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Abstract 

A novel paradigm was developed to study the behavior of 
groups of networked humans searching a problem space. We 
examined how different network structures affect the 
diffusion of information about good solutions. Participants 
made numerical guesses and received scores that were also 
made available to their neighbors in the network. When the 
problem space was monotonic and had only one optimal 
solution, groups were fastest at finding the solution when all 
of the groups’ information was presented to them.  However, 
when there were good but suboptimal solutions (i.e., local 
maxima), the group connected via a small-world network 
(Watts & Strogatz, 1998) was faster at finding the best 
solution than all other network structures.  
 
Keywords: Social networks; group behavior; small-worlds; 
information diffusion; innovation diffusion 

Background 
Humans are uniquely adept at adopting each other’s 

innovations.  Cultural identity is largely due to the 
dissemination of concepts, beliefs, and artifacts across 
people.  Our capacity for imitation has been termed “no-trial 
learning” by Bandura (1965), who stressed that people 
perform behaviors that they would not have otherwise 
considered by imitating one another.  While imitation is 
commonly thought to be the last resort for dull and dim-
witted individuals, cases of true imitation are rare among 
non-human animals (Blackmore, 1999), requiring complex 
cognitive processes of perception, analogical reasoning, and 
action preparation.  When combined with variation and 
adaptation based upon reinforcement, imitation is one of the 
most powerful methods for quick and effective learning.  

One early line of research on when people imitate others 
focuses on conformity in social groups. To some degree, 
conformity is found when people desire to obtain social 
approval from others.  For example, when people give their 
answers privately, they are less likely to conform to the 
group’s opinion than when responding publicly (Deutsch & 
Gerard, 1955).  However, the conformity sometimes runs 

deeper than this, and people continue to conform to the 
group’s opinion even privately (Sherif, 1935).   

Much of the work on conformity focuses on opinions, 
information that does not have a verifiable component in the 
world.  In other cases, however, information obtained from 
others is actually right or wrong.  When a person discovers a 
truly better solution to a problem, this innovation spreads 
through a population just like any kind of information, 
including opinions. Innovations are especially like opinions 
when it is difficult to determine if the innovation is better 
than current practice or if there is no inherent difference, or 
when the benefits of adopting an innovation are largely due 
to others using it (e.g., Macintosh vs. IBM or BetaMax vs. 
VHS).  

The choice between relying on information from others 
and obtaining information on one’s own must be made often 
in everyday life.  Seeking out information on one’s own 
requires time and energy, but is often more trustworthy and 
individually tailored than information learned by word-of-
mouth. On the other hand, choosing to use information 
provided by others can be cost-effective, especially if past 
experience suggests that the source is reliable.  This 
attractiveness of exploiting information from others can 
have an impact on the population, because in cases like 
these, the “I’ll do it if you do it” mentality can lead to 
“tipping points,” (Gladwell, 2000) in which a small number 
of people initiate a positive feedback cycle, leading to an 
exponential increase in the number of users for a period. 

Banerjee (1992) modeled situations where information is 
collected and distributed sequentially and showed that when 
the behavior of other agents was considered equally 
informative as personally obtained information, rational 
agents repeated the best solution found by the first few 
agents regardless of the information they obtained 
themselves.  Bikhchandani, Hirshleifer, and Welch (1992) 
called this an “information cascade” and suggested this 
process could be the cause of fads, fashion, and other 
cultural phenomena.  

Valente (1996) looked at individuals with different 
“adopter thresholds” in the context of their social network. 
This supported work by Granovetter (1978) who first 
suggested that people act as though they have a threshold 
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Table 1: Actual average geodesic path length, clustering 
coefficient, and closeness centrality for the networks used in 
the experiment. 

 
 Path Length Clustering Closeness 
Full 1.00 1.00 0.00 
Lattice 3.08 0.35 0.014 
Small-World 2.61 0.09 0.026 
Random 2.57 0.37 0.050 
 

number of friends (or neighbors) that must adopt a solution 
before they will also adopt the solution.  He found that the 
people who were early in adopting a solution (those with a 
low threshold) were most influential in causing 
bandwagoning in a population.  Michael Chwe (1999) 
extended this threshold model and found that the network 
position of an individual could be more important than their 
threshold with respect to causing other people to revolt (or 
adopt an innovation, depending on your chosen metaphor).  
This highlights the importance of another factor in the 
diffusion of innovation, the social network structure.  

The properties of network topologies have been studied in 
many different arenas, including neural networks, actor 
collaboration networks, power grids (Watts & Strogatz, 
1998), citation links (Newman, 2001), metabolic networks 
(Jeong, Tombor, Albert, Oltvai, & Barabasi, 2000), Web 
links (Albert, Jeong, & Barabasi, 1999), and many more.  A 
wide range of statistics has been developed to describe the 
global properties of these networks.  These properties are 
usually defined in terms of the nodes, which are the units or 
individuals in a network, and edges, the connections 
between them. 

First, the degree of a node is the number of edges 
connecting that node to other nodes.  The degree of a 
network is the average degree of all nodes. Second, the 
average geodesic path length is the smallest number of 
nodes a message needs to go through to link two nodes, 
averaged across all pairs of nodes. This property has been 
popularized as the notion of “six degrees of separation” 
connecting any two people in the world, and has been 
experimentally supported (Milgram, 1967).  The clustering 
coefficient is the proportion of directly connected neighbors 
of a node that are themselves directly connected with each 
other, which can be thought of as the “cliquishness” of a 
network. The closeness centrality measure of a network, 
developed by L. C. Freeman (1979), amalgamates the 
closeness of all of the nodes in a network into a single 
measure.  The closeness of a node is the inverse of the sum 
of the geodesic path lengths to all other nodes, which means 
that on average, a message will reach a node faster if it has a 
greater closeness.  The actual values of these measures for 
the networks used in the experiment are listed in Table 1. 

Erdös & Rényi (1959) were first to thoroughly describe 
the properties of random networks, in which edges between 
nodes are generated such that node i and node j are 
connected with some probability p. These networks tend to 
have a small average geodesic path length. More formally, 

the average path length connecting two randomly selected 
nodes in a random network is ln(N)/ln(K) where N is the 
number of nodes and K is the degree of each node. With a 
large number of nodes random networks tend to have a 
small clustering coefficient, although with fewer nodes the 
probability of three nodes forming a triangle is higher, and 
so the clustering coefficient tends to be higher.  However, 
even with fewer nodes they have a greater closeness to each 
other on average than other networks. 

Another useful network structure is a completely regular 
network, such as a lattice or ring, in which the structure of 
edges defines a spatial structure solely made up of local 
connections. In regular lattices, the average path required to 
connect two individuals requires going through N/2K other 
individuals. Thus, the paths connecting people are much 
longer, on average, for lattice than random networks.  
Additionally, in these networks, the clustering coefficient 
tends to be high, since nodes that are spatially close tend to 
be connected to each other, and the closeness tends to be 
low, because nodes are “farther” from each other on 
average. 

Watts and Strogatz (1998) demonstrated that by starting 
with a regular structure such as a lattice and randomly 
rewiring a small number of connections, the resulting 
“small-world” network still maintains a sort of regular 
structure because nodes that are connected to the same node 
tend to be spatially close themselves (and so have a greater 
closeness), but also has a small average geodesic path 
length.  From an information processing perspective, then, 
these are attractive networks because the spatial structure of 
the networks allows information search to proceed 
systematically, and the short-cut paths allow the search to 
proceed quickly (Kleinberg, 2000).   

Allen Wilhite (2001) compared market trading over 
various network structures. In one condition, all agents were 
allowed to trade with any other agent.  In another, agents 
could only trade locally, in small cliques.  In a third 
condition, most agents could only trade locally, but a few 
could trade globally (i.e., outside of the local clique).  In this 
small-world network, the market reached Pareto equilibrium 
(the state where no more trades that mutually benefit both 
traders can be made) even faster than the condition where 
everyone could trade with everyone.  This is further 
evidence that small-world networks have unique features in 
the dissemination of information.  

There is excellent work studying the diffusion of 
innovation in real groups (e.g., Ryan & Gross, 1943; 
Rogers, 1962, 1995), social psychological research on how 
individuals use information provided by others (Sherif, 
1935; Cialdini & Goldstein, 2004), as well as computational 
models of information transmission (Nowak, Szamrej, & 
Latané, 1990; Axelrod, 1997; Kennedy, Eberhart, & Shi, 
2001).  The study reported in this paper tie together these 
diverse areas by exploring the diffusion of innovative ideas 
among a group of networked participants, each of who is 
trying to individually find the best solution to a search 
problem.  This provides a unique method for studying the 

1420



 
 

Figure 1: Examples of the different network structures for 
groups of 10 participants.  Circles represent participants, 
lines indicate communication channels. 
 
properties of networks using actual human behavior. 

In choosing a paradigm for studying information 
dissemination, we sought to find a case with: 1) a problem 
to solve with answers that varied continuously on a 
quantitative measure of quality, 2) a problem search space 
that was sufficiently large that no individual could cover it 
all in a reasonable amount of time, and 3) simple 
communications between participants that would be 
amenable to computational modeling.  We settled upon a 
minimal search task in which participants guess numbers 
between 0 – 100 and the computer tells them how many 
points were obtained from the guess. There was a 
continuous function that related the guesses to the points 
earned, but this function was not revealed to the 
participants.  The participants received information on their 
own guesses and earned points, as well as obtained 
information on their neighbors’ guesses and outcomes.  In 
this manner, participants could choose to imitate high-
scoring guesses from their peers. 
Examples of the network structures we compared are shown 
in Figure 1 for groups of 10 participants.  Circles indicate 
participants and lines connect participants that directly 
exchange information.  To generate our small-world 
networks we started with a spatially ordered network (i.e., 
the ring structure of the regular lattice) and added edges 
between random nodes. Although this caused the clustering 
coefficient to be low, because neighbors of a node were not 
more likely to be neighbors of each other, they still had a 
small average geodesic path length and maintained the 
spatial structuring of the lattice network, as evidenced by 
the greater closeness centrality of the networks. 

 

a) 

 
b) 

 
 

Figure 2: Examples of the a) unimodal and b) multimodal 
fitness functions 
 

Notice in Figure 1 that three of the networks have a total 
of 12 connections between participants.  Thus, if there is a 
difference in information dissemination in these networks, 
then it must be due to the topology, not density, of the 
connections. In addition to these three network structures, 
we also used a fully connected network (also called a 
“complete graph” in graph theory), in which everyone had 
access to the guesses and scores of everyone else.  

In this experiment, we compared two fitness functions.  
The unimodal function has a single peak that could be found 
with a hill-climbing method. The multi-modal function 
increased the difficulty of the search and introduced local 
maxima.  A local maximum is a solution that is better than 
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all of its immediate neighboring solutions, yet is not the best 
solution possible. In this case a simple hill-climbing method 
might not find the best possible solution.  Figure 2 shows 
one of the multi-modal functions used, which has three 
peaks, but one of the peaks is somewhat higher than the 
other two.  One interesting prediction is that participants 
may prematurely converge on a local maximum, thus 
precluding exploration of better, uninhabited regions of the 
problem space. 

The basic prediction is that the small-world network will 
allow fast dissemination of information that will lead to 
rapid convergence on a maximum, but the early distribution 
will be divided into clusters that allows for more exploration 
and thus less likelihood of early convergence on a local 
maximum when compared to less cliquish network 
configurations like the fully connected networks. In the 
unimodal landscape there are no local maxima, so we expect 
that when the spread of information is fast (i.e., shorter 
average path length), convergence on the maximum will 
also be fast. 

 
Method 

112 groups of Indiana University undergraduate students 
ranging in size from 5 – 18 people with a median of 12 
people per group participated for partial course credit, for a 
total of 1358 participants.  Each session was run in a 
computer lab with 20 client computers used by the 
participants and one server operated by the experimenter.  
Before each session, the experimenter set up the server with 
one of two fixed random orderings of 8 series, each of 
which had a different fitness function and network structure.  
The fitness functions in each series were either unimodal or 
trimodal, but the positions of the global maximum (and 
local maxima in the trimodal conditions) were different for 
each of the 8 series. The network structure in each series 
was either full, lattice, small-world, or random, similar to 
those in Figure 1.  

To create a network, the server takes all of the client 
computers and treats each as a node.  For the random 
network, the server creates a number of edges equal to 1.3 
times the number of nodes connecting random nodes under 
the constraint that a path exists between every node (i.e., 
that the graph is connected). This is conceptually equivalent 
to the algorithm proposed by Malloy and Reed (1995) for 
generating random networks with a pre-defined degree 
distribution. For the lattice network, the server connects the 
clients in a ring and then randomly picks 30% of the nodes 
and connects each of these nodes to a neighbor two steps 
away.  For the small-world network, the server begins by 
putting the clients in a ring and then picks 30% of the nodes 
randomly and adds a connection to another random node 
under the restriction that the connected nodes are at least 3 
nodes apart following the lattice path. These probabilities 
ensure that the average degree is roughly equivalent for all 
of the network structures. Thus, the experiment was a 2 
(fitness function) x 4 (network structure) within-subjects (or 
rather, within-groups) design. 

Participants signed onto the computer and gave 
themselves a handle or were assigned an ID.  Once they had 
signed onto the computer, the experimenter started the 
session and the following instructions appeared to each of 
the participants: 

 
Thank you for participating in this experiment on how 

ideas move from person to person in a social group.  Your 
task is to try to accumulate as many points as possible.  On 
each trial, you will type in a number between 0 and 100, and 
the computer will tell you how many points your number 
receives.  There is a systematic relationship between the 
number you put in, and the points you receive, but the 
relationship will often be difficult for you to understand.  
Every time you type in the same number, it will be worth 
about the same number of points, but there may also be a bit 
of randomness added in to the earned points.  Usually, 
numbers that are close to each other will receive similar 
points. At the end of each block of trials, you will be told 
how many points you earned, and how many points people 
earned in general. 

In addition to telling you how many points your guess was 
worth, after each round of guesses, the computer will show 
you what numbers other people guessed, and how many 
points those guesses earned.  You can use this information to 
help you decide what number to guess on the next round.  
Other people will also see the number that you entered, and 
how many points you received. 

 
After they read this, the controlling program created the 
network neighborhood and the first round in the first series 
began. Each series consisted of 15 rounds in which 
participants had 20 seconds to guess a number between 0 - 
100.  When a round ended, the guesses were sent to the 
server, which calculated each participant’s score (which was 
always between 0 and 50), added normally-distributed noise 
with a variance of 25, and returned the feedback.  This 
began the next round, and participants now had available a 
list of the their own and their neighbors’ ID, guess, and 
score while they decided on their next guess. 
 

Results 
We examined several measures of search performance to 

compare the different network structures on different fitness 
functions.  To determine speed of convergence we looked at 
the average number of guesses the agents made before 
reaching the global maximum.  To compare overall 
performance we looked at the percentage of the participants 
within one standard deviation of the global maximum on 
each round and across all rounds.  To see how clustered the 
guesses were, we used the Kullback-Leibler1, or relative 
entropy statistic, to compare the spread of guesses to a 
uniform distribution. The relative entropy increases as the 
distribution of guesses deviates more from a uniform 

                                                             
1 The Kullback-Liebler is  Σpilog(pi/qi) where pi is the actual  
frequency and qi is the expected frequency of guesses in each “bin” 
summed from i = 0 to N, or the number of bins that segment the 
range of guesses. 
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distribution.  For our purposes we divided the range of 
guesses form 0 - 100 into 20 bins of 5 points each. 

While the average number of rounds before any single 
individual reached the global maximum did not differ 
between network structures for the unimodal function, the 
lattice network had a significantly smaller percentage of 
people (M = 0.66) within the global maximum than all of 
the other networks (full: M = 0.82; small: M = 0.80; 
random: M = 0.77) (F(3,50) = 4.191, p = 0.01), which is 
most likely due to the longer average path lengths and thus 
slower spread of information through the network.   

This is supported by examination of the percentage of 
participants within one standard deviation of the global 
maximum after each round.  As can be seen in Figure 3a, 
the fully connected, small-world, and random networks have 
almost 80% of participants in the global maximum by 
Round 3, while the lattice network does not reach this level 
until round nine, and never reaches the percentages the other 
networks attain.  Additionally, the low average relative 
entropy of the lattice network (M = 1.43, SD = 0.42) 
compared to all of the other networks (full: M = 1.71, SD = 
0.36; small: M = 1.61, SD = 0.45; random: M = 1.71, SD = 
0.41) indicates that the distribution of guesses in the lattice 
network was typically less clustered than for the other 
networks (F(3, 791) = 17.259, p < 0.001).  

In the multimodal landscape we again expect shorter path 
lengths to correspond with faster convergence on the global 
maximum, but we anticipate that lack of spatial structure 
could lead to less exploration, and thus early convergence 
on a local maxima and a slower convergence on the global 
maximum. 

As predicted, the average number of steps for the first 
person to reach the global maximum was significantly less 
in the small-world network (M = 3.47) than even the fully- 
connected network (M = 5.10), and this difference was 
significant (t(21) = 2.9, p < 0.05).  The efficiency of the 
small-world network is also evidenced in the average 
percentage of participants within the global maximum 
across all rounds (M = 0.674), which is significantly higher 
than the other network structures (full: M = 0.53; lattice: M 
= 0.43; random: M = 0.40) (F(3, 53) = 5.692, p < 0.005).  
An examination of the percentage of participants within the 
global maximum on each round highlights the advantage of 
the small-world network.  As can be seen in Figure 3b, the 
small-world network consistently dominates the other 
network structures, approaching the highest percentage 
(80%) by round nine while the other networks do not reach 
that level until the last round, if at all.  

 
Discussion 

When there was only one good solution – when the fitness 
function was unimodal – there was a direct relationship 
between the average shortest path length and the speed with 
which the group converged on the best solution.  In this 
case, the fully connected network performed only slightly 
and nonsignificantly better than the random or small-world 
networks, as is predicted by the approximately equally short  

a) 

 
b) 

 
 
Figure 3: Percent of participants within 1 standard deviation 
of the global maximum on each round in the a) unimodal 
and b) trimodal fitness function. 
 
path lengths for these three networks.  The lattice network 
took longer to converge on the best solution because the 
advantageous innovations had to work their way through 
longer chains of people.  However, when the problem space 
had good solutions that were nonetheless sub-optimal, as in 
the multimodal fitness function, the story was different.  In 
this case the small-world network groups found the best 
solution faster than every other network, even the fully 
connected network in which everyone had the information 
about every other participants’ guesses and scores.   

This somewhat counter-intuitive result, that limiting the 
available information might actually improve a group’s 
performance, is a result of the way the groups were 
searching the problem space. In the fully-connected 
network, participants would latch onto the first good 
solution that was found, and this was only the best solution 
a third of the time.  When the group converged prematurely 
on a local maximum, it took them longer for an adventurous 
(or bored) participant to explore and find the globally best 
solution. In the small-world network, however, the 
participants were segregated into different spatial regions, 
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but the information could travel quickly through “short-
cuts,” allowing for different locally connected groups to 
explore various regions of the problem space.  Thus, while 
one locally connected group might latch onto a local 
maximum, the small-world topology decreases the 
probability that everyone will follow their lead before 
another sub-group finds the global maximum.   Once any 
subgroup finds the global maximum, the information can 
spread quickly to other subgroups, unlike the lattice 
structure. 

Ultimately, the paradigm developed here can be used to 
study the problem-solving abilities of groups under a wide 
range of conditions.  For instance, different communication 
structures could be tested, such as scale-free networks 
(which are increasingly observed in a wide range of real 
networks), or hierarchies, which are interesting because they 
are a typical organizational structure.  Additionally, 
different problem spaces remain to be explored, including 
multidimensional and dynamically evolving problem 
spaces.  It seems reasonable to predict that a network 
structure that permits a group to quickly converge upon a 
solution may be less fit when the problem space changes. 
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