using a rule or response
strategy based on hue. Participants were classified as “rule
learned” if they were able to accurately verbalize the
difference between the discriminative stimuli in terms of at
least one of the color components or if they reported making
their judgments during the test phase according to color.

To simplify the analysis of the post-discrimination gradient,
the full dimension was collapsed around the training stimuli
as described above, with values grouped according to their
ordinal position along the dimension, and expressed in
terms of their distance from the training stimuli (S).  Thus
positions 6 and 10 are one step removed from S, 5 and 11
two steps removed, etc.  Accuracy was measured as the
proportion of total responses for that stimulus position that
were appropriate for the nearest category.  Thus “A”
responses were correct for values 1-7, while “B” values
were correct for values 9-15.  Stimulus value 8, which fell
between the training stimuli, was not used in the analysis.
Analyses were conducted over these points, as well as on
accuracy during the training phase, with both group and
classification as “rule learned” or “rule not learned” used as
factors.  It was predicted that increasing distance from S
would be associated with a rise in accuracy for those that
were using an appropriate rule-based strategy but would
instead be associated with a decline in accuracy for those
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that did not identify such a rule.  Thus linear trend analyses
were used, with predictions of opposite trends in each
classification and an interaction between them.

Results
Of the 16 participants in each group, 11 of the Easy group
participants and 5 of the Hard group participants reported
either identifying or using the correct rule appropriately and
were classified as “rule learned”. Easy group participants
were significantly more likely to report the correct
relationship or rule than Hard group participants (c2 = 4.5, p
< .05).  Of those that did not report noticing the correct
relationship between the training stimuli, the most
frequently reported difference was one of perceived
brightness.  Of those participants who did not report a hue-
based rule or strategy, several other strategies were reported,
including simply guessing, with the most frequent again
being based on brightness.  Importantly, many of these
subjects reported being unsure of these strategies and even
abandoning them or using them inconsistently during the
test phase.  The pattern of results did not seem to be
systematically affected by any of these incorrect strategies.
For instance, the pattern of results for those who reported a
strategy based on stimulus brightness was approximately the
same as the gradient for those who reported noticing no
difference between the training stimuli or reported guessing
during the test phase.

Figure 5 shows mean accuracy over the course of the
training phase for the Hard and Easy groups, split according
to whether the hue-based rule was identified in the post-
experiment questionnaire.  It is evident that participants in
both groups were able to acquire the discrimination and
reached a relatively high level of accuracy regardless of
whether they were able to accurately verbalize the
difference between the training stimuli or report a hue-based
response rule.  Analysis of variance on the overall training
accuracy, with group (Hard vs Easy) and rule (“rule
learned” vs “rule not learned”) as between subjects factors
revealed that the Easy group performed significantly better
overall than participants in the Hard group (F1,28 = 8.992, p
= .006).  However there was no significant effect of rule
(F1,28 = .642, p = .43), or an interaction between group and
rule (F1,28 < .001, p = .993).  Examining each group
separately, there was no significant effect of rule in either
the Hard group (F1,14 = .287, p = .601) or Easy group (F1,14 =
.366, p = .555).  These results suggest that the Easy
discrimination was indeed easier than the Hard
discrimination, but clearly both groups were able to
discriminate between the training stimuli by the end of
training, and whether or not the stimulus difference was
correctly identified appears to have had little effect on
overall accuracy.

Figure 5.  Mean accuracy over blocks of six trials during the
training phase.

Figure 6 shows the post-discrimination gradients for groups
Hard and Easy, sub-divided according to whether the hue-
based rule was identified in the post-experiment
questionnaire. The generalization gradients for the “rule
learned” participants increase to ceiling accuracy as the
distance from S increases.  The gradients for the “rule not
learned” participants peak in accuracy at or near S and
gradually decline as the distance from S increases. ANOVA
with stimulus (i.e. ordinal distance from S) as a within
subjects factor, and group and rule as between subjects
factors revealed a significant main effect of stimulus (F6,168

= 2.624, p = .019), and rule (F1,28 = 113.256, p <.001), but
no significant effect of group (F1,28 = 1.191, p = .284).  The
interaction between stimulus and rule was significant (F6,168

= 14.195, p < .001), but no interaction with group
approached significance (max. F6,168 = 1.241, p = ns.).

Figure 6.  Post-discrimination gradients across the collapsed
dimension, with accuracy expressed as a function of ordinal
distance from the nearest training stimulus (S).

These results suggest that significant variation in accuracy
occurred according to the distance of the test stimuli from S,
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and that this pattern differed according to whether the
appropriate hue-based rule had been identified. As
predicted, a linear trend analysis showed a significant
interaction between stimulus and rule (F1,28 = 29.924, p <
.001).  Again there was no significant interaction between
stimulus and group or three-way interaction (larger F1,28 =
2.528, p = .123). Analyzing the ‘rule learned’ participants
separately, there was no interaction between stimulus and
group (F6,84 = 1.78, p = .113) but a significant main effect of
group (F1,14 = 6.646, p = .022) suggested that participants
from the Easy group who learned the rule displayed higher
overall accuracy than participants from the Hard group who
learned the rule.  Averaged over all of the ‘rule learned’
participants, test accuracy was significantly above chance at
every point along the collapsed dimension (smallest t15 =
5.168, p < .001).  Planned linear and quadratic trend
analyses both revealed significant main effects (smaller F1,14

= 57.05) and no significant interactions with group (larger
F1,14 = 1.919).  These suggest that for the ‘rule learned’
participants, accuracy generally increases as the distance
from S increases and the resulting gradient is negatively
accelerated.  These results thus closely match the
predictions of our rule-based analysis.

Analyzing ‘rule not learned’ participants separately, there
was still no main effect of group (F1,14 = .007, p = .936) or
interaction between stimulus and group (F6,84 = .689, p =
.659).  Test accuracy was only significantly greater than
chance at S (t15 = 2.959, p = .01) and positions one step
removed from S (t15 = 2.58, p = .021).  A linear trend
analysis revealed a significant main effect (F1,14 = 5.154, p =
.04) and no significant interactions with group (F1,14 =
1.158, p = .300). This suggests that for the ‘rule not learned’
participants, accuracy generally decreases as the distance
from S increases.  Although there is no peak shift evident
over these test points, this pattern of results still fits well
with the predictions of an associative analysis, which would
predict highest accuracy at or close to S and a gradual
decline in accuracy as the distance from S increases.

Discussion and Conclusion
There is a clear difference in the generalization gradients
produced by those that reported using the correct rule and
those that did not.  Not surprisingly, the generalization
gradients of those participants who reported the rule match
the predictions of a verbally mediated cognitive strategy.
Learning still occurred in those that were unable to identify
the characteristic by which the training stimuli differed, as
evidenced by the fact that the participants who did not
report the correct rule or the correct stimulus relationship
still acquired the discrimination and were still significantly
better than chance for the training stimuli and immediately
neighboring stimuli during the test phase.  However, for the
“rule not learned” participants, accuracy declined as the
distance from the training stimuli increased, and this pattern
of test results fits with an associative analysis.  Thus, we

conclude that two learning systems can be involved in
discrimination learning in humans, one based on simple
associative principles the other reflecting higher order
cognition and rule-governed behavior.
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