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Abstract 
Do children understand that others have mental 
representations, for instance, mental representations of an 
object’s location? This understanding, known as a 
representational Theory of Mind (ToM) has typically been 
studied using false-belief (FB) tasks. Standard, verbal FB 
tasks test whether a child can use protagonists’ beliefs to say 
that they will search for objects where they last saw them. 
Whereas children under 3.5 years typically fail the task and 
expect protagonists to search where objects are (expectation 
consistent with an omniscient ToM), older children expect 
protagonists to search where they last saw the objects 
(expectation consistent with a representational ToM). 
Recently, 15-month-olds were shown to succeed at a visual, 
implicit version of the task. We present a sibling-descendant 
cascade-correlation connectionist model that learns to succeed 
at an implicit FB task. When trained on twice as many true- as 
false-belief trials, our model reproduced the omniscient-to-
representational transition observed in explicit tasks. That is, 
networks first had expectations consistent with an omniscient 
ToM, and after further training had expectations consistent 
with a representational ToM. Thus, our model predicts that 
infants may also go through a transition on the implicit task, 
and suggests that this transition may be due in part to people 
holding more true than false beliefs.   
 

Keywords: False beliefs; theory of mind; connectionism. 

Background 
Do children understand that others have mental 
representations, for instance, mental representations of an 
object’s location? This understanding – known as a 
representational Theory of Mind (ToM, Wimmer & Perner, 
1983) – has been found, using explicit false belief tasks, to 
go through a developmental transition between 3 and 4 
years of age.  

In this task, children see a puppet named Sally put a 
marble in a basket that is next to a box. While Sally is gone, 
another puppet, Anne, moves the marble from the basket to 
the box, thereby leaving Sally with the false belief that the 
marble is still in the basket. To predict that Sally will search 
for the marble in the basket, children must understand that 
she has a mental representation of the scene that is not 
consistent with reality (Dennett, 1978). A child under three 

years and eight months (Wellman, Cross, & Watson, 2001) 
will typically say that Sally will search in the box, an 
expectation that is consistent with an omniscient ToM – i.e., 
Sally will search in the actual location of the object. An 
older child will instead typically say that Sally will search in 
the basket, an expectation that is consistent with a 
representational ToM – i.e., Sally will search for the object 
in accord with her mental representation of its location.  

Recently, 15-month-olds were shown to solve a visual, 
implicit version of the task (Onishi & Baillargeon, 2005). 
Because it avoids the complexities of language, the implicit 
task is more amenable to computational modeling. This 
paper introduces a connectionist model that learns to solve 
the implicit false-belief task and that reproduces the 
omniscient-to-representational ToM transition when training 
contained more true- than false-belief trials.   

The Implicit False-Belief Task 
Onishi and Baillargeon (2005) used a violation-of-
expectation paradigm to show that 15-month-olds could 
pass an implicit, language-free version of the false-belief 
task. This paradigm uses looking time as a dependent 
measure of surprise. Infants – just like adults – look longer 
at the unexpected.  

Infants were seated on their parent’s lap and watched an 
actor performing actions with two boxes (one green and one 
yellow) and an object (Onishi & Baillargeon, 2005). First in 
familiarization trials, infants were shown the actor puting 
the object in the green box, as if to hide it there.  Then on 
two trials the actor searched in the green box as if to retrieve 
the object (without actually revealing it) to convey to infants 
that she wanted it. Next, infants saw one of four belief-
induction trials designed to cause the actor to hold either a 
true belief (TB) or a false belief (FB) that the object was 
either in the green or yellow box. For instance, in the TB-
yellow trial, infants saw the actor watching as the object 
moved from the green box to the yellow box, thus causing 
the actor to hold a TB that the object was in the yellow box. 
By contrast, in the FB-green trial, another group of infants 
saw, as the actor was absent from the scene, the object move 
from the green into the yellow box, thus causing the actor to 
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have a FB that the object was still in the green box. The TB-
green and FB-yellow trials were constructed with similar 
manipulations, the actor watching or not as the object was 
moved from (or stayed in) the green box. Finally, each 
infant saw one of two test trials in which the actor searched 
in either the green or yellow box. As can be seen in Figure 
1, infants expected the actor to search according to her 
belief, whether true or false, and looked reliably longer 
when she did not do so. When the actor’s belief (true or 
false) suggested that the object was in the green box, infants 
looked reliably longer when the actor searched in the yellow 
box (white bar is taller than gray bar in TB-green and in FB-
green), while when the actor’s belief suggested the object 
was in the yellow box, infants looked reliably longer when 
the actor searched in the green than the yellow box (gray bar 
is taller than white bar in TB-yellow and FB-yellow). 

 

 
 

Figure 1: Infants’ mean looking time and SE bars for the 
implicit FB task in the eight task conditions (four belief-

induction by two test trials). From Onishi and Baillargeon 
(2005). Reprinted with permission from AAAS. 

  
In sum, this work showed that 15-month-olds can succeed 

at an implicit false-belief task involving an approach goal. 
In contrast, not before 44 months are children able to 
reliably succeed at the verbal version of an approach task. 
Because it avoids language, the implicit task is more 
amenable to computational modeling and it is the task we 
chose to model. Before introducing our model, we review 
previous computational models of explicit FB tasks; no 
model of the implicit task has been proposed before. 
Although the explicit and implicit tasks differ substantially, 
comparisons between our model and previous models of the 
explicit task are possible because those models did not 
explicitly incorporate language. 

Previous Models of False Belief Tasks 

O'Laughlin and Thagard (2000) 
O'Laughlin and Thagard’s (2000) model of the standard FB 
task was based on the hypothesis that the inability to find 

coherence between concepts is what leads to poor 
performance. In their model, the authors connected elements 
roughly corresponding to propositions from the explicit FB 
task, e.g., “Sally puts marble in basket”, etc., with either 
positive links between coherent elements or negative ones 
between incoherent elements. Depending on which values 
the experimenters assigned to the connections, the model 
made different predictions about where Sally would search. 
This model covered the pattern of data – predictions 
consistent with an omniscient ToM with some parameter 
values and predictions consistent with a representational 
ToM with others. However, because the patterns of 
connectivity for the two sets of expectations were built in by 
the programmers, it is not really a developmental model. 
The model did not go through the omniscient to 
representational ToM transition on its own.  

Triona, Masnick and Morris (2002) 
Triona, Masnick, and Morris’ (2002) model used the ACT-
R production system (e.g., Anderson et al., 2004) to model 
failure and success on a FB task (Perner, Leekam, & 
Wimmer, 1987). Triona et al. (2002) reproduced the 
observed transition in children's responses “by manipulating 
… the probability that the production [output] would 
achieve the goal” (p. 1045). When the probability parameter 
was low, the output was wrong (e.g., predicting Sally would 
search in the box), but when the parameter was high, the 
output was correct (e.g., predicting Sally would search in 
the basket). Once again, this model covered the 
experimental data through parameter manipulation by the 
experimenters, and is thus not a model that undergoes an 
autonomous developmental transition.  

Goodman and colleagues (2006) 
Goodman et al. (2006) built two causal Bayesian networks 
for the FB task. In the omniscient network, Sally’s belief 
depended only on the marble’s location, whereas in the 
representational ToM network, Sally’s belief depended both 
on the marble’s location and Sally’s visual access to the 
marble’s displacement. This difference made the omniscient 
network fail the FB task and the representational one 
succeed, but the extra connection also made the 
representational network more complex. Goodman et al.’s 
model suggested that it would be parsimonious for children 
to first use the simpler omniscient theory, but after 
accumulating evidence for its inadequacy, it would make 
sense to switch to the more complex representational theory. 
The model learned the posterior probability distributions of 
the search location from prior probability distributions, 
showed that expectations consistent with a representational 
ToM required more computational resources than do 
expectations consistent with an omniscient ToM, and 
switched from predictions consistent with an omniscient 
ToM to those consistent with a representational ToM. 
However, the architecture of both Bayesian networks were 
built by the experimenters, and by choosing which networks 
to include in the model, the set of possible transitions was 
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restricted to only 2; simple to complex (as the model 
selected) or complex to simple, thus showing an 
autonomous transition but one that was highly constrained.  

In sum, previous computational models typically required 
substantial experimenter manipulation and involved 
restricted or no autonomous development. These issues are 
naturally addressed by our model, because it uses 
constructive neural networks.  

Experiment 
We conducted an experiment using fifty-six neural networks 
implementing the sibling-descendant cascade-correlation 
(SDCC, Baluja & Fahlman, 1994) constructivist algorithm, 
which has been successful in modeling numerous 
psychological phenomena (e.g., Shultz & Bale, 2006). Our 
model learns to succeed at the implicit false-belief task and 
transitions from omniscient to representational ToM 
expectations with additional training. It does not require 
parameter manipulation to make that transition but does 
require more true- than false-belief information in training. 
In effect, most of the time, beliefs are true (Leslie, German, 
& Polizzi, 2005), and this could potentially lead three-year-
olds to expect others to hold true beliefs by default. Also, it 
may require more sustained attention to process or perceive 
a false-belief situation simply because there are more pieces 
of information to track for a longer time (previous location 
of the object, actor not looking as the object moves, etc.) 
compared to true-belief situations, in which infants could 
simply rely on their own knowledge of the object’s location. 
For these reasons, networks were trained on twice as many 
true- as false-belief trials. When equal numbers of true and 
false belief trials were included during training, our model 
succeeded at the task without first going through a period of 
omniscient expectations. 

Method 
Initial Network Structure In everyday life, there are 
almost always multiple locations that an object can be. We 
trained networks using four locations. There is nothing 
special about four locations, but we wanted more than two 
for increased realism. Figure 2 represents the model in its 
initial state, i.e., with input and output units but without any 
hidden units. Constructivist networks such as SDCC are 
initialised without any hidden units, but they recruit them as 
more computational power is required in training. 
 
Input The model’s inputs represent the critical factors that 
govern searching behaviour and predictions made by an 
observer about that behaviour. The inputs encoded: (1) the 
first location of the object, (2) the second location of the 
object, (3) whether the actor was watching when the object 
was moved and (4) experimental context.  

Four input units represented in which of the four locations 
the object started. These locations could be thought of as 
red, yellow, blue, and green boxes. Another four inputs 
represented where the object ended up. The object’s location 
for a given time step was encoded by activating the location 

of the object but not the other three locations. One input unit 
encoded whether the actor was watching or not as the object 
moved. The tenth and last input encoded experimental 
context, a random value (between 0 and 1, selected from a 
uniform distribution) used to facilitate the network’s 
stochastic training. As explained below, networks were 
trained on observations of behaviour that were not always 
correct in order to have training that is more like everyday 
observations. This type of stochastic training is problematic 
for deterministic neural networks because they cannot match 
different outputs to the same input. By adding an input node 
encoding a value randomized for each trial, much like 
different contexts for human experiences (time of day, etc.), 
our networks were able to learn the task. 

 
 

Figure 2: Schematic of an initial network used to model the 
learning of false beliefs. In the displayed event, the actor is 

looking (eye is present in the middle bottom unit) as the 
object moves from the fourth location to the third location. 

 
Output Our model had 4 output nodes that represented in 
which, out of the 4 locations, the model predicted searching 
(see Figure 2). We simulated looking times by comparing 
the outcome the model predicted to the outcome that would 
be expected with a representational ToM, with larger 
discrepancy or error corresponding to longer looking times 
(Shultz & Bale, 2001).  

The output nodes encoded the probability (between 0 and 
1) that the actor would search in each location (asigmoid 
activation functions compressed the net input to an output 
unit into the range 0-1). For instance, if a network’s output 
was red = 0.10, yellow = 0.70, blue = 0.05, green = 0.15, 
this was interpreted as the network expecting search in red 
10% of the time,  in yellow 70% of the time, in blue 5% of 
the time, and in green 15% of the time.  
 
Training In everyday life, people probably do not always 
search for objects where they last saw them, because they 
forget, were distracted, etc. Therefore, networks were 
trained with observations of searching that were correct 18 
times out of 21, or 85.7% of the time, to increase training 
realism. For example, if the actor should believe the object 
was in blue, the network was trained 85.7% of the time on 
correct trials (search in blue) and 14.3% of the time on 
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incorrect trials (search in red, yellow or green, equally at 
random).  

Before training, SDCC networks do not have any hidden 
units, but only have direct connections between input and 
output units. During training, the network updates its 
weights, reducing error at the output. When error fails to 
decrease sufficiently, the network selects and recruits the 
one unit from a small number of potential hidden units that 
most reduces output error.  

Training usually continues until the output error, i.e., the 
absolute difference between output activation and target 
output value goes below the score threshold (ST) parameter 
value (here kept at the default value of 0.4) for every output 
unit on every training pattern. However, since our networks 
were trained on stochastic observations, the output error 
never went below the ST (unless ST was set to 0.5, in which 
case networks only focused on one of the output values and 
did not learn the full training probability distribution). 
Therefore, training was not terminated using the ST, but 
instead it was stopped after networks learned the probability 
distributions of search in training (18 correct searches out of 
21 for any given belief-induction trial).  

Learning was assessed right before networks recruited 
each hidden unit, using chi-square ratios to test whether, for 
each condition, expected and observed frequencies were 
significantly different. Expected frequencies were the 
frequencies used in training, i.e., 18/21 correct searches. 
Observed frequencies were calculated by first converting the 
average output activations for each condition into  
probabilities using Luce’s choice axiom (Luce, 1959), 
which states that the probability of choosing one output is 
that output’s activation divided by the sum of all output 
activations. These probabilities were then used to define a 
sub-interval for each location within the [0,1] interval. For 
instance, if calculated probabilities were red = 0.10, yellow 
= 0.70, blue = 0.05, and green = 0.15, the interval [0.0, 0.1[ 
was attributed to the red location, [0.10, 0.80[ to yellow, 
[0.80, 0.85[ to blue, and [0.85, 1.0] to green. Finally, 21 
random numbers between 0 and 1 were obtained, and each 
number falling within a location’s sub-interval was counted 
as a search there. For example, the random value 0.23 would 
be counted as a search in yellow since it is in the sub-
interval [0.10, 0.80[. Training ended when networks’ 
observed frequencies of search were no longer significantly 
different from the expected frequencies. 
 
Testing By analogy with the infant experiment, each 
network was tested in one experimental condition. Thus 
seven networks were tested in each of the 8 conditions (2 
belief statuses x 2 belief locations x 2 search locations). 

In test, we gave an input to the network (corresponding to 
a belief-induction trial in the infant experiment, i.e., first and 
second location of the object, and whether the actor watched 
the object move) and measured how far the generated output 
was from the target output. 

Although networks were trained on four start and four end 
locations, they were tested only on 2 start and end locations, 

as in the infant experiment (Onishi & Baillargeon, 2005). 
The mean network error on these 2 nodes was calculated as 
the sum of squared difference between the network output 
and the target location, for each condition of the infant 
experiment.  

For instance, in the infant study, 2 groups saw: object 
starts in green, moves to yellow, actor is not watching. One 
of the groups then saw the actor search in green (expected) 
and the other group saw her search in yellow (surprising). 
Networks were treated in the same way. The input: object 
starts in green, moves to yellow, actor is not watching, was 
given to 2 groups of networks. For one group we measured 
how far from “search in green” (target output activation: 
green = 1.0, yellow = 0.0) their output was and for the other 
group we measured the discrepancy from “search in 
yellow”. How far the network was from predicting a search 
in green was calculated as the mean squared difference 
between its prediction and the actual location of search, as 
in Equation 1; 

 
( ) ( )[ ] =−+− 2/22

yygg SPSP ( ) ( )[ ] 0125.02/05.085.1 22 =−+−  
 

Equation 1 
 

where P represents the model’s prediction, S represents 
searching in the test trial, and the subscripts g and y 
represent the green and yellow boxes respectively. After 
training, networks from both groups output approximately 
0.85 for green and 0.05 for the other nodes. In the “search in 
green” trial, the outputs for the green and yellow locations 
were compared to the target: green = 1.0, yellow = 0.0, 
resulting in an error of 0.0125 (as shown in Equation 1).  
The green and yellow target values were reversed for the 
“search in yellow” trial, yielding an error of approximately 
0.8125.  Thus, mean network error was greater for search in 
green than for search in yellow, quantifying the network's 
greater surprise. 

 To assess whether networks underwent developmental 
changes they were tested at the end of each output phase, 
that is, right before they recruited each hidden unit and once 
more at the end of training.  

Results 
Analyses of variance (ANOVAs) were performed after each 
output phase and at the end of training, with the factors 
belief status (whether the actor’s belief was true or false), 
belief location (where the actor believed the object was), 
and search location (whether search was in the yellow or 
green box).  

If networks had expectations consistent with a 
representational ToM in both true and false beliefs trials, we 
predicted a significant interaction between belief-location 
and search location and further, that this interaction would 
also be significant within each level of the belief factor (true 
and false). Further, we predicted that planned comparisons 
between the levels of search location would show lower 
error when search was in the location where the actor last 
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saw the object (as in Equation 1) at every level of the belief 
location by belief status interaction (TB-green, TB-yellow, 
FB-green, FB-yellow).  

If however, networks had expectations consistent with an 
omniscient ToM, we predicted lower error for a search in 
the location of the object than for a search in the other 
location. 

With 0 hidden units, networks displayed omniscient 
expectations about searching, as shown in Figure 3. 
Networks showed less error when search was in the location 
of the object. The belief location by search location 
interaction was significant overall, F(1,48) = 8380, p < 
0.001 as well as within each belief status level, Fs(1,24) > 
1575, ps < 0.001. Planned comparisons indicated that 
networks had lower error when search was in the object’s 
end location for all levels of the belief location by belief 
status interaction, Fs(1,12) > 512, ps < 0.001.  

With 0 hidden units, networks did not learn the 
probability distributions of the training patterns. The 
observed frequencies were significantly different from the 
expected frequencies in each of the eight conditions, χ2s(3, 
N = 21) > 22, ps < 0.05.  

 

0.0

0.2

0.4

0.6

0.8

1.0

TB-green TB-yellow FB-green FB-yellow

M
ea

n 
ne

tw
or

k 
er

ro
r

yellow-box

green-box

Actor search

 
 

Figure 3: Mean network error and SE bars when networks 
had no hidden units. Networks’ expectations were consistent 
with an omniscient ToM – error was lower when search was 

in the end location of the object.1 
  

With one and two hidden units, networks’ expectations 
continued to follow a pattern consistent with an omniscient 
ToM. However, with three hidden units, networks showed 
less error when search was in the belief location, i.e., the 
location in which the actor last saw the object. The belief 
location by search location interaction was significant 
overall, F(1,48) = 215, p < 0.001, as well as within each 
belief status level, Fs(1,24) > 22, ps < 0.001 Planned 

                                                           
1 The greater difference between search locations in TB-green is 

an artefact from the infant experiment, in which the object did not 
move in TB-green (starting and ending in green), but did move in 
TB-yellow (starting in green and ending in yellow). This effect 
disappeared when TB-yellow was implemented in the model with 
the object starting and ending in yellow. In networks, a moving 
object is more difficult to process than a stationary object. 

comparisons indicated that networks had lower error when 
search was in the last believed location of the object for all 
levels of the belief location by belief status interaction 
Fs(1,12) > 8, ps < 0.02. 

Further, with three hidden units networks did learn the 
probability distributions during training. The observed 
frequencies were not significantly different from the 
expected frequencies for all conditions, χ2s(3, N = 21) < .03, 
ps > 0.99. 
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Figure 4: Mean network error and SE bars when networks 
had three hidden units. Networks’ expectations were 

consistent with a representational ToM – error was lower 
when search was in the last believed location of the object. 

Discussion 
Our model went through the same developmental transition 
observed with older children tested with the explicit, 
standard false belief task. With insufficient hidden units, 
networks had expectations consistent with an omniscient 
ToM, but with three hidden units, networks had 
expectations consistent with a representational ToM. 
Further, with three hidden units, networks successfully 
learned the probability distributions present in training. 
Therefore, our model suggests that infants’ expectations 
might also go through a similar transition. To obtain that 
transition, more true- than false-belief observations had to 
be present in training, lending computational support to the 
idea that children’s (and infants’) expectations might go 
through this transition because they develop the ability to 
override a default expectation of true belief (Leslie et al., 
2005). We have shown that this default could be a natural 
result of experiencing more true- than false-belief behavior.  

Comparison with Other Models 
By contrast with other computational models of false belief 
tasks, our model is a developmental model that learns to 
solve the task without parameter manipulation.  

O'Laughlin and Thagard (2000) and Triona et al. (2002) 
both covered the omniscient to representational 
developmental transition by parameter manipulation. 
O'Laughlin and Thagard (2000) manipulated the excitatory 
and inhibitory nature of the connections between the nodes, 
whereas Triona et al. (2002) directly manipulated the 
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probability that the model would solve the task. Our model 
learns the implicit task and goes through the same 
developmental changes that children go through without 
direct parameter manipulation.  

Goodman et al. (2006) showed that a Bayesian network 
having expectations corresponding to a representational 
ToM was more computationally complex than another 
Bayesian network having omniscient expectations. 
However, their model was restricted by the fact that the 
networks’ architectures were designed by the experimenters 
and by the limited number of networks they implemented, 
which in turn limited the number of possible transitions the 
model could perform. Our model showed, in a single unified 
developmental system, that representational ToM 
expectations do require more computational power; 
networks required no hidden units to have expectations 
consistent with an omniscient ToM about others’ searching, 
but required three hidden units to learn to have expectations 
consistent with a representational ToM. Both omniscient 
and representational ToM expectations were developed 
autonomously by the model, the later one building on the 
earlier one. 

Summary 
In sum, computational models are useful for providing 
insights into psychological phenomena and can lead to 
novel predictions or directions for experimental tasks. Our 
model provides a novel computational insight as to why 
children go through a developmental transition on the 
standard false belief task and predicts that infants’ 
expectations might go through a similar transition on the 
implicit task.  

Future directions could include an avoidance implicit FB 
task, in which the actor wants to avoid a noxious object, 
instead of search for an attractive object. Indeed, only after 
four years do children pass explicit FB tasks with avoidance 
goals, and expect an actor to correctly avoid a location when 
she has a false belief about its content. However, no 
avoidance implicit FB task has been used with infants. 
Would our model succeed an avoidance version of the 
implicit task only after it succeeded the approach task? 
Computational models such as ours are useful to understand 
how cognition undergoes developmental transitions. 
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