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Transitive inference in non-humans? Not so fast!
Steven Phillips (steven.phillips@aist.go.jp)

National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, 305-8566, Japan

Abstract
A capacity for transitive inference (i.e. if 𝑎𝑅𝑏 and 𝑏𝑅𝑐 then
𝑎𝑅𝑐) was thought to be uniquely human. However, evidence of
transitive inference in other species suggests that this capacity
is ubiquitous throughout the animal kingdom. This apparent
ubiquity raises two basic questions for cognitive science. (1)
Why is transitive inference so prevalent? (2) What is special
about transitive inference in (adult) humans? Formal (category
theory) methods are used to address these questions. To the first
question, different (implicit and explicit) forms of transitive
inference follow from a common (universal) operation over
the premises, 𝑎𝑅𝑏 and 𝑏𝑅𝑐, i.e. a category theory version
of transitive closure, hence the ubiquity of this capacity. To
the second question, this construction involves rapid (one-shot)
premise integration in older humans, but not other cohorts. This
formal comparison points to rapid encoding and integration of
relational data as underlying the evolution and development of
higher cognitive capacities.
Keywords: transitive inference; transitive closure; implicit;
explicit; category theory; category; functor; profunctor

Introduction
According to Piaget, Transitive Inference (TI)—an inference
of the form, if 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then 𝑎𝑅𝑐—is attainable only by
adolescent, or adult humans. Although early work suggested
a capacity for TI in children as young as four years of age
(Bryant & Trabasso, 1971), subsequent studies controlling for
“short-cut” strategies1 indicated that TI appears later, around
the median age of five (Andrews & Halford, 1998; Pears
& Bryant, 1990), see also Halford, Wilson, Andrews, and
Phillips (2014) for a review. So, a study of the processes
underlying TI should afford a window into some uniquely
human aspects of intelligence and its development.

Yet, in recent years, more than a few studies have provided
evidence of TI in other species, including monkeys (Gazes,
Lazareva, Bergene, & Hampton, 2014; Jensen, Altschul,
Danly, & Terrace, 2013), rats (Dusek & Eichenbaum, 1997),
ravens (Massen, Pašukonis, Schmidt, & Bugnyar, 2014),
corvids (Bond, Kamil, & Balda, 2003; Bond, Wei, & Kamil,
2010), crows (Lazareva et al., 2004), pigeons (Daniels, Laude,
& Zentall, 2014), and fish (Grosenick, Clement, & Fernald,
2007).2 The growing evidence suggests that a capacity for TI

1E.g., in a four-term series consisting of the premises 𝑎 ≤ 𝑏, 𝑏 ≤ 𝑐,
𝑐 ≤ 𝑑, one can infer 𝑏 ≤ 𝑑 simply by observing that 𝑑 only appeared
once in the list of premises. This strategy is circumvented in a five-
term series by adding the premise 𝑑 ≤ 𝑒 and testing on 𝑏 ≤ 𝑑, thus
avoiding the end terms, 𝑎 and 𝑒.

2TI has also been reported in infants (Mou, Province, & Luo,
2014), but for a 3-term series, so did not control for short-cuts.

is more widespread than previously thought.
Such results are potentially exciting for understanding the

evolution and development of (higher) cognition. However,
the methods used to assess TI in other species raise questions
over its comparability to a form of TI observed in humans,
given that TI is also known to be difficult even for adults
(Maybery, Bain, & Halford, 1986). TI in non-humans is
assessed via repeated reward-based reinforcement learning on
adjacent pairs of stimuli, whereby response to a non-adjacent
(test) pair that is consistent with the order implicit in the
reward schedule is taken as evidence for TI.3 By contrast, a
test for TI in humans proceeds via trial-by-trial (unrepeated)
presentation of all adjacent (premise) and non-adjacent (test)
pairs, whereby a response to the test pair that is consistent
with the order (explicitly) given by a spatial, or verbal relation
that is transitive is taken as evidence for TI.4 This procedural
difference has led some to conclude that TIs in non-humans
and humans are really of two different kinds, referred to as
implicit5 versus explicit TI, respectively (Goel, 2007; Halford
et al., 2014; Wright, 2012), wherein the explicit form is found
only in older humans and the implicit form is found in both
humans and non-humans alike (Halford et al., 2014).

A distinction between non-human (implicit) and human
(explicit) forms of TI, however, does not address a primary
concern for cognitive science, which is an explanation for how
such seemingly advanced cognitive capacity arises in the first
place. On one hand, if the two forms share essentially nothing
in common, then there is little reason to attribute implicit TI
as a foundation for reasoning. On the other hand, if they are
related, then such claims beg the question of how this is so.
The literature sheds little light on this relationship, because
an equivalent test of explicit TI in non-humans has not been
developed (Halford et al., 2014), though adult humans evi-
dently resort to an implicit form of TI when they are unaware
of the relational structure (Frank, Rudy, Levy, & O’Reilly,
2005). Moreover, there has been little in the way of theory
explicating a link between the two forms.

The purpose here is to address this theoretical shortcoming

3That is, e.g., adjacent pairs AB+, BC+, CD+, and DE+, where
“+” indicates the reinforced choice, and non-adjacent (test) pair BD.

4That is, e.g., adjacent pairs A < B, B < C, C < D and D < E,
where “<” indicates spatial relation A below B, and test pair B?D.

5Implicit TI has also been called transitivity of choice (Halford et
al., 2014; Libben & Titone, 2008).
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by presenting a mathematical theory that is used to assess the
relationship between implicit and explicit TI, as the basis for
further empirical studies. Background theory provided in the
next section forms the framework used to compare/contrast
implicit and explicit TI in the section that follows. The main
result is that both forms obtain from a categorical form of
transitive closure, hence the ubiquity of TI across cohorts.
However, they differ in the way that relational information
is constructed. This difference reflects slow (implicit TI)
versus fast (explicit TI) integration of premise relations as the
basis for inference. Empirical implications of this result are
discussed in the final section. In particular, placing implicit
and explicit TI on common theoretical ground affords testable
predictions for the emergence of relational reasoning (explicit
TI) from basic associative processes (implicit TI).

Methods: paradigms and theory
TI is an inference from relationships between pairs of stimuli
to a relationship between a novel stimulus pair. An empirical
test of TI has two parts: (1) ensuring participants understand
that 𝑎 is R-related to 𝑏 and 𝑏 is R-related to 𝑐, and (2) testing
whether they understand that 𝑎 is R-related to 𝑐 without further
intervention. Differences between tests of TI in non-human
cohorts versus older humans set the challenge for a compre-
hensive theory relating both forms. So, in this section, we
recall the essential aspects of both paradigms as motivation
for the theoretical framework that follows.

Experimental paradigms: implicit and explicit TI
Implicit TI. In the absence of language, the stimuli can be
ordered by associated reward, e.g. 𝑎 ≤ 𝑏 means less reward
associated with 𝑎 than 𝑏. Given five distinguishable stimuli,
A, B, C, D and E, stimulus pairs ordered by relative reward:
e.g., AB+ indicates that when presented with spatially ordered
pair (A, B), or (B, A), a reward is given only for a response
corresponding to B. Likewise, BC+, CD+ and DE+ indicates
that C is preferred over B, D over C, and E over D. Consis-
tently selecting the rewarded item is taken as evidence that the
participant has learned the premise relations. The participant
is then presented with the novel pair (B, D) whence a response
that corresponds to D is taken as evidence of TI.
Explicit TI. Explicit TI also involves five terms, but their pair-
wise relations are indicated by spatial order: e.g. as two-block
towers, where say a green block sitting atop a red block indi-
cates the order relation red < green. There are four two-block
towers, e.g., blue atop green, yellow atop blue and brown atop
yellow. Participants are presented with a pair of blocks and
asked for the higher block when building a tower. E.g., given
pair (yellow, green), a yellow response is taken as evidence
for TI. The procedure is repeated with novel premise towers
and test pairs for each trial. For comparison and variation, we
consider an analogous test where the participant is presented
with a novel two-block tower (e.g., yellow atop green, or green
atop yellow) and ask whether block order is consistent with
the premise towers, which is also a two-choice response (cf.
Maybery et al., 1986).

Comparison/Contrast. Both forms involve one-shot responses
to novel stimulus pairs as evidence of TI. Furthermore, the
stimuli have no intrinsic ordering; rather their order is encoded
in terms of rewarded response (implicit), or relative spatial
location (explicit). However, they differ in three ways. First,
relative spatial location of the stimuli is irrelevant to implicit
TI, e.g., pairs (A, B) and (B, A) map to the same rewarded
response, B, but significant to explicit TI as (A, B) and (B, A)
are two different orders. Second, they differ in trials needed
to encode premise relations: multiple reward reinforcement
(implicit) versus one-shot presentation (explicit). And third,
no feedback is given on the test trial for the implicit form, but
feedback on the correct response is given during practice trials
for the explicit form. These commonalities and differences are
taken up next in our theoretical approach to TI.

Theoretical framework: category theory
Our approach is motivated by a desire to compare implicit
and explicit TI as a (possible) window on the evolution and
development of higher cognition. Comparison necessitates a
common point of view to make sense of their relationship,
assuming that they are meaningfully comparable. Analysis
of relations between formal systems is the raison d’être of
a branch of mathematics called category theory (Lawvere &
Schanuel, 2009; Mac Lane, 1998). An important approach in
this regard, called “categorification” (Baez & Dolan, 1998),
is to recast set-theoretic constructions in terms of categorical
(analogical) abstractions for the purpose of revealing connec-
tions that are otherwise obscured. We basically categorify
implicit and explicit TI to reveal their connection.
Relations and joins. TI is afforded by relations (definition 1)
that are transitive (definition 2), such as the order relation
on numbers (example 3). Some relations are not transitive
(remark 4), but every relation can be extended to a transitive
relation by transitive closure (definition 5). Transitive closure
can be computed via relational joins (remark 6), or for graphs
(example 7) via matrix multiplication of incidence matrices
(remark 8). We require constructions for relations that have
more structure than just sets of pairs. For this reason, we turn
to category theory.
Basic correspondences. Entities, called objects, and relations
between objects, called morphisms, satisfying certain rules
constitute a category (definition 9), such as the category of
numbers and their order (example 10)6, and the categories of
sets and their functions, or relations (examples 12). Graphs
also constitute the objects of a category (example 13) and for
certain cases are categories in their own right (remark 14).
Thus, we have basic correspondences between familiar set-
theoretic constructions and categorical analogs relevant to TI.
Categorical constructions reside in a category of some kind,
so categories frame our theoretical approach.
Profunctors. Morphisms between categories considered as
objects in a larger category are called functors (definition 15),

6All arrows are directed, so when reversed they usually constitute
a new category (remark 11), though e.g., Relop = Rel.
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such as hom-functors (example 16). As functions generalize
to relations between sets, functors generalize to profunctors
(definition 17)—relations between categories (remark 18).
Functors induce profunctors like functions as special kinds
of relations (example 19). The join of relations between sets,
or matrix multiplication as the basis for transitive closure is ab-
stracted to composition of profunctors (definition 20) between
categories as transitive closure categorified (remark 21).
Enrichment. For our purposes, we require the concept of
monoidal category (definition 22)—a categorified monoid
(remark 23)—to model situations where relations are not just
sets (example 24), but have additional structure (example 25)
in the form of enriched profunctors7, which can be seen as
generalized matrix algebra (example 27).

Result: theoretical comparison/contrast
We proceed to compare and contrast implicit and explicit TI.
The basis for comparison is a categorical version of transitive
closure: implicit and explicit TI follow from composition of
enriched profunctors modeling the premises, thus deriving the
relations between non-adjacent stimuli. We consider a five-
term series consisting of the set of terms 𝑇 = {𝐴, 𝐵,𝐶,𝐷,𝐸},
corresponding to the five stimuli of a TI task. The theory
does not depend on this number of terms. No assumption
is made about the stimuli beyond being distinguishable from
each other. There are three aspects to a TI task: (1) encoding—
representing the premise relationships, e.g., 𝑎𝑅𝑏 and 𝑏𝑅𝑐,
(2) completion—adding the implied relations between other
pairs, e.g., 𝑎𝑅𝑐 and 𝑏𝑅𝑑, and (3) inference—correct response
to the test pair, i.e. 𝑏𝑅𝑑, which are detailed for each case.

Implicit transitive inference
We consider the following situation for implicit TI. On each
learning trial, participants are presented with a pair of stimuli,
e.g., (𝐴, 𝐵) and two response choices, i.e. 𝑎 and 𝑏 correspond-
ing to the stimuli 𝐴 and 𝐵, respectively. A reward is given
when participants choose the response corresponding to the
preferred stimulus, i.e. 𝑏, or no reward otherwise. There are
five stimulus-specific responses, 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒. Responses
are only defined for adjacent stimuli, obtained by reward re-
inforcement, responses to non-adjacent stimuli are undefined,
represented by the element ∗. The set of possible responses
is 𝑅𝐼 = {∗, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. The tensor product is given by the
following table:

×𝐼 ∗ 𝑎 𝑏 𝑐 𝑑 𝑒

∗ ∗ ∗ ∗ ∗ ∗ ∗
𝑎 ∗ 𝑎 𝑏 𝑐 𝑑 𝑒

𝑏 ∗ 𝑏 𝑏 𝑐 𝑑 𝑒

𝑐 ∗ 𝑐 𝑐 𝑐 𝑑 𝑒

𝑑 ∗ 𝑑 𝑑 𝑑 𝑑 𝑒

𝑒 ∗ 𝑒 𝑒 𝑒 𝑒 𝑒

constituting the monoidal category R𝐼 = (𝑅𝐼 ,×𝐼 ,1).

7That is a profunctor between enriched categories (remark 26).

Encoding. Premises are encoded as the response-enriched
profunctor P :𝑇op×𝑇 →R𝐼 , e.g., P(𝐴, 𝐵) = 𝑏 and P(𝐴,𝐶) =
P(𝐶, 𝐴) = ∗.
Completion. Inference follows from profunctor composition:
P ◦P, or P2, which can be viewed as (generalized) matrix
multiplication, as shown for three-term subset {𝐵,𝐶,𝐷}:

𝑏 ∗ ∗ 𝑏 ∗ ∗ 𝑏 ∗ ∗
𝑐 𝑐 ∗ × 𝑐 𝑐 ∗ = 𝑐 𝑐 ∗
∗ 𝑑 𝑑 ∗ 𝑑 𝑑 𝑑 𝑑 𝑑

Inference. The response indicating TI is obtained by applying
novel (non-adjacent) stimulus pair (𝐵,𝐷), or (𝐷,𝐵) to the
composite profunctor, i.e. P2 (𝐵,𝐷) = 𝑑 = P2 (𝐷,𝐵), which
assumes symmetry (i.e. 𝐴⊗ 𝐵 � 𝐵⊗ 𝐴).

Explicit transitive inference
There are two stimulus responses for explicit TI: inconsistent,
0, and consistent, 1. As for implicit TI, we adjoin element ∗
for undefined. The set of possible responses is 𝑅𝐸 = {∗,0,1}.
The tensor product is given by the following table:

×𝐸 ∗ 0 1
∗ ∗ ∗ ∗
0 ∗ 0 0
1 ∗ 0 1

constituting the monoidal category R𝐸 = (𝑅𝐸 ,×𝐸 ,1).
Encoding. Premises are encoded as the response-enriched
profunctor P : 𝑇op×𝑇 →R𝐸 , e.g., P(𝐴, 𝐵) = 1, P(𝐵, 𝐴) = 0,
P(𝐴,𝐶) = ∗, and P(𝐶, 𝐴) = ∗.
Completion. As for implicit TI, inference is obtained via pro-
functor composition, P2, exemplified as matrix multiplication
for three-term subset {𝐵,𝐶,𝐷}:

1 0 ∗ 1 0 ∗ 1 0 0
1 1 0 × 1 1 0 = 1 1 0
∗ 1 1 ∗ 1 1 1 1 1

Inference. Responses indicating TI are obtained by applying
novel pairs (𝐵,𝐷) and (𝐷,𝐵) to composite profunctor, P2,
i.e. P2 (𝐵,𝐷) = 1 and P2 (𝐷,𝐵) = 0.

Long-distance inference
This approach extends to long-distance inference: when there
is more than one intermediate term. For example, suppose a
six-term series, 𝑇 + {𝐹}, in which we have 𝑏𝑅𝑐 and 𝑐𝑅𝑑 and
𝑑𝑅𝑒 implies 𝑏𝑅𝑒; equivalently, 𝑏𝑅𝑐 and 𝑐𝑅𝑑 implies 𝑏𝑅𝑑 and
𝑏𝑅𝑑 and 𝑑𝑅𝑒 implies 𝑏𝑅𝑒. This situation is also obtained by
profunctor composition: P ◦P ◦P = (P ◦P) ◦P = P3. For
implicit TI, we have P3 (𝐵,𝐸) = P3 (𝐸, 𝐵) = 𝑒. For explicit
TI, we have P3 (𝐵,𝐸) = 1 and P3 (𝐸, 𝐵) = 0.

Comparison and contrast
In comparison, both forms of TI involve transitive closure:
the relationships between non-adjacent pairs of stimuli are
obtained as (generalized) multiplication of the relationships
between adjacent stimuli given by the premise pairs. By con-
trast, stimuli are ordered by selection reward for implicit TI,
but relative spatial position for explicit TI. The implications
of these similarities and differences are discussed next.
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Discussion
What does this comparison of implicit and explicit TI reveal?
The categorical view seems to support the extensive work in
comparative psychology examining TI in other species as a
window into the evolution of reasoning, as both forms are
instances of a universal construction8, i.e. a (categorified)
form of transitive closure. In this way, transitive closure is
common ground—the seedbed of higher cognition. However,
this unifying view belies a circumspect outlook for compara-
tive psychology in understanding the emergence of reasoning.
Reasons for caution are discussed in the rest of this section.

A comparison also highlights the remaining differences.
Generalized (categorified) transitive closure works for any
monoidal category, like ordinary transitive closure works for
any relation. So, for example, a simple neural network that re-
alizes multiplication of boolean matrices, as a monoidal cate-
gory, suffices to realize a form of TI. Thus, the theory suggests
that some form of TI can be coerced from even very simple
organisms, assuming a nervous system. However, the trend
of attempting to find evidence of TI in ever simpler species
obscures another difference, i.e. the encoding of premises via
multi-shot reinforcement learning (implicit) versus one-shot
presentation (explicit). We assumed the encoding of premises,
without which neither paradigm can proceed. For explicit TI,
participants encode premises and make inferences on a trial-
by-trial basis, whereas implicit TI only requires an inference
from a single set of premises. Presumably, (some) non-human
species can be retrained on a different set of premises to make
another inference. The key question then is about how rapidly
new premises can be encoded, i.e. a capacity for transfer that
has been investigated via the learning set paradigms developed
for non-humans (Kendler, 1995). An analogous paradigm is
needed for non-humans to assess such capacity as crucial to
the development of higher cognition.

The relational schema induction paradigm was developed
for such purposes (Halford, Bain, Maybery, & Andrews, 1998;
Halford & Busby, 2007). Each task instance conforms to a
common relational structure (schema). Induction is tested by
first time performance on certain test trials. The difficulty of
each task is manipulated by the number of related variables,
or dimensions of task variation, i.e. relational complexity as
a factor differentiating species and age-groups (Halford, Wil-
son, & Phillips, 1998; Halford et al., 2014).9 This paradigm
could be adapted as a comparable form of explicit TI for test-
ing non-human and prelinguistic cohorts.

One possibility is to incorporate the simultaneous chaining
paradigm (Terrace, 2005), used to test serial learning, as a test
of explicit TI in non-humans. For example, premise pairs of
say pictures are presented simultaneously on a screen so that
relative order is explicitly indicated by a visual cue, not their
relative spatial location: e.g., a red dot in proximity to the 𝑏

item for each (𝑎, 𝑏) premise pair indicating 𝑎 ≤ 𝑏. The non-

8See Mac Lane (1998) for this technical sense of universal.
9A category theory view is the arity of the underlying categorical

(co)product (Phillips, Wilson, & Halford, 2009).

adjacent test pair (𝑏, 𝑑) is presented without the visual cue.
Participants are rewarded when the stimulus associated with
the red dot is touched for each pair in order (i.e. 𝑏, 𝑐, 𝑑, 𝑒).
Participants are also rewarded when they touch the 𝑑 element,
but not the 𝑏 element in the (𝑏, 𝑑) test pair. The prediction
that follows a capacity for explicit TI is straightforward: if
participants correctly touch the locations of the red dots in
the order corresponding to the sequence 𝑏, 𝑐, 𝑑, 𝑒 and they
correctly touch the location of the 𝑑 item in the test pair (𝑏, 𝑑)
for one five-term series, then they will correctly touch the
corresponding locations and item on first-time presentation
of a novel five-term series, i.e. the locations of red dots in
the sequence 𝑏′, 𝑐′, 𝑑 ′, 𝑒′ and the location of the 𝑑 ′ item in
the test pair (𝑏′, 𝑑 ′). Consistently responding this way on
the first presentation of each novel 5-term series is evidence
supporting a capacity for explicit TI.

This approach to testing explicit TI in nonverbal cohorts
can also be used to investigate development as a transition
from implicit to explicit TI. A category theory approach to
relational schema induction was employed to show how the
underlying schema is induced (reconstructed) from a series
of task instances (Phillips, 2021). A similar account applies
here, where TI is regarded as a relational schema over sets of
stimuli, rather than a property of a relation on a particular set.

The moral of this work is a familiar one (see Penn, Holyoak,
& Povinelli, 2008): explicit TI does not necessarily follow
directly from implicit TI despite a common root (transitive
closure).10 Explicit TI is an inference over instances, i.e. a
general rule versus a specific case, which can be seen as a
difference in representational rank (Halford et al., 2014).

If implicit and explicit TI are so different, why do the two
forms cohabit in older humans? An answer to this question
is also familiar in the form of dual-process theories (Evans,
2003; Wright, 2012). Slow, yet robust encoding of relations
affords survival advantages to individuals and their cohorts in,
for example, a stable social hierarchy (Grosenick et al., 2007).
Fast, yet fragile encoding of relations affords complementary
advantages in a dynamically changing world. A challenge then
is to balance these trade-offs and explain their emergence.

This analysis shows that implicit TI should be regarded as
a test of transitive closure, not transitive inference per se. The
premise relations need not be transitive. Indeed, preference is
not transitive, in general, as one can prefer 𝐴 over 𝐵 and 𝐵 over
𝐶, but not 𝐴 over𝐶. However, the inference is not necessarily
fallacious, as participants may be seen as reinterpreting the
relation 𝑅 containing the premises as the extended relation
𝑅+, which is always transitive.

A similar situation may arise for explicit TI if blocks of the
same colour in different two-block towers are interpreted as
different blocks: e.g., red above blue and blue’ above green.
In this situation, the transitive inference red above green does
not follow, since either blue and blue’ are not comparable (be-
ing in different towers), or blue’ is regarded as being above

10For a formal analogy, all monoids trace back to the one-element
monoid, i.e. the initial object in the category of monoids, but two
monoids need not be related by a monoid homomorphism.
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blue relative to the common ground on which the towers stand.
However, instructions and feedback during practice trials pro-
vide the information needed to interpret blue and blue’ as the
same block, which affords the transitive inference.
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Appendix A: Basic theory
Definition 1 (relation). Let 𝐴 be a set. A (binary) relation
on 𝐴 is a subset 𝑅 of the Cartesian product of 𝐴 with itself,
i.e. 𝑅 ⊆ 𝐴× 𝐴 = {(𝑎, 𝑏) |𝑎, 𝑏 ∈ 𝐴}. We also write 𝑎𝑅𝑏 for pair
(𝑎, 𝑏) ∈ 𝑅, i.e. the relationship 𝑎 is R-related to 𝑏.
Definition 2 (reflexive, transitive). A relation 𝑅 on 𝐴 is called
reflexive if 𝑎𝑅𝑎 for every element 𝑎 in 𝐴; transitive if 𝑎𝑅𝑏
and 𝑏𝑅𝑐 implies 𝑎𝑅𝑐 for every triple of elements 𝑎, 𝑏, 𝑐 in 𝐴.
Example 3 (preorder). A preorder is a relation that is reflexive
and transitive. The usual order on numbers is a preorder.
Remark 4. The precede relation is not transitive in the sense
of 1 precedes 2 and 2 precedes 3, but 1 does not (immediately)
precede 3. Compare with the is-parent-of relation.
Definition 5 (transitive closure). Let 𝐴 be a set and 𝑅 ⊆ 𝐴×𝐴

a binary relation on 𝐴. The transitive closure of 𝑅, denoted
𝑅+, is the smallest transitive relation on 𝐴 containing 𝑅.
Remark 6. The transitive closure of a relation 𝑅 ⊆ 𝐴× 𝐴 can
be computed by iteratively adding the join of 𝑅 with itself,
i.e. 12 𝑅 = 𝑅+ {(𝑎, 𝑐) |∃𝑏 ∈ 𝐴, (𝑎, 𝑏) ∧ (𝑏, 𝑐) ∈ 𝑅}, to its fixed
point where no change obtains by further iterations, i.e. the
relation 1∞ 𝑅 = 𝑅+, which terminates at 𝑘 when 1𝑘 𝑅 = 𝑅+.
Example 7 (graph). A directed graph 𝐺 = (𝑉,𝐸, 𝑠, 𝑡) consists
of a set of vertices 𝑉 , a set of edges 𝐸 , and two functions
𝑠, 𝑡 : 𝐸 → 𝑉 returning the source and target vertex of each
edge, respectively. If a graph has at most one edge from a
given source to a given target, then the edges correspond to
the relation 𝐺𝐸 = {(𝑠(𝑒), 𝑡 (𝑒)) |𝑒 ∈ 𝐸}. The transitive closure
of 𝐺𝐸 adjoins an edge for each path in 𝐺, i.e. the reachability
graph with edges given by the fixed point relation 1∞ 𝐺𝐸 =

𝐺+
𝐸

, which says that for vertices 𝑣,𝑤 in 𝐺 if (𝑣,𝑤) ∈ 𝐺+
𝐸

, then
𝑤 is reachable from 𝑣.
Remark 8. Transitive closure of a graph 𝐺 is computed via
matrix multiplication of the corresponding incidence matrix
𝑀 whose cell 𝑀 𝑗𝑖 = 1 if (𝑖, 𝑗) is an edge in 𝐺, otherwise
𝑀 𝑗𝑖 = 0, i.e. the fixed point matrix 𝑀∞.
Definition 9 (category). A category C consists of a collec-
tion of objects, O(C) = {𝐴, 𝐵, . . . }, a collection of morphisms,
M(C) = { 𝑓 , 𝑔, . . . }—a morphism written in full as 𝑓 : 𝐴→ 𝐵

indicates object 𝐴 as the domain and object 𝐵 as the codomain
of 𝑓—including for each object 𝐴 ∈ O(C) the identity mor-
phism 1𝐴 : 𝐴→ 𝐴, and a composition operation, ◦, that sends
each pair of compatible morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→𝐶

(i.e. the codomain of 𝑓 is the domain of 𝑔) to the composite
morphism 𝑔 ◦ 𝑓 : 𝐴→ 𝐶, that together satisfy the laws of:

• identity: 𝑓 ◦1𝐴 = 𝑓 = 1𝐵 ◦ 𝑓 for every 𝑓 ∈M(C), and

• associativity: ℎ ◦ (𝑔 ◦ 𝑓 ) = (ℎ ◦ 𝑔) ◦ 𝑓 for every triple of
compatible morphisms 𝑓 , 𝑔, ℎ ∈M(C).

C[𝐴, 𝐵] denotes the collection of morphisms from 𝐴 to 𝐵.
Example 10 (proset). A preordered set (or, proset) is a set 𝑃
together with a preorder ≤ on 𝑃, written (𝑃,≤). A proset is a
category with objects 𝑝 ∈ 𝑃 and morphisms 𝑝 → 𝑞 whenever
𝑝 ≤ 𝑞. The set of natural numbers together with the usual
order, (N,≤), constitute a proset, hence a category.
Remark 11. Cop denotes the opposite category: the objects
and “reversed” morphisms of C, e.g., (𝑃,≤)op = (𝑃,≥).
Examples 12 (functions, relations). Categories Set and Rel
have sets for objects and (respectively) functions and relations
for morphisms with function composition and relational join
as the respective composition operations.
Example 13 (graphs). The category Grph has (directed)
graphs for objects and graph homomorphisms for morphisms.
Remark 14. Directed graphs generally lack an edge (loop)
on every vertex and an edge for every path to be a category,
but every directed graph extends to a category by transitive
(and reflexive11) closure of edges as relations.
Definition 15 (functor). Let C and D be categories. A functor
is a map 𝐹 : C → D preserving:

• identity: 𝐹 (1𝐴) = 1𝐹 (𝐴) for every object 𝐴 in C, and

• composition: 𝐹 ( 𝑓 ◦ 𝑔) = 𝐹 ( 𝑓 ) ◦ 𝐹 (𝑔) for every pair of
compatible morphisms 𝑓 , 𝑔 in C.

A functor is a category (cf. graph) homomorphism.
Examples 16 (hom-functors). A hom-functor preserves the
composition of morphisms in C as functions in Set.

a. C[𝐴,−] : C → Set;𝑔 ↦→ (C[𝐴,𝑔] : ℎ ↦→ 𝑔 ◦ ℎ).

b. C[−, 𝐴] : Cop → Set; 𝑓 ↦→ (C[ 𝑓 , 𝐴] : ℎ ↦→ ℎ ◦ 𝑓 ).

c. C[−,−] : ( 𝑓 , 𝑔) ↦→ (C[ 𝑓 , 𝑔] : ℎ ↦→ 𝑔 ◦ ℎ ◦ 𝑓 ).

Definition 17 (profunctor). Let C and D be categories. A
profunctor from C to D, written P : C↛ D, is a (bi)functor
P : Dop ×C → Set sending each pair of:

• objects (𝐷,𝐶) to the set P(𝐷,𝐶) and

• morphisms (𝑑 : 𝐷 → 𝐷 ′, 𝑐 : 𝐶 → 𝐶 ′) to the function
P(𝑑, 𝑐) : P(𝐷,𝐶) → P(𝐷 ′,𝐶 ′).

Remark 18. Profunctors are to functors as relations are to
functions. Compare the graph of a function 𝑓 : 𝐴→ 𝐵, i.e. the
relation Γ( 𝑓 ) = {(𝑎, 𝑓 (𝑎)) |𝑎 ∈ 𝐴} ⊆ 𝐴×𝐵, with example 19a.
Examples 19 (functors to profunctors). A functor 𝐹 : C → D
determines two profunctors.

11Add relation (𝑎, 𝑎) for each 𝑎 ∈ 𝐴 (cf. transitive closure).
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a. D[1, 𝐹] : C↛ D; (𝑑, 𝑐) ↦→ D[𝑑, 𝐹 (𝑐)].

b. D[𝐹,1] : D↛ C; (𝑐, 𝑑) ↦→ D[𝐹 (𝑐), 𝑑].

Hom-functors C[𝐴,−] and C[−, 𝐴] (examples 16a, b) obtain
from (endo)profunctors C[−,1] and C[1,−], where 1 is the
identity functor on C, by setting the other argument (−) to 𝐴.
Definition 20 (profunctor composition). Let P : C↛ D and
Q : D↛ E be profunctors. The profunctor composition of P
and Q is the profunctor Q ◦P : C↛ E defined as

QP(𝐸,𝐶) =
(∐
𝐷∈D

Q(𝐸,𝐷) ×P(𝐷,𝐶)
) /

∼ (1)

where (𝑒′, 𝑐′) ∼ (𝑒, 𝑐) whenever there exists an arrow 𝑑 ∈ D
such that 𝑒′ = 𝑑 ◦ 𝑒 ∈ Q(𝐸,𝐷 ′) and 𝑐′ ◦ 𝑑 = 𝑐 ∈ P(𝐷,𝐶).
Remark 21. Profunctor composition generalizes composition
of relations. Compare profunctors P : C↛D and Q : D↛ E
and their composition, Q ◦P : C↛ E as (relation) diagrams

𝐸1 oo
𝑞11

``
𝑞12

𝐷1 oo
𝑝11

𝐶1 𝐸1
qq

(𝑞11 , 𝑝11)
mm

(𝑞12 , 𝑝21)^^

(𝑞12 , 𝑝23)

𝐶1

𝐸2 oo
𝑞22

``

𝑞23

𝐷2
~~

𝑝21

OO

𝑑23

``
𝑝23

𝐶2 𝐸2
xx

(𝑞22 , 𝑝21)

ff

(𝑞22 , 𝑝23)

𝐶2

𝐸3 𝐷3 oo 𝑝33
𝐶3 𝐸3 𝐶3

with join of corresponding relations, 𝑄 1 𝑃 (see remark 6).12
Definition 22 (monoidal category). A monoidal category
(M,⊗, 𝐼) consists of a category M, a functor ⊗ : M×M→M,
called the tensor product, and an object 𝐼 in M such that ⊗ is
unital and associative up to isomorphism.13
Remark 23. A monoidal category is a “categorified” monoid.
For comparison, a monoid (𝑀, ·, 𝑒) consists of a set 𝑀 , an op-
eration · and a designated element 𝑒 ∈ 𝑀 , called the unit, such
that · is unital, i.e. 𝑚 · 𝑒 = 𝑚 = 𝑒 ·𝑚 for all elements 𝑎 ∈ 𝑀 ,
and associative, i.e. 𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐 for all triples of ele-
ments 𝑎, 𝑏, 𝑐 ∈ 𝑀 . A monoid is a one-object category whose
arrows correspond to the elements of 𝑀 and composition to
the operation, e.g., the integers together with addition and 0
as the unit constitute a monoid, (Z,+,0), hence a category.
Example 24 (sets). (Set,×,1) is a monoidal category.
Example 25 (truth). The set of truth values with logical and
is monoidal, ({⊥,⊤},∧,⊤)—equivalently, ({0,1},×,1).
Remark 26. Monoidal categories are the basis of enriched
category theory used to model situations where the relations
between objects have more structure than sets of morphisms,
i.e. the hom-sets C[𝐴, 𝐵] are replaced with the objects of a
monoidal category, M. For instance, ordinary categories are
enriched in Set (example 24) and prosets are enriched in the
monoidal category of truth values (example 25).

12Note the analogy to matrix multiplication (see example 27).
13The unitors and associator are omitted (see Mac Lane, 1998).

Example 27 (enriched profunctor). An enriched profunctor
is a (pro)functor of the form P : Dop ×C → M. Composition
takes on the monoidal structure, seen as a form of generalized
matrix algebra with products and sums replaced accordingly.
E.g., Set (example 24) for profunctor composition (remark 21)
is replaced with (i.e. enriched in) boolean values (example 25)
yielding multiplication of matrices, 𝑀𝐸𝐷 ×𝑀𝐷𝐶 = 𝑀𝐸𝐶 :

1 1 0 1 0 0 1 0 1
0 1 1 × 1 0 1 = 1 0 1
0 0 0 0 0 1 0 0 0

with sum as coproduct (Mac Lane, 1998), e.g., 1+1 = 1.
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