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Abstract 

 
Some evidence in very recent psychological studies have 
demonstrated that motor simulation ability is crucial for the 
correct understanding of social intentions. The present study 
was conducted first to confirm that the nature of the motor 
intention leads to early modulations of movement kinematics. 
Then, we tested whether humans could read an agent’s 
intention when observing the very first element of a complex 
action sequence. Results revealed early variations in 
movement kinematics and further showed that human agents 
can use these deviants to distinguish above chance level 
between three different social actions. Similar performance 
levels were found using an artificial classifier (Neural 
Network) and this procedure demonstrated furthermore that 
decisions could be taken on the basis of information contained 
in the first 500ms of movement kinematics. Taken together 
these results confirm the importance of motor simulation for 
adapted social interaction, and suggest how robotic adaptive 
controllers may use as input low-level motor information (e.g. 
kinematics) to afford biologically inspired social behaviors. 

Keywords: Classifier; kinematics; sequences; motor control; 
intentionality: social interaction; internal models; prediction; 
motor planning; biological movement. 

Introduction 

 

In everyday activities, the grasping of an object might be 

performed with different prior intentions: e.g. touch, move, 

throw or pass. Ansuini et al. (2008) have measured the 

prior-to-contact grasping kinematics for reach-to-grasp 

movements performed toward a bottle filled with water. By 

comparing hand shaping across tasks involving different 

subsequent actions - pour the water into a container; throw 

the bottle; move the bottle from one spatial location to 

another - the authors demonstrated how the prior intention 

in grasping the object strongly affected the positioning of 

the fingers during the reaching and the contact phase of the 

action (Ansuini, Giosa, Turella, Altoè, & Castiello, 2008). 

In another series of studies, Becchio and collaborators 

investigated the effects of social context on reach-to-grasp 

actions. They found initial adjustments reflecting specific 

planning strategies (Becchio, Sartori, Bulgheroni, & 

Castiello, 2008a) as well as online adjustments (Sartori, 

Becchio, Bulgheroni, & Castiello, 2009) when performing 

under social context (see : Becchio et al., 2010 for a 

review). 

More recently, researchers have gone one step further to 

suggest that not only end-point constraints and social 

contexts affect movement kinematics, but that these 

deviants may be used to read motor intention. For example, 

when observing actions performed under social context or 

not, Castiello and collaborators demonstrated that humans 

can successfully use kinematic cues of reach-to-grasp 

movements to predict the final goal of the action (Sartori, 

Becchio, & Castiello, 2011). Similar results were also found 

using point-light displays of simple reach to grasp 

movements (Manera, Becchio, Cavallo, Sartori, & Castiello, 

2011). However, in these studies, the classification rates 

were obtained under a forced two-choice paradigm, and for 

the most subtle differences (cooperative vs individual 

preferred speed or competitive vs fast speed) the 

classification rates were very small (near 50%).  

In the present work, we wanted to study the capacity of 

humans to read motor intention in a sequence of 2 motor 

elements. One novelty of this study is that the sequences 

were performed entirely during an interactive situation with 

a con-specific, without any interruption or verbal instruction 

between the sequences. As such, we recorded sequential 

actions during an ecologically inspired task (Jungle Speed), 

a simple face-to-face game using a unique manipulated 

object. Our main focus was to compare human and artificial 

categorization performances for three different sequential 

actions that took part during the game. To test the 

hypothesis that kinematics alone is sufficient to read social 

intention, we fed the artificial classifier with movement 

kinematics only. 
Confronting Jacob & Jeannerod’s (2005) reading motor 

intention hypothesis, we hypothesized that human agents are 

able to read motor intention through the simple observation 

of arm kinematics of the first element of a 2-sequence 

action. This is possible due to the fact that arm kinematics 

of the reach to grasp movements reveal specific deviants in 

function of goal intention from an ideal optimized 

trajectory. Finally, if motor simulation is sufficient, then an 

artificial neural network should be able to learn from the 

deviants and predict as well as humans, the motor intention 

of an observed agent. In the following section, we first 

describe the methods we used to make the observation 

videos (Part A), which were then played to human agents 

(Part B) and used as input parameters to an artificial neural 

network (Part C). 

Creating Stimuli 

Two adults participated in the study, one experimenter 

and the other as subject. Both participants were right handed 
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as verified with the Handedness questionnaire (Oldfield, 

1971). They had no prior knowledge of the experiment and 

provided informed consent before participating in the 

experimental session that lasted approximately 90 minutes. 

The subjects’ movements were recorded using a (1) a video 

camera (Sony Handycam) and (2) 4 Oqus infrared cameras 

(Qualysis).5 infrared reflective markers were placed on the 

thumb (tip), index (base and tip) and the wrist (scaphoïd and 

pisiform). Cameras were calibrated before each session, 

allowing the system to reach a standard deviation smaller 

than 0.2 mm, with a 200 Hz sampling rate 

 

The game. The object that was to be manipulated by 

the subject was a wooden dowel of width 2 cm and height of 

4 cm that was placed precisely 20 cm in front of the starting 

position (‘pick’ position). The subject started each trial by 

pinching index and thumb together at the starting position 

(see Figure 1). Each trial, the subject's task was to reach and 

grasp the dowel between thumb and index finger in order to 

move it from the initial position to one of the three ‘place’ 

positions during an adapted version of the jungle-speed 

game. The game consisted in 4 blocks of approximately 40 

rounds. First, the subject’s task was to pick and place the 

dowel at the ‘Play’ position in order to set the initial 

condition of the game. Then, at the ‘go’ signal (high pitch) 

both participants reached for the dowel as quickly as 

possible. The competitive move was not recorded and is not 

part of this study, although, this was indeed intentionally 

omitted during instructions given to the subject. During 

competitive move, the first who have grasped the dowel, 

won the round and scored a point. The second phase 

consisted in a rewarding phase. The dowel was first always 

repositioned at pick position and the subject wait at starting 

position for the next audio tone (low pitch). During the 

rewarding phase just after the competitive move, the subject 

has to reach to grasp the dowel and place it either at the 

‘You’ position if the experimenter scored during 

competitive move, or at the ‘Me’ Position if the participant 

scored during competitive move. The game went on until 

one of the two players reached 20 points. Thus, we recorded 

twice as much ‘Play’ moves than ‘You’ or ‘Me’ moves 

during the game. Nonetheless, after 5 rounds of training to 

set up the game rules, no other verbal instructions were 

given during the blocks. The three different positions 

(‘Play’; ‘Me’; ‘You’) where the dowel had to be placed 

were delimited by visual marks directly placed on the 

tabletop. 

The recordings. The best 16 recordings of each 

category (‘Play’, ‘Me’ and ‘You’) were extracted using 

VirtualDub and kept for future use as stimuli. Each 

sequence was delimited with a 1-second pre-trial, i.e., 

before the initial movement onset, and was cut exactly one 

frame before the index finger contacted the object. Movies 

were compressed with FFdshow codec (MJPEG) at 50 

frames per seconds with a screen resolution of 720x576. 

Video clips were coupled with the recordings of the arm 

kinematics using 4 Oqus infrared Cameras (Qualisys). 

Infrared reflective markers were placed on the index (base 

and tip), the thumb (tip), the wrist (scaphoïd and pisiform) 

of each participant, as well as on the object. Cameras were 

calibrated before each recording session, allowing the 

system to reach a standard deviation smaller than 0.2 mm 

for all three absolute positions at a 200 Hz sampling 

frequency. Care was taken as to provide no contextual 

information within the video clips (torso, gaze, face 

expression), i.e., only the hand and the target object were 

fully in view. Velocity profiles are presented in Figure 2 and 

show that play, me or you sequences show deviations during 

both first and second motor element (amplitude and the 

width of the bell-shaped curves, first and second peaks of 

velocity, time position for local minima). 

 

 

Human Categorization Performance 

The short video clips were presented to a panel of human 

subjects to test whether human agents were able to predict 

Figure 2. Mean velocity profiles for the three 

categories of sequences. Each bell-shape curve 

corresponds to a motor element. The first is the reach to 

grasp element, and the second bell-shape curve is placing 

element. The local minima are used to segment the two 

motor elements and compute movement times. 

Figure 1. Schematic representation of the 

experimental setup. 
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the goal of a sequential action when shown only the first 

sub-element of a sequence, i.e., the reach movement.  

 

Participants, Apparatus and Software. Twenty-six 

young adults (mean age: 21.82 ± 2.76 years, range = 18 - 29 

years) participated in the study. All subjects were right 

handed (Oldfield, 1971) and had no prior knowledge of the 

experiment. Subjects provided informed consent before 

participating in the experimental session that lasted 

approximately 45 minutes. Participants were seated 

comfortably facing a table in a dark and silent room. For 

each trial, participants started by placing their hand on 

response keys that were delimited by tape placed directly on 

the keyboard keys. Stimuli were presented on a laptop 

computer with MATLAB software (Mathworks) with the 

PsychToolbox environment. 

 

Experimental Procedure. The participants' task 

was to answer on the keypad after each video clip 

presentation whether the social intention of the sequence 

was ‘let’s Play’ (5 key), ‘for Me’ (2 key) or ‘for You’ (8 

key). A 1-second blank screen was displayed in between 

two trials. Participants were instructed to give their answers 

as fast and as accurately as possible. They were obliged to 

provide an answer within a 4-second time window 

otherwise the trial was cancelled and presented at the end of 

the block. A feedback message was given to tell participants 

if their response was too slow. Each block consisted in the 

random presentation of a series of 48 stimuli, i.e., 16 

different video clips for each of the three categories (Play; 

Me; You). After a 5-minute pause, the next block of 48 

video clips was presented. 

 

Dependent variables and statistical analyses. The 

number of correct responses (correct prediction of the 

ongoing action) and the response times were calculated for 

each category. The dependent measures were submitted to a 

repeated-measure ANOVA with Block and Category (Play; 

Me; You) as within factors. The participants’ scores for 

each category were compared using a Chi-square between 

the observed scores and the random distribution between 

categories corrected by total the number of answer of that 

category. In other term, because the total amount of answer 

is not exactly the same between categories, we consider the 

guessing base-rate of each category separately. The alpha 

level of significance was set to 0.05. 

 

Response times. Results showed no effect of 

Block on response time, F(2,50) = 1.401, p = .256, 

indicating that participants answered with a similar response 

time in the first (M = 878, SD = 382 ms), the second (M = 

848, SD = 315 ms), and in the third block (M = 944, SD = 

316 ms). No effects of Category were found on response 

time, F(2,50) = 2.621, p=.083, indicating that participants 

answered within the same delay both for ‘Play’ (M = 900, 

SD = 294 ms), ‘Me’ (M = 866, SD = 294 ms), and ‘You’ 

categories (M = 905, SD = 300 ms). 

Number of correct responses. There was an absence of 

Block effect on classification performances, F(2,50) = 

0.102, p = .903. However, a main effect of Category was 

obtained, F(2,50) = 16.022, p < .001, η²p=.39. Post-hoc 

Scheffé analyses further showed that participants were more 

accurate for trials in the ‘Me’ category (M = 57.53, SD = 

13.02 %) than in the ‘You’ (M = 40.87, SD = 12.12 %) and 

in the ‘Play’ category (M = 47.27, SD = 13.04 %). More 

importantly, Chi-squared tests showed highly significant 

difference between observed frequencies and random 

guessing baselines for the ‘Me’ (guess rate = 36.98, 

p<.001), ‘Play’ (guess rate = 36.12, p<.001) or ‘You’ (guess 

rate = 26.90, p<.001). These results confirmed that 

performance was significantly greater than chance level. 

Categorization with Artificial Neural Networks 

In the following section, we present the simple 

feedforward neural network that was developed to 

demonstrate the possibility to categorize on the only basis of 

motor kinematics. 

 

Architecture and Learning procedure. A simple 

classification Neural Network was constructed with N 

neurons (1-23 neurons) as inputs, 3 hidden layers and 3 

output neurons (one for each category). The N size is the 

sub-selection of the total movement duration. Activation 

functions for the output layers were symmetrical and 

sigmoid, between -1 and 1.  

With this NN, the instantaneous velocity in 3D was 

calculated between the recorded positions of the wrist for 

two subsequent frames. A threshold of 20 mm.s
-1

 was then 

determined to compute the reaction time (RT) delay 

between the start of the recording and the actual beginning 

of the movement. Second, a sampling parameter was used to 

compute the average velocity across 10 frames. Third, the 

mean velocity values were converted from mm.s
-1

 to m.s
-1

 in 

order to get data within an overall range of 0 to 1. Finally, a 

training set (25%) and a test set (75%) were randomly 

picked from the 144 different kinematic recordings. 20 

different networks were trained to obtain the classification 

performance for every specific target time widow (i.e. time 

window for kinematic recognition). The mean response and 

variance across the 20 networks are described in the result 

section as the NN success rate (this value is always lower 

than the best performing network). By varying the amount 

of data fed as input, we computed the classification 

performance from multiple time windows. The learning 

procedure was a back-propagation algorithm using the 

FANN library (Nissen, 2003). Target error (to stop the 

learning) was set to MeanStandardError < 0.001 with a 

maximum number of epochs set to 10 000, and 300 

iterations between each test (evaluation of target global 

error. 

 

Classification results in function of time. Results 

revealed that the simple artificial classifier was able to 

converge in most cases. The classifier succeeded in 
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discriminating between categories for input sizes above 9, 

i.e. with a time window of 450 ms. For the input size of 9, 

single sample t-tests confirmed that all categories were 

above chance level, p < .001: ‘Play’ (M = 55.70 SD = 8.08 

%); ‘Me’ category (M = 56.70 SD =4.16 %), and ‘You’ 

category (M = 50.33 SD = 5.63 %). Figure 3 presents the 

detailed results for 12 different input sizes, between 50ms to 

1150ms with a step of 100ms. From the input size of 5 

(250ms) to 9 (450ms), only 2 categories were successfully 

recognized while the other remained below chance level; 

Below 250ms, only one category was correctly classified. 

The crucial point to note here is nevertheless the fact that by 

450ms all categories are classified above chance level; a 

point in time that occurs before the end of the first sub-

element of movement sequence confirming the capacity of a 

simple network to predict motor intention by the use of low-

level kinematics early on during motor execution.  

 

 

Discussion 

In the present contribution, we report experimental data 

confirming that motor intention can be read through the 

simple observation of movement kinematics. More 

specifically, we first showed that the three different motor 

intentions that were used in a simplified version of the 

Jungle Speed game (Asmodee eds.) modified the kinematics 

of the first (reach) sub-element of the sequential action. 

Second, human agents were able to classify rapidly (<1s) 

and above chance level (>40%), the trial category when 

observing a video-clip of the reaching movement only of the 

sequence. Third, a classic feedforward neural network was 

also able to categorize motor intention through the use of 

low-level kinematic information of, once again, the reaching 

sub-element only. In the following section, we discuss these 

findings in more detail and describe how this work can help 

advance the development of future cybernetic systems that 

will afford true human-robot interactivity. 

 

Kinematics reflecting motor intention. In the abundant 

literature of manipulating actions, the effects of end-point 

constraints on the early parts of movement kinematics have 

been investigated extensively in experimental psychology. 

In individualistic situations, multiple sources have been 

reported to modify and shape hand trajectory in two-element 

sequences such as second-target distance (Gentilucci, 

Negrotti, & Gangitano, 1997), end-target orientation 

(Haggard, 1998; Hesse & Deubel, 2010) or second-action 

type (Armbrüster & Spijkers, 2006; Marteniuk, MacKenzie, 

Jeannerod, Athenes, & Dugas, 1987). In social interactive 

manipulative tasks, final-goals have also been reported as 

having an effect on reach-to-grasp kinematics such as giving 

vs. placing an object (Becchio et al., 2008a), cooperative vs. 

competitive actions (Becchio, Sartori, Bulgheroni, & 

Castiello, 2008b; Georgiou, Becchio, Glover, & Castiello, 

2007), absence vs. presence of social request (Ferri, 

Campione, Dalla Volta, Gianelli, & Gentilucci, 2011), 

verbal communicative vs. non-communicative intentions 

(Sartori, Becchio, Bara, & Castiello, 2009). The kinematic 

effects reported here are consistent with this literature and 

suggest that when planning a sequential action with multiple 

sub-elements, the requirements of the endpoint element are 

back-propagated to constrain the way the very first element 

of the sequence will be planned and performed. Thus, it is 

possible to suggest that low-level motor components may 

contain early indices that reflect the end-point motor 

intention of an agent.  

 

Reading intentions. In the present study, the first part 

of each movement was identical, i.e., the agents initiated 

their move with their hand placed on the starting pad of the 

playing area, and reached for and grasped the wooden-peg 

that was always at the same position on the table. However, 

the second part of the move was specific and directly related 

to the game intention: lift the wooden peg to take it (‘Me’ 

category), to give it (‘You’ category) or to place it on the 

table (‘Play’ category). Thus, any kinematic deviants 

observed on the first part of the sequence may be related to 

the social intention of the second part. By measuring two 

basic motor parameters (peak velocity and movement 

duration), we showed that it was possible to dissociate the 

three types of social interaction categories (Figure 2). We 

then tested the fact that human observers could use these 

deviants to classify observed actions above chance level. 

The video clips were created in order to show the first sub-

element only, without any contextual cues; care was also 

taken to cut the end of the reaching action, one frame before 

object contact, in order to avoid providing any cues on 

movement direction of the second part of the sequence. Our 

findings demonstrate that classification is possible and that 

in certain cases, the participants’ performance can be 

extremely precise (up to 67% of correct classification for the 

best of participants). But how is this possible? 

Figure 3. Results obtained with the ANN. Note that with 

an input size of 450ms, most of the networks classify the 

movements with a higher rate than chance level and before 

the end of the first motor element (vertical grey bar). 
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An alternative low-level hypothesis. It is nevertheless 

possible that the understanding of motor intention is based 

on more low-level cue readings. As suggested by the work 

of Perrett and al. (Perrett et al., 1989), the visual system 

definitely contribute to action recognition and the 

performance showed by humans could be interpreted as the 

resolution of an “inverse” problem (goal attribution) with a 

simple bayesian inference about which goal explain the best 

which action (Csibra, 2008). Indeed, despite a total absence 

of contextual cues within the video clips (body, head, eyes), 

we demonstrated in the present study that participants were 

able to read motor intention significantly above chance 

level. Hence, the subjects’ responses could be guided by the 

slight deviances from the optimal strategy (i.e. to grasp 

without any subsequent action) in the low-level motor 

kinematics. This confirms recent results presented by Stapel 

et al. (2012) who showed that in absence of contextual cues, 

kinematics could be a key source of information to predict 

intentions of ongoing actions. To go further in this low-level 

hypothesis, we conducted a second work for which we used 

a very simple artificial neural network classifier and we 

showed that this simple classifier performed as well as our 

human subjects in categorizing the three different social-

intended video-clips. Further studies, namely brain imaging, 

are needed in order to determine whether the good 

performance reached in our human individuals was due to 

direct coding of the low-level kinematic parameters or 

whether the kinematics deviants are simple by products and 

that even for simple actions, human performances engage in 

a cognitive motor simulation to read motor intention (see 

e.g. Kilner, Friston, & Frith, 2007; Kilner & Frith, 2008). 

It is to note that correct classification of the three social 

categories was far from being perfect, reaching in the best of 

cases 60% of correct identification. Hence, kinematics can 

be used for predicting ongoing actions but cannot be the 

only source, used by human agents to judge motor intention. 

It has been shown that during natural sequential task (i.e. 

preparing a sandwich), eye movements are stereotyped and 

predictive (Hayhoe, Shrivastava, Mruczek, & Pelz, 2003). 

During the task, the eye precedes the hand movements in 

systematic way ensuring a good coding of object position 

for accurate planning of arm (Johansson, Westling, 

Bäckström, & Flanagan, 2001). This coordination between 

eye and hand movements during manipulative tasks have 

extensively been tested in experimental psychology and 

have demonstrated that e.g., eye movement onset is always 

faster than hand movement onset, and the peak velocity of 

both eye and hand movements are strongly correlated, 

suggesting that they possess a coupled function. It is thus 

possible that using both gaze position and the hand 

movements kinematics, an observer would be able to 

increase the efficiency of intention reading (see also : 

(Bekkering & Neggers, 2002). 

 

Perspectives for interactive and social robotics. 

 The application of our work would be to develop 

robots that afford true interaction, i.e., being able (1) to read 

motor intention in human kinematics in order to adapt but 

also (2) to move with biological realistic kinematics, in 

order allow others to understand the intention of the robot. 

Following the data presented here, we hypothesize that a 

humanoid robot could become interactive if it moved 

following the laws of biological movement with action 

sequences that integrate back propagation of terminal 

intention. Such a phenomenon would provide the means for 

human agents to read intentionality and thus, gain in 

understanding the goal of the robot’s movements. 

Furthermore, including social deviants in the motor 

kinematics within early steps of motor sequences would also 

allow safe interaction with large industrial robots by 

affording humans the possibility of anticipating false moves 

in joint actions that share similar work spaces. 

Implementing robots with the architecture necessary to 

“afford intentionality” would need to integrate the different 

brain regions that are known to play a role in motor 

planning and motor-sensory predictive mapping. De 

Rengervé et collaborators (de Rengervé, Hirel, Andry, 

Quoy, & Gaussier, 2011) have recently reported on such an 

architecture, which included amongst other areas, the 

cerebellum and the basal ganglia. Tested on both software 

and hardware, this neural architecture has demonstrated its 

efficiency on data collected in a hydraulic robotic arm. With 

a series of imitation trials, this system demonstrated the 

capacity to learn how to perform sequential actions that 

respected biological laws, i.e., to perform movements with 

kinematics that mirror those performed by human agents. As 

such, this robot arm has demonstrated increased interactivity 

with human agents affording augmented interaction both in 

time and in space (none published results). Ongoing studies 

are now being conducted to assess whether this interactivity 

is associated to an increase in the capacity of human 

collaborators to read the robot’s intention. 

Conclusion 

We have here described experimental findings in humans 

demonstrating that it is possible to read motor intention 

through the simple observation of kinematic deviants. 

Classification capacities were significantly above chance 

level and provided human subjects the means to dissociate 

between three different socially oriented actions. We argue 

in the present study that reading intentionality may not 

depend on a high-level cognitive function as suggested in 

the psychological literature. Internal simulations may not be 

systematically required and understanding other intentions 

may in certain cases relate to a direct coding of those 

kinematic deviants that back propagate from end-point to 

early on during sequence execution; this direct coding 

would emerge through years of joint-action experiences, 

during interactions with adult con-specifics. As a first step 

to support this hypothesis, we report in the present study 

simple neural networks that were able, after learning the 

meaning of kinematic deviants, to classify the three 

categories of actions to the same degree of accuracy than 
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our human participants. These preliminary results stresses 

the importance of further developing the optimal theories of 

motor control in order to include the effects on sequential 

actions such as, back propagation phenomena of social 

context. 
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