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Abstract 
Although expectancy effects induced by placebo treatment are 
reported to attenuate depressive symptoms in the long run, 
mechanisms underlying situational dynamics are not well 
understood. Improved reward learning has been discussed as a 
candidate mediator for effects of positive expectancies on more 
positive mood. Here, we fitted a series of Q-learning models to 
measure the effect of sham antidepressant treatment vs. open-
label placebo in a probabilistic reinforcement learning task. 
Treatment effects were observed mainly in those Q-learning 
models justified by the task structure. Additionally, 
interindividual variability remained the largest origin of 
unexplained variance in predictive match across models. These 
findings provide further support for the role of expectancies in 
reward learning. They also highlight the need for unraveling 
individual differences in cognitive mechanisms that account 
for differences in reward learning, and obtaining reliable 
estimates for them. 

Keywords: placebo; expectation; reinforcement learning; Q-
learning;  computational modeling 

Introduction 
Reinforcement learning (RL), the process in which humans 
or animals learn to make decisions in order to gain rewards, 
is thought to be of significance in the development of 
depression (Huys, Daw & Dayan, 2015) and particularly 
anhedonia as a core symptom of depression (Pizzagalli, 
2014). RL is closely linked to dopamine (DA) activities 
(Dabney et al., 2020). Moreover, blunted DA signaling 
within reward-associated pathways has been recently shown 
to characterize depressive disorder (Belujon & Grace, 2017). 

Placebo effects in the treatment of depression have been 
well documented (Petrie & Rief, 2019). Antidepressant 
placebo responses may accordingly be driven by positive 
expectations towards a successful treatment outcome, which 
contribute greatly to reducing depressive symptoms in 
clinical interventions. Further, based on the notion that 
placebo effects are triggered by the expectation of clinical 

benefit, i.e. expectation of reward, a tight link between the 
placebo effect and reward mechanisms has been highlighted 
in the context of other disorders such as Parkinson’s disease 
(de la Fuente-Fernández, 2009). 

RL is commonly assessed by means of behavioral or 
computational parameters, such as the count of collected 
rewards (Schmidt et al., 2014), or algorithms incorporating 
learning from prediction errors (Turi et al., 2017). The latter 
is often implemented by Q-learning as a model-free 
algorithm that slowly integrates trial-wise reward feedback in 
order to map a reward value on a number of states. It 
incorporates learning from prediction errors via learning 
rates, which reflect how strong a learner adjusts its reward 
expectations depending on new feedback. Q-learning has 
been postulated to serve as an efficient ground for capturing 
ganglio-basal reinforcement learning processes by means of 
latent parameters (Frank et al., 2007). A task that has widely 
been used to assess reinforcement learning this way is the 
Frank task (Frank, Seeberger & O'Reilly, 2004), in which 
participants have to learn from probabilistic feedback to 
identify the most rewarding stimulus within different stimuli 
pairs. With respect to Q-learning, this task conventionally 
involves the generation and updating of one reward value per 
stimulus. However, participants might only learn to 
distinguish between “good” and “bad” stimuli irrespective of 
individual reward probabilities, or misleadingly assume 
multiple reward values per stimulus depending on prior trial 
features. Differences in such strategies would result in a 
varying number of learned representations leading to more 
nuanced RL parameter estimates and thus, we were interested 
in how different assumptions regarding reward value 
generation could contribute to model participants’ RL 
behavior more accurately.   

Taken together, previous findings indicate that positive 
expectations may enhance reward-based decision making, 
and the Frank task constitutes an approved task for 
elucidating this relationship. The goal of our study was 
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therefore to examine if differences in induced expectations 
covary with participants’ ability to learn from reward in the 
Frank task. More specifically, we expected that RL learning 
rates would be enhanced in the experimental group which 
received antidepressant expectation, and explored to what 
extent differences in the learning rate for gain (𝛼!"#$) and 
state representations could contribute to a better explanation 
of participants’ decision behavior. 

Methods 

Sample and Design 
For this study, we re-analyzed data of 55 (7 male) healthy, 
non-depressed university students, who participated for 
course credits. The mean age was 21.1 years (SD = 2.4). Of 
the original 56 participants, one participant was excluded 
from analysis due to missing task data. The study was 
approved by the Local Ethics Committee. Data and analysis 
scripts were made publicly available1. 

In a psychophysiological experiment, participants were 
told that they took part in an open-label treatment study, in 
which they would receive either an antidepressant drug 
(50mg sulpiride; positive expectation), or an inactive 
substance (placebo; neutral expectation). In fact, all 
participants received a placebo, but the expectancy group 
allocation was randomized. As an incentive, the three best 
performing participants received monetary rewards. The 
participants finished a Frank task, and subsequently 
underwent a mood induction procedure, which is not part of 
the current study.  

Paradigm 
We analyzed the training phase of a Frank task (cf. Frank, 
Woroch & Curran, 2005) which we had adapted to 
electrocardiography by extending the inter trial interval. 
Three letter pairs (Japanese hiragana characters) with 
different reward probabilities (0.8:0.2, 0.7:0.3, and 0.6:0.4) 
were used as stimulus material. In each trial, participants had 
to select either of the letters from a pair by pressing one of 
two buttons. Stimuli pairs were presented until button press 
(but max. 2000ms), subsequently followed by a black screen 
and win or loss feedback screen (green circle or red cross) for 
1000ms each. Afterwards, a resting screen with a fixation 
cross appeared for 4000-5000ms. Depending on individual 
task performance, which was determined by reaching a 
criterion of correct decisions made per stimulus pair (at least 
65%, 60% and 50% for the pairs with the highest to the lowest 
difference of reward probabilities, respectively), the task 
comprised two to four reinforcement learning blocks with 20 
location-balanced repetitions of all stimuli pairs resulting in 
60 trials per block and at least 120 trials per participant as in 
the study conducted by Frank et al. (2005). After reaching 
this performance criterion, participants continued with the 
test phase, which required a sufficient knowledge of reward 
probabilities and was not analyzed in the present study. 

 
1 http://dx.doi.org/10.17192/fdr/89 

Within the first six trials, each pair was presented two times 
and the reward probabilities were rounded to one and zero. 

Task instructions were presented on a screen. Participants 
were informed that they would be presented stimuli pairs and 
that they would have to identify the more rewarding stimulus 
of each pair by trial-and-error in order to maximize their 
reward (points). The instructions stated that the participant 
should keep choosing the more rewarding stimulus, although 
it could be punished at times by losing points in case of 
negative feedback. At this time, the participants were not 
aware of the different proportions of reward contingencies 
between different stimuli pairs. 

Q-learning 
We explored a series of Q-learning models differing with 
regard to the number of Q-states. The aim was to investigate 
if modeling an inappropriate task-structure would explain 
individual differences in predictive Q-learning model fits. In 
order to assess the relationship between the number of Q-
states, model performance and estimated RL parameters, we 
tested simplified models against a task-appropriate standard 
model in the first place.  These simpler models allowed for 
an aggregate representation of reward within both more and 
less rewarding stimuli. After observing poor average fits for 
the simplified compared to the standard model, the aim was 
to assess if participants might, on the contrary, have 
erroneously learned a task structure that was overly complex 
by taking prior extrinsic/intrinsic trial outcomes into account. 
As such, preceding reward and trial accuracy 𝑎, which is 
equal to one if the more probably rewarded stimulus of a pair 
was chosen in a particular trial (and equal to zero otherwise), 
were used to index Q-values differently resulting in two up to 
four reward representations per stimulus. Lastly, the models 
also varied with regard to the involvement of a group effect 
on the RL parameters as well as concerning the number of Q-
values used during RL. 

 
E6 and N6 Our standard Q-learning models E6 and N6 
included six Q-states and differed with regard to the inclusion 
of a group effect. Here, “E” (for “effect”) refers to the model 
with a group effect and “N” to no group effect. Models were 
fitted by sampling. For standard Q-value updating, we used a 
dual learning rate model (see eqn. 1) with 𝑄# ∈ [0,1], 𝑖 ∈
{1,2, … ,6}, 𝑟 ∈ {0,1} and 𝛼 ∈ [0,1].Here, the learning rate 
parameter 𝛼 was computed separately for reward (gain, 𝛼%) 
and loss (𝛼&) based on the reward prediction error 𝑟(𝑡) – 
𝑄#(𝑡), which is the difference between received and expected 
reward. Decision probability for selecting stimulus A over 
stimulus B was computed using a softmax function (see eqn. 
2), where 𝑃'(𝑡) ∈ [0,1] and 𝛽 ≥ 0. QA and QB denote the Q-
values of either stimulus in trial 𝑡. Decision noise is reflected 
in 𝛽, i.e. large (necessarily positive) values for 𝛽 imply strong 
decision noise. 
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𝑄#(𝑡 + 1) = 𝑄#(𝑡) + 𝛼%[𝑟(𝑡) − 𝑄#(𝑡)](
																																	+	𝛼&[𝑟(𝑡) − 𝑄#(𝑡)]) (1) 
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𝑒
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*"(,)
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(2) 

 
RL parameters 𝜃, i.e. 𝛼 (gain and loss) and 𝛽, of participant 
𝑗 were computed with the constraint of a normal distributed 
group-level parameter 𝜇/ and group-independent parameter 
variance 𝜎/. If a group-effect (“E”) model was fitted, 𝜇/ was 
the group-level parameter of the placebo condition, and a 
group effect term 𝛿/ ∗ 𝑆𝑢𝑙𝑝𝑖𝑟𝑖𝑑𝑒# was added with 
𝑆𝑢𝑙𝑝𝑖𝑟𝑖𝑑𝑒# 	 ∈ {0,1}: 

 
𝑙𝑜𝑔𝑖𝑡I𝛼0J ∼ 𝑁𝑜𝑟𝑚𝑎𝑙I𝜇1 + 𝛿1 ∗ 𝑆𝑢𝑙𝑝𝑖𝑟𝑖𝑑𝑒0 , 𝜎1J 

 
𝑙𝑜𝑔I𝛽0J ∼ 𝑁𝑜𝑟𝑚𝑎𝑙I𝜇. + 𝛿. ∗ 𝑆𝑢𝑙𝑝𝑖𝑟𝑖𝑑𝑒0 , 𝜎.J 

 
𝜇/ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,100) 

 
𝜎/ ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 

 
𝛿/ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

 
Initially, models E6 and N6 were computed. In a second step, 
we tried to reduce model complexity by reducing the number 
of Q-states allowed for parameter estimation with the goal to 
analyze if a simpler model would perform equally in this task. 
 
E2 and N2 We defined a simplified model, which consisted 
of only two Q-states for more (reward probability 0.8 to 0.6) 
and less frequently (reward probability 0.4 to 0.2) rewarded 
stimuli, respectively. In other words, this model assumes that 
the learner assigns the same Q-value to all stimuli that are 
expected to yield more (or less) reward than the alternative 
stimulus in a given trial. Since we do not have direct access 
to the learner’s beliefs, we use trial accuracy as a proxy in the 
model. Thus, trial accuracy a indexed the Q-state 𝑖: 
 

𝑄#(𝑡): 𝑖 = 𝑖(𝑎), 𝑎 ∈ {0,1} ⇒ 𝑖 ∈ {1,2}  
 

E6B and E6B1 At the level of six concomitant Q-states, we 
also asked if participants might stick to their initial selections 
by introducing a moderate (E6B) to strong (E6B1) initial bias 
rewarding the first selection of each pair 𝑝: 
 

𝑄#I𝑡2 = 1J: 𝑄# = 0.5, 𝑝 ∈ {1,2,3} 
 

𝑄#I𝑡2 = 1J: 𝑄# = 1, 𝑝 ∈ {1,2,3} 
 
Thus, when the three stimuli pairs were presented for the first 
time, the first Q-value of the selected stimuli was fixed to 
𝑄# = 0.5 in the E6B model, and to 𝑄# = 1 in the E6B1 model. 

 
2 https://github.com/ihrke/2016-placebo-tdcs-study 

E12S, E12R and E24 Furthermore, we wanted to investigate 
whether participants had adopted an overly complex 
representation of the task structure by indexing Q-values by 
the outcome of the previous trial in addition to the stimulus 
identity. Such a model would ultimately result in a poor 
predictive match of the E6/N6 model, since the latter could 
not capture reward history information in the Q-states. 
Hence, we designed models with two (E12) or four (E24) 
possible Q-states per stimulus as a consequence of accuracy 
and reward of the previous trial. In the E12 models, accuracy 
𝑎 (E12S) or reward 𝑟 (E12R) indexed the Q-state 𝑖: 
 

𝑄#(𝑡): 𝑖 = 𝑖(𝑝, , 𝑎,)3) ⇒ 𝑖 ∈ {1,2, … ,12} 
 

𝑄#(𝑡): 𝑖 = 𝑖(𝑝, , 𝑎,)3) ⇒ 𝑖 ∈ {1,2, … ,12} 
 
In the E24 model, accuracy and reward gated the trial-wise 
Q-value updating simultaneously resulting in 24 Q-states: 
 

𝑄#(𝑡): 𝑖 = 𝑖(𝑝, , 𝑎,)3, 𝑟,)3) ⇒ 𝑖 ∈ {1,2, … ,24} 
 
Since the decision likelihood of trial t depended on a valid 
trial t-1, initial trials without preceding trials were skipped 
for parameter estimation and simulation of models with 
more than six Q-states. 

Parameter Estimation and Predictive Match 
As a measure for model performance, we used the predictive 
match of stimulus choices on the data set used for fitting, i.e. 
the match between participants’ and models’ selection in all 
individual trials. We define the predictive match as a measure 
of agreement between model and participant regarding trial 
accuracy, i.e. the percentage of trials per participant, in which 
model and participant selected the same stimulus, and 
therefore achieved the same accuracy within a trial. We fitted 
all models in parallel using the RStan (Stan Development 
Team, 2021) package in R (version 4.1.2; R Core Team, 
2021) on an AMD Threadripper 2990WX. As a likelihood 
function for model fitting, we used the model decision 
probability (see eqn. 2) evaluated at participants’ actual 
choices. Markov chain Monte Carlo sampling was performed 
using four chains with 6000 warm-up iterations and 
additional 6000 iterations of sampling. The target average 
acceptance probability was set to .99 and the maximum tree 
depth was restricted to 15 units. Analysis scripts were 
provided by Turi et al. (2017)2 and adapted to the purpose of 
our study. 

Single-trial decisions were predicted through re-running 
Q-learning with the individual posterior means of the 
sampled RL parameters θ4X  on individual trial-by-trial data 
used for model fitting. Since the model decisions rely on 
random uniform sampling (0 or 1) in case of equal decision 
likelihoods between two stimuli of the same pair, we iterated 
the predictive match computation 25-times and took the mean 
as a predictive estimate. 
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Statistical Analysis and Results 
For statistical analysis, R (version 4.1.0; R Core Team, 2021) 
was used. All reported confidence intervals (CI) represent the 
95%-CI. 

Predictive Match 
A hierarchical linear mixed-effect regression was performed 
to capture the variance of predictive match explained by 
model differences while accounting for individual 
differences. The predictive match was regressed onto model 
type as fixed effect and participants as random effect. The 
mixed-effect model was compared against an intercept-only 
random effects model using the Likelihood Ratio Test (LRT). 
For this purpose, the mixed models were estimated using 
maximum likelihood. Model E6 served as reference. The 
LRT revealed a significant contribution of model type to the 
model fit (𝜒5(8) = 66.24, p < .001). On average, all models 
comprising more or less than six Q-states performed worse 
than the E6 model. Notably, 94.5% of the variance was 
accounted for by individual differences, whereas the model 
type explained 0.7% of the variance in predictive match. 

Learning curves and predictive matches for all models are 
depicted in Fig.1 and Fig.2 (top row), respectively. In our 

sample, average predictive matches of the top three models 
E6 (β6 = 75.6, CI = [71.86, 79.30]), N6 (β = -0.05, CI = [-
1.19, 1.08]) and E6B (β = -0.07, CI = [-1.21, 1.07]) were 
nearly identical. E6B1 (β = -0.95, CI = [-2.09, 0.18]) and 
E12S (β = -1.65, CI = [-2.78, -0.51]) achieved a match of 
74.6% and 73.9%, respectively. N2 (β = -1.91, CI = [-3.04, -
0.77]) and E2 (β = -1.91, CI = [-3.05, -0.78]) performed equal 
(73.7%). The worst match was obtained for E24 (72.7%) and 
E12R (72.4%). Given that the predictive matches exhibit 
large variability, we took a closer look at the best performing 
model for each participant. Although deviations from the 
standard model resulted in lower mean predictive matches, 
both biased models (E6B and E6B1), the more complex E12S 
model as well as the simplified N2 model showed a higher or 
least same number of cases in which each model performed 
the best compared to all other models (Fig.2; middle row). 
The E2 model showed the highest mean predictive match in 
the cases where it outperformed all other models for a 
participant (Fig.2; bottom row). Furthermore, these cases 
were relatively frequent, see middle row of Fig.2. 

We further asked to what extent the individuals’ best 
explaining models could contribute to an overall 
improvement in predictive accuracy. When averaging over 
the highest predictive matches per participant, the E6 model  

Figure 1: The learning curves illustrate the likelihood (top row) of selecting a stimulus (colored lines) as well as the expected 
value of reward (Q-value; bottom row) of each stimulus over the course of the training phase of the Frank task (x-axis). The 
higher the value (y-axis), the more likely a stimulus is chosen and the higher is the subjective reward probability. Stimulus 
means the indexed (discrete) Q-state. Note that in case of models with two Q-states, each graph represents the subjective 
reward probability of either “good” or “bad” stimulus category, whereas in the models with more than six Q-states, each 

stimulus consists of multiple subjective reward probabilities depending on previous intrinsic and/or extrinsic trial outcomes. 
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Figure 2: Predictive model performance. Mean predictive 
matches per participant (horizontally jittered dots) and 

model (bold dots) are illustrated in the top row. The middle 
row shows the number of cases (i.e. the count) in which a 

particular model outperformed all other models. The bottom 
row depicts the mean predictive match per model in these 

cases. 
 

could be outperformed by 1.9% with a mean predictive match 
of 77.5%. Notably, when contrasting the decision outcomes 
of models and participants in terms of collected reward, the 
models consistently outperformed participants irrespective of 
the adjustments that were made to the Q-learning formula. 
Descriptively, participants were rewarded in 58.5% of their 
performed trials, whereas on average, model predictions on 
the same data achieved reward in 64% (E24) up to 69% (N2) 
of the trials, therefore signaling overestimation of the 
predicted reward.  

Learning Rate                                                                         
A linear mixed-effect regression with model type and 
expectancy group as interacting fixed effects and participants 
as random effect was performed to assess how the size of the 
expectancy effect regarding 𝛼!"#$ differs across model types. 
Group and model type were referenced to the placebo 
condition and E6 model, respectively. Residual maximum 
likelihood estimation was applied to the mixed model. 
The results are illustrated in Tab.1. Density curves for model-
dependent expectancy effects on 𝛼!"#$ are shown in Fig.3 
(top). A total of 10.1% of the overall variance in 𝛼!"#$ can be 
explained by individual differences, whereas 67.8% is 
explained by the fixed effects. Overlap of the 95% confidence 
intervals of the marginal means for the model types with 
significant group interaction terms (E2: [-3.58, -2.93] and [-
3.48, -2.76]; E12S: [-1.66, -1.01] and [-1.18, -0.46]; E24: [-
1.20, -0.55] and [-0.79, -0.08]) indicate no expectancy effects  
 

 
 

Figure 3: Distributions of sampled group effects per model 
on logit-scale for  𝛼!"#$ in the top figure. The bottom figure 

shows the regression-predicted  𝛼!"#$ transformed to 
original scale per model type and expectancy group. 

 
on 𝛼!"#$ in these model types, whereas the other model types 
are predicted to show the same strength in group effect 
according to the regression results depicted in Tab.2. 
Regarding the size of 𝛼!"#$, the coefficients involving both 
models with initial bias (E6B and E6B1) translate to a 
numerically higher overall 𝛼!"#$, whereas, in contrast, the 
simplified model (E2) features a numerically lower overall 
𝛼!"#$ as depicted in Fig.3 (bottom). 

Remarkably, the three most rewarded participants were 
best described by models with only two Q-states. The 
individual reward count relative to the trial count was the 
highest in participants performing best under the E2 model 
(63.3%), followed by E6 (60.2%), E6B (60.0%), E6B1 
(58.0%), E24 (55.8%), E12S (55.8%), E12R (47.3%). 

Discussion 
Our aim was to test for antidepressant expectancy effects on 
a computationally obtained estimate for reward learning and 
to explore different Q-learning model structures in order to 
improve predictive model performance. For this purpose, 
participants were allocated to two groups that differed 
regarding verbal instructions on treatment efficacy (open-
label placebo vs. sham antidepressant). We observed a robust 
expectancy effect on the 𝛼!"#$ mainly across models 
involving six Q-states, and a rather small account of the 
conducted model adjustments in explaining variance of the 
predictive match. Given that E6 is the model with the highest 
predictive match on average, and given that this model is the 
best match to the task structure, the average participant 
behaved like an ideal learner, and the presence of a positive 
antidepressant treatment expectation was observed. Even 
though the average participant was ideal in terms of learning 
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Table 1: Results of linear mixed-effect regression for logit-
space 𝛼!"#$. Kenward-Roger approximation was used for p-

value computation. 
 

  𝛼!"#$(𝑙𝑜𝑔𝑖𝑡)	

Predictors Estimates CI p 

(Intercept) -1.41 -1.74 – -1.08 <0.001 

E2 -1.84 -2.23 – -1.46 <0.001 

E6B 1.40 1.02 – 1.78 <0.001 

E6B1 2.07 1.69 – 2.45 <0.001 

E12S 0.08 -0.30 – 0.46 0.692 

E12R 0.22 -0.16 – 0.60 0.263 

E24 0.53 0.15 – 0.91 0.006 

Sulpiride 1.13 0.64 – 1.61 <0.001 

E2 * Sulpiride -0.99 -1.56 – -0.43 0.001 

E6B * Sulpiride -0.44 -1.00 – 0.13 0.129 

E6B1 * Sulpiride 0.05 -0.52 – 0.62 0.860 

E12S * Sulpiride -0.61 -1.18 – -0.05 0.034 

E12R * Sulpiride -0.32 -0.89 – 0.25 0.268 

E24 * Sulpiride -0.69 -1.25 – -0.12 0.018 

Random Effects 
σ2 0.57 

τ00 subj 0.26 

ICC 0.31 

N subj 55 

Observations 385 

Marginal R2 / 
Conditional R2 

0.678 / 0.779 

 
the task structure, there was a notable fraction of participants 
that gained more reward, and were better described by a 
model that was much simpler than the correct model for this 
task. We observed the lowest marginal means for 𝛼!"#$ in the 
simplified model (E2) and the highest in the biased models 
(E6B/E6B1). Expectancy effects were only observed in 
models with a sufficient amount of 𝛼!"#$, indicating that 
expectancy manipulation only worked in those participants 
showing at least some RL capabilities. To our surprise, 
participants performing under the E2 model received the 
most rewards relative to their counts of performed trials. This 
indicates a low 𝛼!"#$ that is constant throughout the task to 
be highly adaptive to the Frank task. Contrary to the simple 

learners, high learning rates in participants with biased initial 
decisions may point at the necessity of quickly relearning 
reward values after realizing that the initial reward 
expectations were inappropriate. Models with time-based RL 
parameters considering contextual changes and exploring 
further unintended task learning structures would advance the 
understanding (cf. Eckstein, Wilbrecht & Collins, 2021).  

In the same regard, as the predictive match varied strongly 
between participants, the appropriateness of plain vanilla Q-
learning as a description of observable behavior clearly 
differed between individuals. This raises the need for 
integrating different sources of reward value generation into 
reinforcement learning approaches for cognitive modeling. 
Some of the performed model adjustments could map such 
relationships as for example the biased models. Decisions 
within a probabilistic RL task may be biased by task-
independent weights, as for instance task instructions (Doll et 
al., 2009). In our study, participants were advised to stay with 
the more rewarding stimulus, although it may have not been 
rewarded at times. Therefore, in a reasonable number of 
participants, such an instruction could have been represented 
as initial Q-value bias. Future approaches could aim at 
parametrizing the initial bias probabilistically such that 
instead of working with fixed values as in our study, the bias 
would be estimated using sampling methods. 

The treatment effect observed in the current study is in line 
with previous findings of enhanced 𝛼!"#$ via expectancy-
driven placebo intervention (Turi et al., 2017). Analogous to 
this, we used verbal instructions to modulate expectations, 
but without controlling for baseline performance. More 
positive expectations are also thought to enhance DA-
mediated RL (de la Fuente-Fernández, 2009). Taken together 
with the proposed blunted RL in anhedonia, treatments with 
the aim of facilitating anhedonia may want to consider 
enhancing striatal DA activity by the use of contextual factors 
similar to expectancy enhancement in order to trigger striatal 
DA activity and thereby improving RL as the potential origin 
of symptom development. This could comprise instructions, 
whereas the direct neural target of such instructions remains 
unclear.  A possible mechanism might rely on the induction 
of uncertainty (Tobler, Fiorillo & Schultz, 2005), which is 
thought to evoke tonic DA activation and was proposed to 
facilitate learning (Monosov, 2020). 

Taken together, the present results shed light on 
converging evidence for the strength of expectation effects 
on reward learning, and suggest that the role of DA in RL 
mechanisms via induction of antidepressant expectation 
holds additional potential for improving a part of depressive 
conditions. The link between expectancy effect and reward 
processing could especially be of importance for a better 
understanding and development of clinical interventions. 
Furthermore, we conclude that a large proportion of 
interindividual variability in model-free reward learning 
could not be accounted for by restricting or extending the 
number of reward representations allowed per stimulus, 
which shifts the focus to other promising sources of reward 
value generation. 
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