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Abstract

Landmarking is a novel approach to inductive model
selection in Machine Learning. It uses simple, bare-
bone inductive strategies to describe tasks and induce
correlations between tasks and strategies. The paper
presents the technique and reports experiments showing
that landmarking performs well in a number of di�erent
scenarios. It also discusses the implications of landmark-
ing to our understanding of inductive re�nement.

Introduction
One of the central goals of cognitive science is to un-
cover mechanisms that allow agents to produce and man-
age knowledge. Although informed by existing theories
of living organisms, the chief contribution of arti�cial
intelligence, is to investigate knowledge mechanisms in
abstract, that is, independently of their psychological or
neurological plausibility. Machine learning endeavours
to study induction, one of the basis of knowledge pro-
duction. It considers di�erent inductive strategies, their
performance in di�erent scenarios.
Not surprisingly, di�erent inductive strategies are ad-

equate for di�erent inductive tasks. Theoretical results
show that there is no inductive strategy that can per-
form well in every conceivable task (Scha�er, 1994).
Some practitioners of machine learning reacted to this
predicament by insisting that not every conceivable in-
ductive tasks is equally deserving of attention. If we
concentrate on a subset of all conceivable tasks, some
people claim that we should restrict ourselves to \real
world problems", we can �nd a small number of strate-
gies that can handle induction (Rao, Gordon & Spears
1995). The problem arises when we try to give a pre-
cise de�nition for the set of \real world problems". In
any case, we face correlations between sets of tasks, or
problems, and induction strategies. Strategies perform
well only in a subset of the set of all tasks, this sub-
set is often called the area of expertise of a strategy.
Machine learning is then left to discover, by induction,
correlations between inductive strategies and their area
of expertise. One way of doing this is by automating
this search for correlations between tasks and strategies.
This process is often called meta-learning and a number
of di�erent approaches has been proposed (see Bensusan
(1998,1999), Giraud-Carrier & Hilario (1998), Giraud-
Carrier & Pfahringer (1999), Lindner & Studer (1999)).
Meta-learning has a number of general consequences for
the study of cognition.

This paper explores some of the general consequences
of a new way of doing meta-learning, called landmarking.
The technique has been introduced recently (Bensusan
& Giraud-Carrier 2000; Pfahringer, Bensusan & Giraud-
Carrier 2000) and some new results are reported here.
Landmarking searches for correlations between tasks and
inductive strategies by exploring the similarities between
di�erent strategies in order to locate the task in a map
of areas of expertise. The discovery of similarities be-
tween strategies can prove to be a tool to re�ne inductive
strategies and, ultimately, a way to sketch an explana-
tion of human inductive success.

This paper is organised as follows. Next section intro-
duces landmarking. The following section presents ex-
periments that assess its performance. Then we consider
some of its implication for the general study of induction
and cognition. A last section concludes the paper.

Meta-learning through landmarking

Meta-learning is the endeavour to automatically discover
correlations between tasks and inductive strategies. To
simplify without loss of generality, let's concentrate on
supervised learning tasks.1 These tasks are composed
by a set of examples described by attribute values and
classi�ed according to a target function. The induction
of the di�erence in extension of the predicates \lemon"
and \watermelon", for example, may include attributes
such as colour, shape, size. Something yellow,

egg-shaped, small quali�es as lemon whereas some-
thing green, round, big is a watermelon. If the at-
tributes that describe the example are not well-chosen,
learning could be very di�cult. Consider, as an exam-
ple, the following worse set of attributes for the \lemon-
watermelon" problem above: is it a vegetable?, is

it a fruit?, does it fly?. The two examples are now
described as no, no, yes. The importance of the ex-
ample description derives from the fact that inductive
strategies rely on representations to generalise. Success-
ful inductive hypotheses are the ones that can represent
accurately the similarities and the di�erences relevant to
the task.2

1Although there are di�erent uses of the terms \induc-
tion" and \learning", in this paper we shall use the terms as
interchangeable.

2Data representation is important because every learning
strategy has what machine learning calls a representational
bias, a preference for hypotheses with a speci�c representa-



Meta-learning tasks are inductive tasks. Here, the
examples, instead of being lemons or watermelons, are
inductive tasks classi�ed according to the best induc-
tive strategy to tackle them. Thus, we have: task1 ->

Naive Bayes, task2 -> Backpropagation, task3

-> Nearest Neighbor etc where each of the inductive
strategy mentioned after the arrow is the best strategy
for the task before the arrow.3 The meta-learning task
is to use these examples to learn how to classify new
tasks in terms of the most suitable inductive strategy.
The crucial question for meta-learning is therefore how
to describe tasks.

Di�erent approaches to task description have been
proposed. These include the use of statistical features
of the dataset in the task (Michie et al. 1994) and the
use of features of a decision tree representation of the
task (Bensusan 1998; Bensusan 1999). In the latter, an
inductive hypothesis, namely the one produced by a deci-
sion tree induction method, is used to describe the task.
Landmarking also makes use of speci�c inductive meth-
ods to describe the task, but makes use of the method's
performance rather than the method's induced hypoth-
esis.

The basic idea of the landmarking approach is that the
performance of an inductive strategy on a task uncovers
information about the nature of the task. Tasks are de-
scribed by a set of attributes corresponding to the per-
formance of simple, e�cient strategies on them. These
strategies are expected to indicate which other, more re-
�ned strategy is the best to tackle the task. They act,
therefore, as landmarkers, indicating where, in the space
of all areas of expertise, the task belongs. It explores
empirically the relationships between areas of expertise
of di�erent learners.

The kind of inference on which landmarking relies can
be illustrated with the help of Figure 1. The rectan-
gle represents a set of inductive tasks and the ellipses
represent subsets of the set of tasks where a given induc-
tive strategy performs well, that is, areas of expertise.
Assume that i1, i2, and i3 are taken as landmarkers.
In this case, landmarking concludes that problems on
which both i1 and i3 perform well, but on which i2 per-
forms poorly, are likely to be in i4's area of expertise
etc. Of course, the proximity of the areas of expertise
of two strategies indicates some similarity between the
inductive mechanisms behind them. For landmarking
purposes, however, it is su�cient to concentrate on so-to-
speak cartographic considerations. Tasks are described
by how some landmarkers fare on them. Exploring the
meta-learning potential of landmarking amounts to in-
vestigating how well a landmark learner's performance
hints at the location of the respective learning tasks in

tion (Haussler, 1989; Russell & Grossof 1990). Thus, most
Decision Tree induction algorithms prefer simpler decision
trees, most rule induction algorithms prefer simpler rules.
There is a trade-o� between the need for good input represen-
tation and the strength of the strategy's preference (Craven
& Shavlik, 1995).

3For a survey of the most used inductive strategies includ-
ing all those to be mentioned in this paper consult Mitchell
(1997).

the expertise map.
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Figure 1: Example of map of areas of expertise

Landmarking relies on some simple and e�cient in-
ductive strategies to signpost the location of a task in a
map of expertise areas. Landmarking discovers experi-
mentally which inductive strategies are similar enough
to have neighbouring areas of expertise. It therefore
�nds neighbourhoods of inductive strategies and, ulti-
mately, draws a map of areas of expertise. While other
approaches represent tasks in a way only indirectly re-
lated to their location in an expertise map, landmarking
faces them as points in the map to be described in terms
of their distance to some known milestones.
Landmarking is a tool to discover the areas of expertise

of a learning device. In fact, this is the very goal of
machine learning research: to establish the strength and
the scope of di�erent inductive strategies. In addition,
it highlights which tasks fail to belong to the area of
expertise of any of the existing inductive strategies. It
can therefore direct the search of new strategies towards
areas of the expertise map not currently covered by any
learning method. If successful, it can guide the crafting
of new inductive methods and work as the basis for a
model of inductive re�nement. Let's turn now to some
experiments designed to measure its success.

Experiments with landmarking

A number of experiments to test landmarking are re-
ported in (Bensusan & Giraud-Carrier 2000). The re-
sults show that landmarking successfully meta-learns in
a number of di�erent scenarios. Successful results mean
that selection of inductive strategies can be done through
the information contained in the performance of some
landmark inductive strategies. In this section, we sum-
marise some of these results and present new ones.
Experiments on landmarking can be done only

through selecting a set of landmarkers. The landmark-
ers change according to what we call the learners pool,
i.e., the set of target learners from which one must be



selected. It remains to be investigated how close can we
get from a universal set of landmarkers that can be used
in any learners pool. In the experiments reported here,
we used the following set of landmark learners. For each,
we include the motivation for its inclusion in the set.

1. Decision node: A single decision node is chosen
according to C5.0's information gain-ratio (Quinlan
1993, Mitchell 1997). The node is then used to classify
test examples. This landmark learner aims to estab-
lish closeness to linear separability.

2. Randomly chosen node: A randomly chosen attribute
is used to split the training set and classify the test
examples. This landmark learner informs about irrel-
evant attributes.

3. Worst node: Here the gain-ratio information criterion
is used to pick up the least informative attribute to
make the single split. This landmarker, together with
the �rst one, is supposed to tell us something else
about linear separability: if neither the best nor the
worst attribute produce a single well performing sep-
aration, it is likely that linear separation is not an
adequate learning strategy.

4. Naive Bayes: The training set is used to estimate the
probabilities required to use the Bayes theorem to clas-
sify test cases (Mitchell, 1997). This landmark learner
intends to measure how conditionally independent the
attributes are, given the class.

5. 1-Nearest Neighbor: The test set is classi�ed based
on the classi�cation of the closest training example
(Mitchell 1997). This landmark learner measures how
close instances that belong to the same class are.

6. Elite 1-Nearest Neighbor: This computes 1-Nearest
Neighbor on a subset of all attributes. This elite sub-
set is composed by the most informative attributes if
the gain-ratio di�erence between them is smaller than
0.14. Otherwise, the elite subset is a singleton and the
learner acts like a decision node learner. This land-
mark learner intends to establish whether the task is
a relational one, that is, if it involves parity-like rela-
tionships between the attributes (Clark & Thornton,
1997). In relational tasks, no single attribute is con-
siderably more informative than others.

7. Majority-class guesser: The test set is classi�ed ac-
cording to the most common class in the training set.
This landmark learner intends to inform about the fre-
quency of the majority class.

8. Linear Discriminant: A linear approximation of the
target function is sought (Gama, 1999). This land-
mark learner intends to measure closeness to simple
linear separation.

4This threshold is based on the results reported in Ben-
susan (1999).

The performance of the di�erent landmarkers are
given by the average performance on all the existing ex-
amples of the induction problem, the so-called instance

space of the induction made from 10 di�erent subset of
examples (training sets) of equal size. This approach,
although di�erent from the standard practice of cross-
validation where the sets of examples are drawn with-
out replacement, is an e�cient way to estimate how the
landmark learners perform in each task. Therefore, in-
ductive tasks are described by landmarker's performance
values. The task is then labelled by the learner with
greater average accuracy on the task, using a 10-fold
cross-validation approach. Each task can be labelled by
a learner's name or as \tie" when the di�erence in per-
formance between the best and the worst learner is less
than 10%. A (meta-)dataset with 5 examples described
by 4 landmarkers looks as follows:

0.42187,0.46875,0.46250,0.30781,Ripper

0.45312,0.42187,0.45000,0.26250,IB

0.54687,0.56250,0.45937,0.29844,C5.0tree

0.51562,0.59375,0.43750,0.28750,MLP

0.43750,0.51562,0.43125,0.27812,tie

Given the (meta-)dataset, the meta-learner aims at �nd-
ing correlations between the performances of the learners
in the pool and that of the landmarkers.
In the �rst experiment, we compared landmarking

with an existing approach to task description for meta-
learning. This approach uses a number of information-
theoretical properties of the data to describe the task
(Michie et al. 1994). We implemented this information-
theoretical approach by considered the following 6 fea-
tures de�ned on literature as meta-attributes: Entropy
of the class, Average entropy of the attributes, Mu-
tual information, Joint entropy, Equivalent number of
attributes, Signal-to-noise ratio. The task was to se-
lect among the following 10 learning algorithms: C5.0,
C5.0 with boosting, C5.0 rules, Multi-layer percep-
tron trained with backpropagation (MLP), Radial-based
function networks (RBF), Linear discriminant, Ltree
(see Gama, 1999), Naive Bayes (NB), Instance-Based in-
ducer (IB) and Ripper. Landmarkers 1,2,3,4,5,6,8 were
used. 320 Boolean tasks were considered. The 10 learn-
ing algorithms in the learner pool were also used for
meta-learning in all experiments. Error rates were based
on strati�ed 10-fold cross-validation. Results are given
in Table 1. The �rst line reports the error rate of the
default class that, in this case, was \tie".
The table shows that landmarking outperforms the

information-based task description and therefore it is a
suitable competitor. Notice that landmarking outper-
forms the information-based approach with all of the
10 meta-learners. Moreover, the di�erence in error is
around 10% with the three C5.0 meta-learners. The ta-
ble also shows that adding the information-based fea-
tures to describe the task impairs landmarking perfor-
mance.
Next, we considered a number of learners pools with

two inductive strategies. Learners pools were composed
by pairs of the following inductive strategies: C5.0(with
boosting), C5.0(rules), Naive Bayes (NB), Instance-



Table 1: Comparison between di�erent ways to describe

tasks: performances of the landmarking approach (L),

the information-based approach (Info) and the combined

approach (Combined) using 10 di�erent meta-learners.

Meta-learner Land Info Combined

Default Class 0.460 0.460 0.460

C5.0boost 0.248 0.360 0.295

C5.0rules 0.239 0.333 0.301

C5.0tree 0.242 0.342 0.314

MLP 0.301 0.317 0.320

RBFN 0.289 0.323 0.304

LD 0.335 0.311 0.301

Ltree 0.270 0.317 0.286

IB 0.329 0.366 0.342

NB 0.429 0.407 0.363

Ripper 0.292 0.314 0.295

Average 0.298 0.339 0.312

Based induction (IB), Ripper and Multi-layer percep-
tron (MLP). Landmarkers 1,2,4,5,6,7,8 were used. Tasks
were classi�ed as a tie between the two strategies when
the average error di�erence between the learners in the
pool was less than 0.1. We used 927 arti�cially gen-
erated Boolean and monk-like datasets (Thrun et al,
1991). Boolean instance spaces had between 5 and 12
attributes. The error rates given in table 2 are the aver-
age 10-fold cross-validation error of 5 inductive strategies
used for meta-learning: IB, MLP, C5.0boost, Ripper and
Radial Basis Function Network Induction (RBF).

Table 2: Landmarking to choose between pairs of learn-

ers
Learner pool Error

NB-IB 0.383

NB-MLP 0.179

NB-Ripper 0.181

C5.0boost-MLP 0.246

C5.0boost-NB 0.359

C5.0rules-Ripper 0.204

In a di�erent experiment, we looked at the suitabil-
ity of inductive strategies and groups of similar induc-
tive strategies. We considered that a task is suitable
for a learner if it performs better than the average of
10 standard learners: C5.0, C5.0rules, C5.0boost, MLP,
RBF, Linear Discriminant, Ltree, NB, IB and Ripper.
For this experiment we used only landmarkers 1,2,3 and
6 as they are all decision node based and are arguably
enough to diagnose at least whether decision tree induc-
tion is a good way to approach the task. We used 222
tasks from the set used in the previous experiment and
the 10 standard learners mentioned above to perform the
meta-learning induction. We looked at the suitability of
IB, NB, C5.0boost, neural network inductive strategies
(MLP and RBF) in general (NN), rule induction strate-

gies (Ripper and C5.0rules) and decision tree strategies
(C5.0, C5.0boost, Ltree). The error rates given in table
3 are the average 10-fold cross-validation error of the 10
inductive strategies used for meta-learning.

Table 3: Suitability of inductive approaches. Error rates

for the default class prediction and for meta-learning

with landmarking are given.

Approach Default class Landmarking

IB 0.420 0.297

NB 0.380 0.298

C5.0boost 0.510 0.449

NN 0.440 0.386

Rules 0.370 0.281

Trees 0.470 0.390

These results show that most meta-learners produce
error levels smaller than the default error class and often
the di�erence is substantial. Notice that error rate �g-
ures don't re
ect the overall performance, that is the ac-
curacy of the selected learning model. In another experi-
ment, we tried to estimate this by using the 222 Boolean
problems as tasks of a meta-learning training set and 18
other tasks to test the hypotheses and compare the se-
lected approach with the best performing one. The 18
tasks of the test set were from the standard repository of
benchmark induction problems maintained by the Uni-
versity of California at Irvine (UCI); these are commonly
considered to be \real world problems". We chose the
following problems: mushrooms, abalone, crx, sat, acety-
lation, titanic, waveform, yeast, car, chess(king-rook-vs-
king), led7, led24, tic-tac-toe, monk1, monk2, monk3,
satimage, quisclas.
The results reported for this experiment are the av-

erage error di�erence between the best choice and the
selected choice in the 18 UCI problems. If the average
is in fact better than the chosen model, we consider the
error di�erence between the chosen model and the av-
erage. Similarly if the meta-learner had chosen against
the model that in fact is better than the average of the
10 learners. Here we used only C4.5 (Quinlan, 1993) as
meta-learner. Average error di�erence appear in table 4.

Table 4: Average error di�erence between best and cho-

sen option in the 18 UCI datasets

Approach Error di�erence

IB 0.0356

NB 0.0165

C5.0boost 0.0443

NN 0.0314

Rules 0.0360

Trees 0.0211

The small average error di�erence shows that the cho-
sen strategy, even when is not the best, performs well. It
shows that landmarking seldom make choices that per-



form considerably worse than the best alternative. This
is con�rmed further by an experiment in the same sce-
nario. Now we used only the 14 UCI tasks listed above
as training set and tested the C4.5 hypothesis in the re-
maining four UCI tasks (monk2, monk3, satimage, quis-
clas). The results obtained have a greater variation than
the previous one but shows that in some cases landmark-
ing perform completely accurately. Table 5 summarises
the new results.

Table 5: Average error di�erence between best and cho-

sen option in 4 UCI tasks after training on 14 UCI tasks

only

Approach Error di�erence

IB 0.0675

NB 0.0605

C5.0boost 0.0000

NN 0.0000

Rules 0.0443

Trees 0.0172

These results, although still preliminary, show that
landmarking is capable to select inductive approaches.
They suggest that it pays o� to run bare-bone, landmark
inductive strategies on a number of tasks and learn how
their performance relates to that of other, more 
eshed-
out strategies. This far, we have indicated how the per-
formance of simple inducers in a task can be used for
meta-learning. We move now to the signi�cance of land-
marking for a general theory of induction.

Discovering inductive strategies

For me [...] the problem of induction is a problem

about the world: a problem of how we, as we are now

[...], in a world we never made, should stand better

than random or coin-tossing chances of coming out

right when we predict by inductions that are based

on our innate [...] similarity standard. Darwin's

natural selection is a plausible partial explanation.

W. V. O. Quine

One of the problems of explaining human (and ani-
mal) cognitive practices in general and inductive prac-
tices in particular is to account for success. Humans are
remarkably good at inducing in familiar environments
and seem to make heavy use of their background knowl-
edge accumulated through inductions made in their life-
time history or received as cultural material. Studies
on human induction on tasks similar to the monk prob-
lems have established that prior knowledge in
uences the
rate of concept learning, and the logical form of concepts
formed during learning is a function of the logical form
of the concepts previously acquired (Pazzani, 1991). In
general, humans rely on previous acquisition of concepts
and common-sense knowledge about the area to learn
new concepts (Wisniewski & Medin, 1994; Heit, 1994).
Background knowledge and the ability to meta-learn en-
able humans, when for instance engaged with scienti�c

theory building, to perform successful inductions from
one or few examples.
Human inductive trajectory from innate instincts to

re�ned theories about the world is Quine's view of the
problem of induction: a problem about the world. A
plausible partial complement to Darwin's natural selec-
tion is to �nd a model of exploiting previous induc-
tion experience to boost performance. Such model, of
course, has to accommodate the partial explanation role
that natural selection plays. The inductive trajectory
towards greater e�ciency in familiar environments had
its origins in evolutionary selection of relevant induc-
tive mechanisms. Recent there have been attempts to
characterise human innate inductive tendencies in terms
of learning biases (Elman et al., 1996; Dessalles, 1998).
Leaving aside the question of how our inductive prac-
tices are guided by our innate instincts, we can sketch
a model of the human inductive trajectory according to
which our similarity standards by means of which we
generalise are partly product of evolution, partly a con-
sequence of a gradual process of re�nement. We claim
that landmarking can be part of an account of inductive
re�nement.
Landmarking is a technique to select the most ade-

quate inductive strategy for a task, but it can also be
seen as an instrument for inductive re�nement. It sug-
gests ways in which better, increasingly appropriate in-
ductive strategies, can be constructed from rudimentary
ones. Landmarkers are simple inductive strategies that
can characterise tasks. Thus, they can outline new in-
ductive strategies to adequately cover areas of the exper-
tise map; describing the area in terms of how di�erent
learning biases fare there is a step towards construct-
ing more re�ned biases that can tackle it. As a way
to describe tasks, landmarking has far-reaching conse-
quences beyond strategy selection: to landmark a group
of tasks could be the �rst step towards the development
of an inductive strategy to tackle it. This is arguably
what happens when a scientist applies various simple
methods to a problem in order to get information about
what more sophisticated method to develop. This could
also be what happens when new problems had to be
addressed by humans with only few, unre�ned inductive
tools. Landmarking is a way to discover relationships be-
tween di�erent strategies and, as such, to establish what
is needed to ease learning. In this sense, it not only bears
similarities with other methods that exploit the nature
of the task to decide which way to go (Clark & Thorn-
ton, 1997) but also can be seen as a general framework
for those methods as it describes tasks only in terms of
a portfolio of learning performances. The emerging pic-
ture is one where the records of failure and success of
the current induction tools are used to inform how these
tools need re�nement. Successful learning, landmarking
suggests, might require learning with previous mistakes
and accomplishments.

Conclusions
W�ar nicht das Auge sonnenhaft, die Sonne koennt'es

nie erblicken. Goethe, Zahme Xenien, Werke, Weimar
1887-1918, bk 3, 1805.



Landmarking is a strategy to describe tasks so that no
more than a small class of e�cient learning algorithms
is required. Tasks are described by their position in the
expertise map. It can also be used to locate and explore
expertise terra incognita. It can be seen as part of a
model of inductive re�nement whereby the description
of a task in terms of landmarkers o�ers the raw mate-
rial for the development of new induction tools. The
picture o�ered by this model is one in which human in-
ductive abilities are roughly tuned to their environment;
no survival and no re�nement could start from a com-
pletely alien inductive toolkit. Evolution gives part of
the explanation. But the gradual re�nement that sharp-
ens the kit and assembles new instruments is what turns
the original harmonia loosely praestabilita into an induc-
tively adapted species.
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