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Abstract 

Differences in the neural representation of conceptual 
categories (such as buildings, tools, animals, plants, vehicles) 
are suggested by studies on brain-injury patients and by those 
using imaging techniques. Evidence that such conceptual 
distinctions are encoded spatially has been highlighted by 
fMRI techniques (Haxby et al, 2001), whereas ERP studies 
have identified differences in the temporal domain (Kiefer, 
2001; Paz-Caballero et al., 2006). The study described here 
uses a machine learning technique (Dalponte et al., 2007), 
previously applied to Brain-Computer Interaction (BCI) tasks, 
to show that conceptual categories can be identified from 
single-trial spectral EEG responses to visually and auditorily 
presented stimuli in single participants. We found that using 
features extracted from frequency spectra, the categorial 
membership of a single stimulus presentation in one of three 
classes (animals, plants, tools) can be predicted with an 
average accuracy of 80%. 

Keywords: Conceptual Categories, Semantic Spaces, 
Machine Learning, EEG. 

Introduction 
Data about brain activity are providing exciting new insights 
on conceptual knowledge. Studies such as Martin et al 
(1996) provided evidence of topographical encoding of 
conceptual information through fMRI; machine learning 
techniques have been successfully used to classify brain 
activity recorded with such techniques into conceptual 
categories (Haxby et al 2001, Hanson et al 2004, Shinkareva 
et al 2008).  

All such studies rely on spatial information about neural 
patterns collected through fMRI. However, theories of 
conceptual memory based on the hypothesis that conceptual 
knowledge is distributed, taking the form of a ‘conceptual 
map’ (Spitzer, 1999) or ‘word web’ (Pulvermüller 2002), 
would predict a temporal or frequency encoding for 
conceptual information as well, involving some form of 
synchronization between the distinct brain areas activated in 
response to a concept. And indeed, several ERP studies 
reported by Pulvermüller (2002) found evidence for a 

temporal encoding of conceptual knowledge—e.g., for 
distinctions in the temporal domain between action verbs 
and nouns. To our knowledge, however, no previous study 
has attempted to identify regularities in conceptual 
knowledge activation on the basis of frequency information 
gathered through EEG. Yet if this is the case, and if similar 
categorical distinctions can be made with these techniques, 
our investigations of conceptual knowledge will greatly 
benefit, as the much lower overhead of EEG studies would 
make larger-scale investigations possible, particularly 
explorations of conceptual knowledge not directly 
concerned with issues of topography. The temporal 
resolution of EEG, relative to fMRI, also makes it possible 
to disentangle the effects of different stages of the process 
of perception and categorization. 

In this paper we report the results of just such a study. 
Spectral EEG data collected from healthy participants 
presented with visual and audio representations of concepts 
belonging to three categories—animals, tools, and plants—
were classified using supervised machine learning methods 
developed for BCI applications (which are typically applied 
to lower level cognitive states such as imagined 
movements). To examine the “steady-state” conceptual 
representations that we assume are the end result of 
perceptual processes, only the period after stimulus offset 
was considered. We found that these methods are able to 
classify neural patterns with excellent accuracy—i.e., that 
enough information is encoded in frequency spectra to allow 
discrimination between conceptual categories. 

This paper is organized into six sections. After this 
introduction a background section presents the state-of-the-
art and theoretical motivations. In the third section the 
experimental methodology is presented, and after that the 
main concepts of the data analysis are explained. 
Experimental results are presented in the fifth section. The 
last section is devoted to the discussion of the results. 
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Background 
The earliest evidence for category-specific brain activation 
was provided by studies on patients with brain injuries 
(Warrington & Shallice, 1984; Caramazza & Shelton, 
1998). Subsequent evidence was provided by functional 
brain imaging (Martin et al., 1996). For example, Haxby et 
al (2001) demonstrated with an fMRI study that the 
activation associated with semantic categories was 
distributed in the brain, and that areas outside of the 
principal foci of activity that are examined in 
neuropsychological studies could be used to successfully 
predict category membership in single participants.  

Such studies also provided evidence that the location of 
these activations is consistent across individuals and across 
tasks, and that multiple areas of the brain are activated for 
each conceptual category (Martin & Chao, 2001; 
Pulvermüller, 2002). These results led to theoretical 
proposals such as Pulvermüller’s ‘word web’ idea (2002), 
according to which concepts are represented in ‘neuron 
webs’ with distinct cortical topographies. This suggests the 
need for some form of synchronization between the firing of 
these neurons, either in the form of time synchronization or 
of frequency synchronizations. ERP studies such as Kiefer 
(2001), and later Paz-Caballero and colleagues (2006) found 
category specific differences in event-related potentials 
across groups of stimuli and participants.1  

 

Experimental Design 

Participants 
The data were collected at the University of Essex BCI Lab. 
Four monolingual native speakers of English participated in 
the study. All four were male, with a college education, and 
reported that they did not suffer from any psychological or 
neurological condition. Their mean age was 26 years. One 
participant was left-handed. Participants were paid 
compensation of £6 per hour.  

 

Procedure 
Participants were presented with both a word visualization 
task (auditory stimulus task) and a silent image naming 
task (visual stimulus task). The auditory and visual stimuli 
were presented in two separate blocks, the order of which 
was alternated across participants. In each task the same full 
set of concepts was used, and their order was randomized on 
every run. 

In the visual stimulus task participants sat in a relaxed 
upright position 1m from a computer monitor. Images were 
presented on a medium grey background and fell within a 9° 
viewing angle. Each image was preceded by 0.5s fixation 

                                                           
1 The only electrophysiological study known to the authors to 

find single participant category effects is Tanji et al. (2005), which 
used intracranial electrodes. 

cross, and followed by 2s of fixation and 2s of a blank 
screen. Participants were instructed to silently name the 
object represented, and to press the keyboard space-bar with 
the left-hand to indicate they had found an appropriate 
word. The image disappeared from the screen on this 
response, or on a time-out of four seconds. 

In the audio stimulus task the same pattern of fixations 
and blanks was used while participants listened to words 
through a pair of earphones. In this case they were 
instructed to visualize an image that represented the word 
heard. Again, a keyboard response was used by participants 
to indicate that an image had been found. 

After both tasks had been completed, each set of stimuli 
were again presented to verify that they had been correctly 
interpreted by participants. 

 

 

Figure 1: Examples of visual stimuli. 

Stimuli 
The same set of 127 concepts were used as stimuli in both 
the visual and the auditory task. The stimuli for the visual 
task (Figure 1) were colourised line drawings from a 
replication of the Snodgrass object image set (Rossion & 
Pourtois, 2004). The audio stimuli were spoken words, 
recorded in-house by the experimenters. Stimulus concepts 
came from three categories: animals (50), small 
manipulable functional artefacts (‘tools’; 50) and plants 
(27). Concepts were chosen to range from typical, familiar 
and frequent members of their category (e.g. dog, hammer, 
flower) to more obscure exemplars (e.g. sea horse, thimble, 
artichoke). The set of stimulus concepts was not 
manipulated to result in equal group averages for typicality, 
familiarity and similar norms, since group analyses of the 
categories were not planned (such group analyses are 
vulnerable to the effects of such confounding factors).  

Recording 
Variations in scalp voltages were measured at 64 electrode 
positions on a standard 10-20 montage, using a BioSemi 
ActiveTwo active electrode system.2 An additional six 
electrodes measured voltages at the ear lobes, and around 
the eyes, for signal referencing and artifact identification 
purposes. Electrode activity was recorded on a dedicated PC 
at 512Hz. 
 

                                                           
2 http://www.biosemi.com/products.htm 
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Data analysis 

Data Preprocessing 
Before analysis all data was referenced to the average of the 
ear lobe electrodes, was resampled to 150Hz and was 
filtered with pass band of 1-60Hz. The EEGLAB suite3 was 
used to perform an independent component analysis of the 
data, and components due to eye movements and to 
electrical mains-noise were manually identified and 
removed. No removal of epochs due to muscle or head-
movement artefacts was necessary. 

Automatic Categorization Procedure 
The scheme of the automatic procedure adopted for 
categorizing the EEG signals is shown in Figure 2. It is 
made up of different blocks: i) an automatic system for the 
selection of optimal time and frequency intervals; ii) a 
feature extraction module; and iii) a categorization module. 
In the following some details of each block are given. 

 

 
Figure 2: General architecture of the system used for 

categorization. 
  
Time and Frequency Interval Selection 
The preprocessed EEG signal is given as input to a system 
for the automatic identification of the most informative time 
and frequency intervals, which was developed for BCI 
applications (Dalponte et al., 2007), achieving state-of-the-
art performance on a competition task involving imagined 
hand and foot movements.  

The goal of this technique is to define the best 
combination of time and frequency intervals for the 
separation of the analyzed categories. This method can be 
divided into two parts: i) a search strategy, and ii) a 
separability measure computation. 

                                                           
3 http://www.sccn.ucsd.edu/eeglab/ 

The search strategy adopted is based on a hierarchical 
search approach. Several combinations of time and 
frequency filter parameters are iteratively tested, changing 
the width (∆f and ∆t) and position (tmin and fmin) of the time 
and frequency intervals considered. 

The range of frequencies tested in this work is 1 to 50 Hz, 
and the time ranges from the stimulus offset to 5 seconds 
after that point. 

For each combination of filter parameters the input data 
were filtered in frequency and in time. From filtered data 
features were extracted and separability among categories 
computed according to the Jeffries-Matusita (JM) distance 
(Bruzzone et al., 1995). This is a widely used measure in 
pattern recognition problems to estimate separability 
between classes, given a set of features. The JM distance 
between the categories ωi and ωj is defined as follows: 

( )
1 2

2

( / ) ( / )ij i jJM p p d
   = ω − ω    
∫
x

P x x x
 

(1) 

where ( / )ip ωx  and ( / )jp ωx  are the conditional probability 
density functions for the feature vector x given the 
categories ωi and ωj. For a complete description of the time 
and frequency intervals selection method the reader is 
referred to Dalponte et al. (2007). 

Once the most informative time and frequency intervals 
have been identified, these optimal parameters are used for 
all further analysis. In the predictive analysis the parameters 
are derived from a combination of parameters from a 3-fold 
cross-validation. 

 
Feature Extraction 
The feature extraction phase is performed on temporal and 
frequency filtered data. The algorithm adopted is based on 
the Common Spatial Subspace Decomposition (CSSD) 
algorithm (Wang et al., 1999). CSSD is a supervised 
transformation that decomposes the original EEG channels 
into a new time series which shows optimal variances for 
the discrimination of two populations of EEG signals. In 
particular a spatial filter is designed, and applied to the 
original data: 

X=SF·E    (2) 
where E is the matrix NxT of the original EEG data (where 
N is the number of channels and T the number of samples 
per channel), SF is the spatial filter and X is the set of 
derived signal components. The spatial filter SF is obtained 
by the simultaneous diagonalization of two covariance 
matrices, derived from the training data of the two 
categories considered. 

From the new time series we extract as features for the 
categorization module the normalized variance of the first 
and last component of the transformed matrix E, which are 
the more representative components of the two considered 
categories. Thus the two features for each epoch are the 
level of signal activity in each component. This can be 
viewed as comparing the event-related spectral activity (i.e. 
the relative event-related desynchronisation) of two 
synchronous neural structures which have been found to 
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have an optimal differential response to the stimulus 
categories of interest. 
 
Categorization 
The categorization step is based on a Support Vector 
Machines (SVM) classifier (Vapnik, 1998). This classifier is 
an advanced pattern recognition technique that has been 
adopted in many different fields in recent years. Three 
reasons for its success are: i) its high classification accuracy 
and very good generalization capability with respect to other 
classifiers; ii) the limited effort required in architecture 
design (i.e., it involves few control parameters) and low 
processing time overhead in the learning phase compared to 
other algorithms; and iii) its effectiveness in ‘ill-posed’ 
classification problems (those which have a low ratio 
between number of training samples and number of 
features). 

The rationale of this classifier is to transform the original 
feature space into a space with a higher dimensionality, 
where a separation between the two categories by means of 
an optimal hyperplane is searched for, defined as: 

** )()( bwf +Φ⋅= xx   (3) 

where w* is a vector orthogonal to the separating 
hyperplane, b* is a scalar value such that the ratio b*/||w*|| 
represents the distance of the hyperplane from the origin, 
and the function Φ represents a non-linear transformation, 
called a ‘kernel function’. The optimal hyperplane is the one 
that minimizes a cost function which combines two criteria; 
maximization of the inter-class margin, and minimization of 
classification errors. 

The model selection of the parameters of the classifier 
was carried out according to the following strategy: i) 
randomly subdivide available data into two folds, containing 
respectively 20% and 80% samples; ii) train the classifier 
using the 20% fold, and test it with the 80% fold; iii) iterate 
steps i) and ii) 100 times; and iv) compute final accuracy as 
the mean accuracy over the 100 trials. 

Results 

Exploratory Analysis 
In this first analysis we trained of the feature extraction 
algorithm with the complete set of patterns available. This 
means that the results obtained in this experiment are the 
optimal ones obtainable on this data set. We perform such 
an analysis in order to define an upper bound in terms of 
accuracies on these data sets, and to verify that category 
specific patterns are present in the recorded EEG activity. 

The analysis was carried out separately for each 
combination of participant and task modality. In each of 
these, three pairwise categorizations were carried out: 
animals vs. tools; tools vs. plants; and plants vs. animals. 
The optimization procedure discovered optimal time-
frequency windows that varied, but they lay predominantly 
in the 15-35Hz bands, and at 1.5 to 3 seconds after stimulus 
offset.  

In all 24 analyses (4 participants x 2 modalities x 3 
category pairs) the optimal components yielded described a 
semantic space in which conceptual categories formed 
largely separable clusters (see Figure 3 for an example). The 
power of categorization of the support vector machine was 
correspondingly high, achieving between 97% and 100% 
accuracy across all tests (see Table 1 for the complete 
results). 

 

 
Figure 3: Semantic Space from Exploratory Analysis 

(Participant D, Auditory Stimulus, Animals vs. Tools). 
Animal concepts are represented by squares and Tools by 

crosses. 
 

Table 1: Performance of Exploratory Analysis. 
 

 Participant 

 A B C D 

Animals vs. Tools 
Auditory Task 98.6% 99.4% 97.6% 97.2% 

Animals vs. Tools 
Visual Task 

99.1% 96.9% 98.8% 98.8% 

Animals vs. Plants 
Auditory Task 

100% 100% 100% 99.8% 

Animals vs. Plants 
Visual Task 

100% 99.2% 98.9% 100% 

Tools vs. Plants 
Auditory Task 

100% 100% 100% 100% 

Tools vs. Plants 
Visual Task 

100% 100% 99.8% 100% 
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Predictive Analysis 
The second analysis aims to understand the predictive 
capability of the system. In this context we carried out a 3-
fold cross validation in the categorization step. Samples 
were divided into 3 arbitrary partitions or ‘folds’, two of 
which are iteratively used to train the feature extraction 
algorithm, while the remaining fold is used to compute class 
separability. Thus, we obtain three distances for each 
combination, that are averaged in order to have a single 
distance value. This procedure allows a predictive analysis, 
as the epochs used to train the feature extraction algorithm 
do not overlap with those used to compute the distance 
measure. 

This analysis was carried out for all participants and both 
modalities on the category pair of Animals vs. Plants. In this 
task the optimization procedure discovered somewhat 
broader time-frequency windows, ranging from 10-45Hz, 
and from 1 to 4 seconds after stimulus offset. 

The resulting semantic spaces show clear category 
clusters, with a more extensive overlap than in the previous 
analysis (see e.g. Figure 4). Categorization accuracy 
remained high, averaging 80% (see Table 2).  
 

 
Figure 4: Semantic Space from Predictive Experiment 
(Participant C, Visual Stimulus, Animals vs. Plants). 

Animal concepts are represented by squares and Plants by 
crosses. 

 
Table 2: Predictive Accuracy of Animals vs. Plants 

 
 Visual Task Auditory Task 
Participant A 74.6% 88.2% 
Participant B 72.4% 65.4% 
Participant C 82.6% 92.7% 
Participant D 81.9% 77.7% 

Discussion 
To our knowledge, this is the first study reporting that 

conceptual categories are distinguishable on the basis of 
neural activation data collected using EEG techniques. Our 
results suggest that it may be possible to investigate 
conceptual representations in the brain using techniques 
with much lower overhead than fMRI, which would be a 
great advantage for researchers—e.g., psycholinguists, 
computational linguists—who are primarily concerned with 
the organization of conceptual knowledge, rather than with 
its neural correlates. Of course, further work is needed to 
verify that information collected with such methods is also 
consistent across individuals as demonstrated for fMRI data 
e.g., by Shinkareva et al (2008). While differences were 
found, it is not yet clear if this is due to differences across 
participants in the timing or frequency encoding of 
cognitive states, or rather that these parameters identify 
parts of the time course and frequency spectrum that are less 
subject to task-related noise. Our results suggest that 
although optimal windows vary, good classification results 
can also be achieved with uniform windows. Further, while 
parts of frequency spectra found have been linked to object 
perception and representation (see e.g. Tallon-Baudry & 
Bertrand, 1999), activity in these bands has been found to be 
modulated by a wide variety of cognitive tasks in verbal, 
visual and spatial processing (see Kahana 2006 for a 
review). 

Results concerning the scalp localization of the category-
specific components provide further evidence for a 
distributed representation of conceptual knowledge, 
consistent with theories such as that of Barsalou (2003), as 
parietal, temporal and ventral areas of both hemispheres 
were seen to contribute to concept identification. However, 
it would be premature to interpret our results as providing 
evidence concerning localization of conceptual knowledge.  

While BCI methodologies have been successfully applied 
to the decoding of task related cognitive states (such as 
imagined motor movements), this work is the first to study 
conceptual organization; and our results demonstrate the 
considerable power of the techniques described in Dalponte 
et al (2007).  

Further work will also be required to investigate the 
correlation between the evidence of conceptual spaces 
obtained with our methods and the evidence provided by 
fMRI studies; spaces derived from corpus data (e.g. Baroni 
& Lenci, 2008); and other informant supplied data such as 
typicality judgements, semantic similarity judgements, and 
feature norms (McRae et al, 2005). We also continue to 
investigate the extent to which the predictive power of the 
system can generalize across participants and across 
modalities. 
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