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On the Relationship Between Entropy and Meaning in Music: An Exploration
with Recurrent Neural Networks

Greg Cox (grcox@indiana.edu)
Department of Psychological and Brain Sciences, Indiana University

1101 E. Tenth St., Bloomington, IN 47405 USA

Abstract

Meyer (1956) postulated that meaning in music is directly
related to entropy–that high entropy (uncertainty) engenders
greater subjective tension, which is correlated with more
meaningful musical events. Current statistical models of mu-
sic are often limited to music with a single melodic line, im-
peding wider investigation of Meyer’s hypothesis. I describe
a recurrent neural network model which produces estimates of
instantaneous entropy for music with multiple parts and use
it to analyze a Haydn string quartet. Features found by tradi-
tional analysis to be related to tension are shown to have char-
acteristic signatures in the model’s entropy measures. Thus, an
information-based approach to musical analysis can elaborate
on traditional understanding of music and can shed light on the
more general cognitive phenomenon of musical meaning.

Keywords: Music cognition; neural networks; information
theory; entropy.

Introduction
Music is an intriguing artifact of human culture, and one of
the challenges in music cognition is to explain how music is
capable of having meaning for the listener. Much music car-
ries meaning by virtue of associations to non-musical things
like stories and literature (Rimsky-Korsakov’s Sheherezade),
visual imagery (Mussorgsky’s Pictures at an Exhibition), en-
vironmental sounds (taxi horns in Gershwin’s An American
in Paris), symbols (the “cross” motif in the Fugue in C-sharp
minor from Book I of J. S. Bach’s Well-Tempered Clavier),
and the meaning of text or lyrics. However, music theorists
and cognitive scientists have been particularly concerned with
investigating music that lacks text and that does not explicitly
refer to anything non-musical.1

Meyer (1956) postulated that meaning in music arises from
the ability of a musical event to imply or refer to other musi-
cal events that are expected to follow it. In a later work, he
summarized his hypothesis:

Musical meaning arises when an antecedent situation,
requiring an estimate as to the probable modes of pattern
continuation, produces uncertainty as to the temporal-
tonal nature of the expected consequent. (Meyer, 1957,
p. 416)

Within a particular style, a given musical event–e.g., a dom-
inant chord–is expected to be followed by another musical
event–e.g., a tonic chord, making for an authentic cadence.

1Of course, even non-referential music is sure to remind a
listener–consciously or not–of something other than the music he
or she is currently hearing. However, these non-musical associa-
tions tend to vary widely between individuals and as such cannot be
relied upon as a basis for musical meaning.

These expectations can also be violated or ambiguous–
perhaps the dominant chord is followed by a submediant
chord, making for a deceptive cadence. In such cases, a lis-
tener experiences tension which is manifested both in subjec-
tive reports (Krumhansl, 1996) and in physiological affective
responses (Steinbeis, Koelsch, & Sloboda, 2006). Tension
and its associated affective qualities–reflecting uncertainty–
can thus be a signature of musical meaning.

Beyond suggesting a direct link between musical meaning
and tension, Meyer’s definition is readily formalized via the
concept of entropy, which is a measure of both uncertainty
and information content (more information is necessary to de-
scribe something that is difficult to predict). Other music the-
orists have made use of entropy measures in a variety of ways,
including the analysis of structure in atonal music (Hiller &
Fuller, 1967), stylistic variation in tonal music (Knopoff &
Hutchinson, 1981), and differences between musical styles
(Margulis & Beatty, 2008).

While most music theoretical studies of information in mu-
sic have focused on gross properties of style or large segments
of music, recently, modeling techniques from cognitive sci-
ence have been brought to bear on Meyer’s notion of musi-
cal meaning. Markov models and recurrent neural networks
enable researchers to quantify entropy and other information
measures by specifying the underlying predictive model a lis-
tener might have. Measures of information content in Markov
models of music can predict structural boundaries that corre-
spond to those assigned by human listeners to monophonic
(single-part) music in the minimalist style (Potter, Wiggins,
& Pearce, 2007; Abdallah & Plumbley, 2009).

However, structural boundaries are only a part of musical
meaning. If meaning is related to subjective tension arising
from uncertainty–i.e., entropy–it should be possible to corre-
late instantaneous measures of entropy (an “entropy profile”)
with momentary affective responses to music. For instance,
an authentic cadence is a point of repose and thus should be
correlated with lower entropy. A dramatic climax should be
correlated with a high value of entropy (a local maximum) as
it represents a large amount of tension. Human-derived en-
tropy profiles for Bach chorale melodies (Manzara, Witten,
& James, 1992) are in accord with these intuitions.

It is also likely that different dimensions of music (e.g.,
pitch, rhythm, harmony) contribute differently to tension and
to entropy. This notion is embodied in multiple viewpoint
models (Conklin & Witten, 1995), although since these mod-
els have only been applied to monophonic music, they tend
to focus on pitch to the exclusion of rhythmic, harmonic, and
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contrapuntal dimensions. A study of entropy as a correlate
of tension should address more than just single melodic lines,
since harmony and counterpoint are critical dimensions along
which music can meaningfully vary.

The present study investigates the extent to which entropy
can serve as a general measure of tension–and thus meaning–
in music. To that end, I present a recurrent neural network as
a predictive model of polyphonic (multiple-part) music and
compare entropy measures derived from the model with tra-
ditional music theoretical analysis. I show that features of the
traditional analysis related to subjective tension have partic-
ular signatures in the model’s entropy measures, supporting
the hypothesis that entropy underlies musical meaning.

A Recurrent Neural Network for Music
Prediction

Recurrent neural networks (RNNs) have been fruitfully used
as models of sequential prediction in many domains. In music
research, they have been used to compose monophonic music
both with (Mozer, 1994) and without (Todd, 1989) accom-
panying harmonic progressions, and to model the acquisition
and perception of tonal harmony (Bharucha & Todd, 1989).

Although Markov models have seen wider–and, arguably,
more productive–application in monophonic music than have
RNNs, Markov models are less well suited to modeling poly-
phonic music. Monophonic music is easily translated into
a sequence of discrete symbols drawn from a finite alpha-
bet. It is much less clear, however, how one might translate
polyphonic music into a language appropriate for a Markov
model, as such music includes multiple pitch sequences up-
dating at different rates with varying degrees of indepen-
dence. For instance, to describe just the pitch transitions of a
four-part piece where each part spans a diatonic octave (eight
possible pitches), a naı̈ve first-order Markov model would re-
quire a state space with 84 = 4096 points and a transition ma-
trix with 40962 = 16777216 entries, and this does not even
include any information about rhythm!2 Further, in any re-
alistic training set, only a small portion of the number of
possible transitions will be represented, leading to problems
of over-fitting and lack of generalization (though these prob-
lems can be solved in some domains with the smoothing tech-
niques described by Pearce & Wiggins, 2004). RNNs tend to
avoid these problems, since they do not require enumerating
and/or representing all state transition probabilities, but rather
the weights of the network represent only those dependencies
necessary to minimize prediction error. In addition, since the
RNN must learn its own internal representation of the input,
it will naturally converge toward representations that capture
the generalities in the training set.

It should be emphasized that, as with a Markov model of
music, no literal psychological reality is meant to be ascribed
to the structure and training procedure of a RNN. Rather, the

2By making certain independence assumptions, it is possible to
simplify a Markov model greatly, but it is not in general possible to
know, a priori, what those assumptions should be.

Figure 1: Schematic of the recurrent neural network used in
this study, assuming 4 distinct parts. See text for details.

network should be seen only as a statistical model that mir-
rors the function–not necessarily the form–of whatever pre-
dictive model a human listener has acquired through musical
experience. The resulting trained network does not–indeed,
cannot–represent a listener’s entire understanding of music in
general, but is limited to representing the expectations of a
listener who is familiar with a piece of music and/or its style.

Architecture
The architecture of the RNN used in this study is shown
in Figure 1. As in Elman (1990), the network is presented
with the current state of the music, x(t), and is trained–
via back-propagation through time with a single time step
(Rumelhart, Hinton, & Williams, 1986)–to produce the state
of the music at the next time step, x(t + 1), at its output
layer. Output layer units use a logistic activation function
f (net) = 1/(1+exp(−net)), where net is the net input to the
unit. Successive layers are fully interconnected.

Time Musical time is divided into discrete “time steps” of
equal length, and the input, x(t), describes all musical events
(pitches and note onsets) occurring during that time step.

Input/Output Representation The input at time t, x(t), is
the concatenation of several vectors representing, for each
part (i.e., distinct instrument or timbre, e.g., violin, piano,
etc.) in a piece of music, the part’s state along two di-
mensions: pitch and rhythm. The pitch dimension is rep-
resented in a localist fashion, with one unit corresponding
to each absolute pitch (in twelve-tone equal temperament)
that could occur in a part, including a unit representing si-
lence or a “rest”. At the input layer, a pitch unit is ac-
tive (1) if it is currently sounding and zero otherwise; at the
output layer, a pitch unit’s activity represents the degree to
which that pitch is expected at the next time step. The pitch
state vector πp(t) for part p at time t may thus be expressed
πp(t) = 〈πp0,πp1, . . . ,πpn,πpREST 〉 for possible pitches 0 . . .n
and the special REST “pitch”. The input layer also contains
a set of units representing all pitches that are sounding at the
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current time across all parts, to allow for generalization of
pitch content between parts. However, the network is only
trained to predict the pitches of each part individually, not
this aggregate pitch content.

An additional unit for each part represents its state along
the rhythmic dimension: this unit is active (1) when the cur-
rent time step contains a note onset within that part, and is
otherwise inactive (when the part is silent or sustaining a pre-
vious pitch). At the output layer, this unit can be interpreted
as the probability ρp(t + 1) that part p will contain a note
onset at at time t + 1. Note that the assumption of indepen-
dence between rhythm and pitch in the input/output repre-
sentation permits the analysis of each component separately.
However, independence of representation does not guarantee
probabilistic independence, as both pitch and rhythm units
are treated equally in the network’s internal representation in
the hidden layer.

Hidden Layer Hidden unit activations are a function of the
current input, the hidden layer at the previous time step (also
called the “context” layer), and each unit’s own prior activa-
tion. The activation of hidden unit hi at time t is

hi(t) = τi f (Σ jwi jx j(t)+Σkwikhk(t−1))+(1− τi)hi(t−1),

where f (·) is the logistic activation function described above,
wi j is the weight from input unit j to hidden unit i and wik is
the weight from context unit k to hidden unit i. The different
time constants τi cause the hidden units to change at varying
rates over time, permitting the representation of multiple time
scales at the hidden layer (Mozer, 1992).

For simplicity, I assume that the number of hidden units
with time constant τ is Nτ = bτN1c where N1 is the number
of units with τ = 1 and b·c is the floor function, ensuring that
there will be only a finite number of hidden units and time
scales represented. In the simulations reported here, each τ

is the reciprocal of either a power of 2 or a power of 3, i.e.,
τ = 2−γ or τ = 3−γ for γ = 0,1,2, . . .. The choice of time
constant scales based on 2 and 3 derives from the predomi-
nant metrical subdivisions (duple and triple meters) in West-
ern music, which is the domain of the current study. Thus,
the hidden layer best represents information at time scales
that are likely to be most salient.

Measures of Entropy
Although there are many ways to measure entropy within the
current modeling architecture of the RNN, I will focus on
four simple measures, three of which are used in the subse-
quent musical analyses. For any part p, the pattern of activity
over its pitch units (including the “rest” pitch) at the output
layer, πp, can be normalized to sum to one, such that it can be
considered a probability distribution over pitches. Then, the
entropy with regard to pitch in part p at time t is H pitch

p (t) =
−∑

n,REST
i=0

[
πpilog(n+1)(πpi)

]
, where the base of the logarithm

normalizes the entropy to the range from zero to one. Simi-
larly, the entropy with regard to rhythm in part p at time t is
Hrhythm

p (t)=−ρp(t)log2(ρp(t))−(1−ρp(t))log2(1−ρp(t)).

To measure entropy over the entire ensemble rather than
within each part, an aggregate pitch probability vector π∗ =〈
π∗0,π

∗
1, . . . ,π

∗
n
〉

is created, where π∗i = C ∑
P
p=0 πpi, i.e., the

sum of the probability assigned to pitch i by each of the P
parts, normalized (by constant C) to sum to one. The entropy
of π∗ can then be computed. The rhythmic entropy of the
ensemble is computed over the joint distribution of the on-
set probabilities of each part. Pitch entropy represents uncer-
tainty about what pitches will occur, while rhythmic entropy
represents uncertainty about when those pitches will occur.

Long-Term and Short-Term Models

As in work with multiple viewpoint models of music
(Conklin & Witten, 1995), for each piece of music to be ana-
lyzed, two of the above-described networks are trained. The
first network is trained on a representative sample of a par-
ticular style of music and is meant to represent more global
stylistic characteristics acquired by the listener over a longer
time span, hence it is called the long-term model (LTM). A
second network is trained on just a single piece of that style
and is meant to represent knowledge of that piece in par-
ticular acquired over less time, hence it is called the short-
term model (STM). This distinction is akin to that between
“schematic” (LTM) and “veridical” (STM) knowledge made
in Justus and Bharucha (2001). Both models produce pat-
terns of activation over output units representing the expected
pitch and rhythmic state of each part. These patterns can be
combined to form an aggregate prediction from both the STM
and LTM models3. Following Pearce, Conklin, and Wiggins
(2005), this combination is a weighted geometric mean of the
output activations for each dimension of each part of each
model, where the weight is inversely proportional to the en-
tropy of the activity over the relevant dimension of each part.
For example, the aggregate activation of pitch πi in part p
(aggregate rhythm activation is analogous) would be

π̄pi =

[(
π

ST M
pi
) 1

H pitch
ST M

(
π

LT M
pi
) 1

H pitch
LT M

] 1
1

H pitch
ST M

+ 1
H pitch

LT M .

The effect of combining the STM and LTM in this way is to
emphasize “points of agreement” between them. For exam-
ple, if they both strongly predict a particular pitch, the aggre-
gate activity ascribed to that pitch will be very high. If one
model is ambivalent (high entropy) while the other is certain
(low entropy) of a particular pitch, the aggregate activity will
accrue to the pitch of which one model is certain. If both
models are certain but disagree, activity will be diffused over
all possible pitches, leading to high entropy of the aggregate
STM-LTM prediction.

3Justus and Bharucha (2001) found that schematic (LTM) and
veridical (STM) knowledge made independent contributions to mu-
sical expectations; their results are consistent with a weighted geo-
metric mean of those two sources of information.
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Applying the Network: Haydn’s String Quartet
Op. 20, No. 3, First Movement

Because Markov models are already well-suited to modeling
monophonic music and RNNs have already been shown to
deal well with monophonic melodies, even those with accom-
panying harmonic progressions, I wanted to explore poly-
phonic music that did not have a simple “melody plus chords”
texture–in other words, music that has been difficult to model
with previous approaches. There is also an inherent diffi-
culty in correlating entropy with tension, since tension in a
listener is not directly observable. As such, I will consider
tension as it is normatively described by traditional music the-
oretical analysis. The analytical procedure described below
has been replicated with a variety of corpora, including Bach
chorales, Chopin piano preludes, and Schönberg’s Pierrot Lu-
naire, with similar results regarding the relationship between
entropy and traditional accounts of tension. To show how an
analysis of entropy relates to traditional approaches, I report
here the results of a single analysis in detail.

The Op. 20 string quartets of Joseph Haydn share many
stylistic characteristics–for example the use of “sonata form”,
a typical classical dramatic form, in the first movement of
each quartet. Yet despite the regularities among the quartets
and between their first movements in particular, they contain
many deviations from standard practice. Both global regular-
ities and local idiosyncrasies contribute to the dramatic con-
tent of these pieces and make them prime targets for analysis.

The third quartet, in G minor, is particularly dramatic, con-
taining prolonged periods of tension, metrical ambiguity, and
various surprising moments. I used the above-described RNN
model to calculate measures of entropy for each time step in
the first movement of this quartet. I then compared these mea-
sures to features derived from a music theoretical analysis of
the piece in terms of its formal and dramatic structure.

Training
All pieces on which the RNN were trained were encoded
as MIDI files, with each instrument (two violins, viola, and
cello) assigned to a different part and thus separately repre-
sented in the RNN’s input and output layers. In total, 247
units were used to represent the input (pitch and rhythm units
for all four parts separately, as well as the aggregate pitch
content) and 177 units were used in the hidden layer. The
back-propagation learning rate parameter was set at 0.0625
and time steps were set at sixteenth-note duration.

The LTM was trained on the first movements of all six
quartets in Op. 20 (19006 total time steps). All pieces of the
training set were transposed to either C-major or C-minor as
appropriate to eliminate effects of absolute pitch (since the
model uses a localist pitch representation). The LTM was
trained in cycles, during each of which it was trained on all
six training pieces in random order. Training continued until
mean accuracy–defined as the mean probability assigned to
each time step in the training pieces–did not change by more
than 0.0001 for 10 consecutive cycles. In all, the LTM was

trained for 2000 cycles and achieved a final accuracy over the
entire training set of 0.276 (range: 0.179 to 0.383).

The STM was trained on only the first movement of Op. 20,
No. 3 (4332 total time steps). Using the same stopping crite-
rion, the STM was presented with this movement 2500 times
and achieved a final accuracy of 0.751. The combined LTM
and STM models, which produced the output analyzed below,
achieved an accuracy of 0.456 on the movement.

Simulations were also conducted which varies the number
of hidden units, learning rate, and size of the LTM training
corpus (for example, by including a wider selection of Haydn
string quartet movements from Op. 17). The only major effect
of these variations was that accuracy was improved with ad-
ditional hidden units, but the form of the entropy profiles re-
mained the same; specifically, major points of inflection were
all at the same place and in the same direction.

Analysis of Entropy Profiles
The pitch and rhythmic entropy profiles derived from the
combined STM and LTM are shown in Figure 2. Only the
first repeat of the exposition (the first section of a sonata form
piece; mm. 1-94) is shown, as this will be the focus of the sub-
sequent analysis. Lacking a principled method of integrating
pitch and rhythmic entropy, they are here considered sepa-
rately, although both are assumed to contribute to a listener’s
subjective sense of tension. To enable the analysis of trends
in the entropy measures, they were smoothed by convolving
the raw entropy measures with an exponentially-decaying im-
pulse response filter with weights ψ(t) = e−λt , where decay
constant λ = 1

32 corresponds to a mean lifetime of four mea-
sures (32 time-steps). Thus, the values shown in Figure 2
represent a “memory” of the instantaneous entropy that em-
phasizes the last four measures. The following analysis owes
much to the work of Drabkin (1999), particularly pp. 105-
111. Additional analytical material may be found in Grave
and Grave (2006), especially pp. 190-192.

The only perfect authentic cadence in the exposition oc-
curs at the end of the first phrase in m. 7, where there is a
clear local minimum in pitch entropy as well as a low plateau
in rhythmic entropy4. Mm. 8-26 effect a modulation from the
home key of G minor to its relative major, B[, all the while in-
creasing the tension for a strong resolution to a B[ harmony.
This increase in tension is mirrored by increasing pitch and
rhythmic entropy, where pitch entropy reaches a local max-
imum on the second beat of m. 24 with the introduction of
a novel unison figure that prolongs the tension until the B[
resolution in m. 27.

The second theme group (mm. 27-40) maintains a con-
sistent pitch entropy while rhythmic entropy builds until the
cello’s eighth-note pulse disappears in m. 34, leaving just a
high violin melody with the other instruments holding chords
in long rhythmic values. The decrease in rhythmic entropy is

4In simulations with Bach chorales (not reported here), resolu-
tions of authentic cadences also correspond to local minima in en-
tropy measures while deceptive cadences produce no change or an
increase in entropy.
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Figure 2: Ensemble pitch and rhythm entropy profiles for the exposition (mm. 1-94) of Haydn Op. 20, No. 3, first movement.

interrupted in mm. 37-38, when pitch changes become stag-
gered between the instruments. Mm. 41-52 are more transi-
tory and fragmented, with a large drop in pitch entropy during
the violin solo in mm. 50-51 (greater certainty arising from
predicting fewer separate parts). The long, regular rhythmic
durations of mm. 53-59 continue the drop in rhythmic entropy
while the chromatic harmonies increase pitch entropy until a
break is reached at a deceptive cadence in m. 60.

This is followed by an F-major statement in mm. 61-64,
then in mm. 65-66 by an “utter non sequitur–a fortissimo fan-
fare, poised on a first-inversion B[ triad, with no compelling
relationship to the immediately preceding or following mate-
rial” (Grave & Grave, 2006, p. 190). This surprising event
is naturally accompanied by a spike in both rhythmic and
pitch entropy. Contrary to what might be implied by the B[
fanfare–strong thematic material emphasizing the new key of
B[–we are instead treated in mm. 67-70 to the opposite: a
softer, tonally ambiguous reprise of mm. 61-64. Mm. 67-70
are at a softer dynamic, played by solo violin instead of the
entire quartet, and in a more restricted and chromatic melodic
range. This unexpected consequent is assigned the highest
pitch entropy in the entire exposition.

Rhythmic entropy continues to build until a resting point is
reached at m. 70 on an unclear tonality. The succeeding violin
solo and its accompaniment in mm. 71-77 is metrically am-
biguous, implying a triple meter when in fact the duple meter
still prevails. In this instance, the gradually diminishing en-
semble rhythmic entropy is not in accord with this ambiguity,
which should result in a higher rhythmic entropy for this pas-
sage. However, the rhythmic entropy of the individual parts,
shown averaged in Figure 3, does show the expected stag-
gered increase from mm. 71-77.

The remainder of the exposition is on more solid tonal
and metrical footing. Of particular interest is the jump in
pitch entropy in mm. 85-86, corresponding to another in-
stance of the unison figure from mm. 24-25 and serving the
same purpose–to prolong tension before before reaching a
harmonic resolution–and producing the same effect on the
entropy profile–an increase in pitch entropy whilst rhythmic

Figure 3: Rhythmic entropy averaged between parts for mm.
71-79 of Haydn Op. 20, No. 3, first movement.

entropy is unaffected. Although rhythmic entropy reaches a
local maximum at m. 90 and begins to fall after a constant
eighth-note pulse is established in the violins, pitch entropy
increases toward the end of the exposition, reflecting the fact
that the end of the exposition can be followed by either a re-
peat of the exposition (return to m. 1) or the start of the next
section. In both cases, the rhythmic surface is the same, but
the pitches are different and are assigned to different instru-
ments, thus it is logical that there would be more uncertainty
about pitch than rhythm at the end of the exposition.

Discussion
Analyses like the one presented above show that entropy de-
rived from a predictive model of music can correspond to dra-
matically important features of music. Specifically, the en-
tropy measures employed are sensitive to the calming effect
of cadences (m. 7), the build-up of tension prior to resolutions
(mm. 8-26), differential effects of textural change (mm. 27-
60), and the shocking effects of interruptions (mm. 24-25, 85-
86) and their consequents (mm. 65-70). Because a listener’s
subjective sense of tension is also affected by these features,
this suggests a relationship between entropy and tension–and
thus, perhaps, to musical meaning.

It is, perhaps, remarkable that such a relationship may be
found, given the limitations of the current model. The model
includes no information about dynamics, timbre, and expres-
sive timing. A more realistic pitch representation, while in-
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creasing the model’s complexity, might also improve its per-
formance (Mozer, 1994). Further, the use of a RNN at all
imposes severe limitations on the approach outlined in this
paper. While RNNs enable the analysis of music that is not
amenable to other modeling techniques, they are slow to train,
limited in the size of the corpus on which they can be trained,
and, in the form presented here, cannot generalize to other
ensemble types. The application of computational cognitive
models to music is still in its infancy, and future research is
sure to improve upon the techniques explored thus far. Fu-
ture work must also compare model-derived entropy mea-
sures with human tension judgments (as in Krumhansl, 1996).
This will elaborate on the relationship between entropy and
tension, including the contributions of different sources of un-
certainty (e.g., pitch and rhythm) to overall tension.

Even given the limited state of our current knowledge, it is
possible to show that meaningful musical features correlate
with features of musical entropy, given an appropriate pre-
dictive model. If human listeners have a similar predictive
model “in mind”–consciously or not–as they listen to music,
this provides great insight into the nature of music cognition
and creation. The reasons why certain patterns recur within a
style and that listeners have consistent responses to those pat-
terns and violations thereof are not arbitrary–they can be un-
derstood in terms of prediction and uncertainty. With the ad-
vent of formal cognitive models, we can leverage this princi-
ple to better understand music that resists conventional anal-
ysis, for example, styles with few examples (e.g., the oeuvre
of many idiosyncratic modern composers) or for which there
is insufficient access to primary sources (e.g., historical and
ethnomusicological studies). While more sophisticated meth-
ods will allow us to better elucidate the nature of entropy in
music, it is clear that Meyer’s (1956) thesis is still a viable
approach to understanding the nature of meaning in music.
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