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How are Repeated Items Encoded in Working Memory?

Danke X. Shieh (dxie@crl.ucsd.edu)
Jeffrey L. Elman (elman@crl.ucsd.edu)

Department of Cognitive Science, University of California, San Diego
La Jolla, CA 92093, USA

Abstract

How are repeated items encoded and retrieved in the brain?
This paper presents a working memory model of serial recall
based on a novel theory of repetition encoding. Instead of cre-
ating a separate node for each repeated item, repeated items
are assumed to be recognized as repetition patterns, such as
Xn (immediate repetition), XY X (alternation), and XY ZX
(2-separated repetition). These patterns encode lists with repe-
titions into a list of non-repeating representations, which solves
the problem of repetition. The above patterns can encode ar-
bitrary lists up to 4 items. With an additional mechanism
of chunking, robust encoding of arbitrary lists within mem-
ory span (∼7) can be achieved. The Repetition Encoding and
Chunking model based on this theory is constructed and simu-
lated. Its performance shows serial position effects, list-length
effects, and chunking effects found in human immediate serial
recall tasks. It offers insights into representations of patterns,
binding and hierarchy, and offers an explanation for various
memory errors, including misplaced repetition (233 →223)
and alternation errors (232→323).

Keywords: working memory, short-term memory, immediate
serial recall, serial order, problem of repetition, binding.

Introduction
How does the brain temporarily hold a list of numbers, or plan
a sequence of movements? These tasks require a short-term
or working memory for serial order during the performance
of the task. The serial order problem has been seen as fun-
damental to understanding the brain and cognition (Lashley,
1951). In recent years, many theories and models of work-
ing memory have addressed this problem, both in psychol-
ogy (Burgess & Hitch, 1999; Henson, 1998b; Page & Nor-
ris, 1998; Farrell & Lewandowsky, 2002) and neuroscience
(Melamed, Gerstner, Maass, Tsodyks, & Markram, 2004;
Beiser & Houk, 1998).

One influential theory, the ordinal theory, assumes that or-
der is represented by relative values of a continuous prop-
erty (e.g., the activation levels of items) with the first item
“strongest” and the last item “weakest”. The order of these
items is retrieved by iteratively selecting the most active item,
and then suppressing it. Specifically, when order is repre-
sented by the activation levels of items, the theory can be re-
ferred to as the activation gradient theory.

This theory is most explicitly explored in the primacy
model (Page & Norris, 1998), which can reproduce many
dominant patterns of recall errors (omission, intrusion, and
transposition) (Page & Norris, 1998). Other major working
memory models of serial order has also explicitly or implic-
itly adopted an activation gradient, or a functionally equiv-
alent counterpart, to encode serial order, such as the com-
petitive queuing mechanism in Burgess and Hitch (1999),
the start markers in Henson (1998b), and possibly also the

learned mechanism of the neural network model (Botvinick
& Plaut, 2006). Some researchers consider activation-
gradient-based retrieval as a theoretical convergence achieved
in working memory models in the recent 10 years (Farrell &
Lewandowsky, 2002).

An issue that has arisen with the wide acceptance of the ac-
tivation gradient theory is that the gradients are modeled in
various ways, and there hasn’t been a biologically-based ac-
count for how the brain generates it. In our recent Divergent-
Reconvergent model (Shieh & Elman, 2006), we addressed
this issue, and proposed a biologically plausible mechanism
based on the connectivity of the basal ganglia (Graybiel,
Aosaki, Flaherty, & Kimura, 1994). This idea is inherited but
revised in this model, taking into account the crucial fronto-
basal ganglia loops. It is worth noting that traditionally the
basal ganglia are seen as a neural substrate for learning long-
term motor sequences. But the view has changed, and many
researchers now believe that the basal ganglia play similar
roles in perceptual, linguistic and cognitive sequences based
on neuropsychological and anatomical evidence (Lieberman,
2000).

Despite considerably wide acceptance of the activation gra-
dient theory, there is a crucial issue that needs to be solved for
the theory to capably perform immediate serial recall. The is-
sue is the problem of repeated items.

Repetition problem

The problem of repeated items is well-known for any models
based on the activation (or primacy) gradient (Page & Norris,
1998). In these models, an item is typically represented by
a single node. The second instance of an item will increase
the activation level of the node that has already been acti-
vated, but this will not correctly represent the two instances
(Bradski, Carpenter, & Grossberg, 1994). In order to en-
code and retrieve repeated items, additional mechanisms are
needed. Some researchers remark that activation-gradient-
based models may require a tokenization process (Henson,
1998b), which hasn’t been addressed by existing models ex-
cept (Bradski et al., 1994).

Technically, it is indeed possible to use a tokenizer to pre-
process the input sequence so that it doesn’t have repeated
items and can be encoded/recalled by existing activation-
gradient models (e.g., ABAD → A1BA2D where A1 and A2

are different nodes). Such a model is functionally identical to
the STORE3 model of immediate serial recall (Bradski et al.,
1994), which combines tokenization and activation gradients.
However, from human performance, we know that different
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tokens of the same type have more intriguing interactions,
which cannot be explained by tokenization alone.

Interesting phenomena can be observed from motor short-
term memory outputs in typing, especially typing errors.
Some typing errors are highly informative for how repeated
items are encoded, for example, misplaced repetitions (sup-
per → suuper) and wrong repetition numbers (suppper)
(Rumelhart & Norman, 1982). These errors suggest that re-
peated items are represented by an item code and a separate
repeating code. The errors occur when the repeating code is
mistakenly applied to other items (misplaced repetitions), or
perturbed by noises (wrong repetition numbers). Another er-
ror, the alternation reversal error (these → thses), suggests a
special alternating mode, where two letters are bound with an
alternating mechanism that produces the form XY X . When
the wrong letter is produced first (e.g., due to binding error),
the output will be the reversed alternation Y XY .

The underlying principle seems to be avoiding the repre-
sentation of multiple tokens, by other mechanisms that com-
pensate for the representational loss. The brain seems to face
the same challenge as the activation gradient models and has
evolved/developed some mechanisms to remedy it. But im-
perfection of the solution can be seen in short-term memory
tasks. It is well-known that lists containing repeated items are
more difficult to recall than lists without repetitions – known
as repetition inhibition, or the Ranschburg effect (Jahnke &
Bower, 1986).

Some information about the coding can also be seen in an
interesting exception to the above Ranschburg effect. When
the repeated items are adjacent (e.g., 1RR294), facilitation
happens instead of inhibition (Henson, 1998a). That is, the
list containing a pair of doubled item is recalled better than
lists with distinct items. Repetition facilitation further sup-
ports doubling coding, because it reduces the number of items
needed to be remembered.

In the next section, we propose a theory based on the above
observations of repetition encoding. It is hypothesized that
a few repetition patterns are used to encode repeated items.
Combining our previous model based on activation gradients
and this theory, we develop a new model Repetition Encoding
and Chunking (REC) model. The model’s serial recall per-
formance will be quantitatively fit and compared with human
data.

Encoding Repetitions

Small patterns

In this paper, we propose that the brain uses two mechanisms
to overcome the problem of repetition: patterns and chunks.
The basic concept for patterns is that the brain uses them to
the recode stimulus and remove repetitions. A pattern is a
form in which the repeating items occur. For example, a dou-
bling is a pattern with a the form X 2 and a variable X which
denotes which item is repeated. Though there are two in-
stances of X in the input, with the pattern only its identity
(one instance) needs to be encoded. In general, each pattern

has a pattern identity or form, such as X 2 or XY X , and one
or more variables (e.g., X, Y, Z) that can be bound to other
items or patterns.

It is not easy to determine what patterns are used by the
brain for encoding. For example, should we include compli-
cated patterns such as X5 and XY ZWX? In this research,
we adopt two strategies in selecting the patterns: 1) only in-
clude repetition patterns with high recall accuracy in short-
term memory studies; 2) only include patterns needed to sup-
port robust recall of arbitrary lists within some length. We
choose the length to be 4 here, because people are exception-
ally good with this length (Severin & Rigby, 1963). Further,
four also reflects a binding capacity (number of feature con-
junctions) that restricts the use of patterns for lists longer than
about 4 items (Luck & Vogel, 1997).

From the two strategies, we hope to identify patterns that
are both useful and necessary (under assumptions of the acti-
vation gradient theory). Using Strategy 2, we would find that
the patterns in Table 1 are needed to systematically encode ar-
bitrary lists of 4 items (verified below). This is a minimal set
of patterns. With them, other patterns like XXY or XY XZ
are not necessary.

Table 1: Patterns that encode repetitions
Pattern Description

Xn immediate repetitions of an item X (n=2,3,4)
XY X repetitions separated by one extra item

XY ZX repetitions separated by two extra items

Using strategy 1, we would examine what patterns are most
accurately recalled in short-term memory tasks. They turn
out to be the same patterns as above, which better supports
the selection of these patterns. When the subjects recall re-
peated items, the recall accuracy is high when these items
are in patterns X2 (71%), XY X (52%) and XY ZX (54%),
but quickly drops to 33% for the pattern XY ZWX (Henson,
1998a, Exp. 2A). Because patterns like XY ZWX have low
recall accuracy, dropping them would not greatly affect per-
formance of the model. In other words, even if the brain may
occasionally use more complicated patterns, its performance
can still be well approximated by this model.

With this said, it may be needed to point out that there
is indeed a natural generalization of the above patterns (X n,
XY X and XY ZX) that brain may all recognize: they are all
cycles of up to 4 items with one item as the stopping point.
This generalization would also cover patterns like XYZXY,
whose cycle is XYZ, and the stopping point is Y (not the X
as in the basic patterns)1. However, because they only apply
to highly regular stimuli, we do not include them here.

1They can be seen as a prefix of the regular language (Σn)m,
where Σ is the alphabet, n is the cycle length and m is the number
of cycles.

1492



Robust encoding of lists of up to 4 items

Here we verify that our encoding scheme can indeed encode
all lists of four items; that is, converting any list of 4 items
into a list of non-repeating items and patterns. All possible
cases of 4-item lists are shown in Table 2. In the table, re-
peated items are denoted by R and S, and non-repeating items
are denoted by a and b. A bracket is a pattern.

Table 2: Encoding 4-item lists without repeated item/pattern

Type Encoding
One repeated item

Repeated 2 times [RR]ab, a[RR]b, ab[RR]
[RaR]b, a[RbR]
[RabR]

Repeated 3 times [RRR]a, [RR]aR, [RaR]R∗, a[RRR]
Repeated 4 times [RRRR]

Two repeated items
Separate [RR][SS]
Interleaved [R[SS]R]

* RARR can also be encoded as Ra[RR].

It is important to notice that some patterns are nested, as in
the case of RSSR. For this list, the pattern X 2 is first applied
to the internal S’s, and then XY X is applied to the remaining
items. Without nesting, the pattern needs to be encoded by a
new pattern.

It is possible that hierarchical encoding is essential of
working memory organization. With hierarchical encod-
ing, the working memory model can also represent syntactic
structures in language processing. In theory, it is possible that
the adaptive advantage of solving the sequence representation
problem might lead to the evolution of neural mechanisms
that are later used for language.

Chunks

When the list length is 5 or more items, some lists cannot be
represented without using some items or patterns, for exam-
ple, RABCR. To account for the brain’s ability of encoding
arbitrary lists up to about 7 items, extra mechanisms may be
needed.

Chunking is a possible mechanism that overcomes the
problem of repetition. It is known that the best encoding strat-
egy for 7 items is to chunk them as 3 plus 4 items (Severin &
Rigby, 1963). The effect of chunking can be seen as improv-
ing recall in a way that repetition patterns cannot. Though
it is not immediately clear how chunking improves recall, it
is assumed that items do not interfere as much as they are in
the same chunk, at least under some conditions. One of such
conditions is when the repeated items are in the same within-
chunk position (Henson, 1998a). In the current model, the
interference between items in different chunks is temporar-
ily eliminated for simplicity, but will be included in future
refinement of the model.

Using patterns and chunks, a long list can be divided into
several chunks so that repeated items in a chunk can be rep-
resented by patterns (Figure 1). The branches show how a
list is divided. In example A, X 2 and XY X are patterns that
encode repetitions. In B, a long list is chunked into two short
ones without repetitions within them.

A. 233454
�

��
�

��
233

����
2 33

X2

454

XY X

B. 129472
����

129 472

Figure 1: Encoding of lists with repeated items

The Repetition Encoding and
Chunking Model

Theoretical Neuroscience pioneer David Marr advocated
three levels of analysis: computational, algorithmic, and im-
plementational. They can be understood as the goal of the
computation, representation and algorithm, and neural imple-
mentation. For this research, we implement the model at the
algorithmic level. The focus is to model the strategies and
methods used by the brain, but for crucial components of the
model, we resort to neural network models for better biolog-
ical relevance.

Item 
input

Chunk
signal

Repetition pattern
Detector

Short-term memory

Output

Chunker

Retriever

Figure 2: Components of the Repetition Encoding and
Chunking model

The Repetition Encoding and Chunking model has several
interactive components. Item input presents items to the sys-
tem one at a time. The input item enters both the short-term
memory (STM) and the repetition pattern detector. When the
repetition pattern detector detects one of the three patterns in
Table 1, it reorganizes the items in STM to reflect the pattern.
The chunk signal component can receive chunking requests,
and create new chunks in STM. Retriever can recursively (not
just iteratively as in CQ models) select the most active item,
pattern or chunk in STM, and produces the corresponding out-
put.

Representation
The basic representation of information is a unit. A unit x has
an activation level A(x), a phase φ(x), and a response inhi-

1493



bition value r(x). When an item is presented, an initial acti-
vation level is assigned to it, which is later subject to sponta-
neous decay. The phase represents the unit’s relation to other
units, units in the same group and having the same phase are
bound together. The representation of binding by synchrony
is used to bind items and variables in patterns. The response
inhibition suppresses a unit after it is retrieved.

The content of a unit is either a basic item, or a group.
A group is a flat structure containing a collection of items,
with the property that items in a group compete for response
during recall. The group is a general structure used for repre-
senting patterns and chunks.

A special group, the primary group, is the major space of
information storage. All items must first enter the primary
group, before they can be organized into a pattern, or a chunk.
The primary group in this model is equivalent to item-level
representations in many other working memory models.

When items are organized into a pattern or a chunk, a new
group is created. The affected items are transferred from the
primary group to the new group with their original activation
levels and phases. Then, a unit that links to the new group is
inserted into the primary group. An example of the internal
representation of the list 233454 is given in Figure 3.

Primary group 
233454

2

C XYX

X2

X 3 X Y 4 5Pattern 
33

Chunk
233

Pattern 
454

Figure 3: An example of internal representation of the model.
The bar over an item shows its activation level. The flower
shape with a dark/blue petal shows its phase. In patterns, an
item having the same phase as a variable is bound with it.

Serial order
In the model, serial order is represented by relative activation
levels of active items. This mechanism has been investigated
in the Primacy Model (Page & Norris, 1998), Burgess and
Hitch’s (1999) model, and the Divergent-Reconvergentmodel
(Shieh & Elman, 2006). But there are differences in the way
the activation gradients are generated. Since the Divergent-
Reconvergent model is based on neural anatomy, we will also
use this mechanism in this model. To do this, we first derive
an analytical form of the activation gradient function from the
Divergent-Reconvergent model.

The basic idea of the Divergent-Reconvergent model (with
some revision) is that input the prefrontal (PFC) area passes
through the bottle neck of the basal ganglia, and projects back
to the prefrontal area. The function of the fronto-basal ganglia
loop is to add an activation-gradient over the active items in

the PFC, so that they can be competitively selected by the
(pre-)motor cortex for output.

The activation gradient is generated in the following way.
Each item in PFC connects to a large number of units in the
striatum. Each of these striatal units, in turn, has lateral inhi-
bition on several neighboring units. Due to this lateral inhibi-
tion, late items do not have less strong activity in the striatum,
forming an activation gradient that encodes the serial order.

The activation gradient depends on two parameters: the
density ρ of striatal units each item connects to, and the fac-
tor η of lateral inhibition (the average number of neighbors
inhibited by one striatal unit). Let An denote the density of
striatum units activated by the nth item. An can be recur-
sively calculated as

An =

{
ρ n = 1
ρ

∏n−1
i=1 (1 − η Ai) n > 1,

(1)

where 1 − η Ai is the proportion of units not inhibited by the
ith item. Eq. (1) is used in this model to compute the initial
activation of a unit when it is activated in the primary group.
When a unit is transferred from the primary group to other
groups, it keeps its current activation level. After a unit is
activated, its activation level A(x; t) at time t is subject to
decay:

A(x; t) = (1 − γ) A(x; t − Δt), (2)

where Δt is time step of the simulation, the decay rate γ is
chosen so that a fully active item decays to the retrieve thresh-
old θ in T seconds.

Patterns
A pattern in the system is represented by a pattern unit associ-
ated with a group (see the X 2 unit in Figure 3). In the group,
it has a number of variables, and items associated with this
pattern. Associated items are bound to the variables having
the same phases.

A pattern is formed when it is detected. For example, when
the pattern 4-5-4 is recognized, a new pattern unit XYX is
first created. Then, the active items 4 and 5 in the primary
group are transfered to the new group and bound with corre-
sponding variables. At last, the pattern unit XY X is stored
and activated in the primary group. Its activation level is set
to that of the most active item in the pattern.

While a pattern is active, binding errors may occurred if
the phases of variables and bound items are desynchronized.
This accounts for errors where the list 232 is retrieved as 323
by mistake.

Chunks
When the model receives a chunk signal during the presen-
tation of a list, it creates a new chunk unit associated with
a new group (see the unit C in Figure 3). Then, it transfers
all unchunked items in the primary group into the new group,
and store and activate the chunk unit in the primary group.
The process is similar to the creation of a pattern, except that
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no variable binding occurs here. The activation level of the
chunk unit is also set to that of its most active item.

Retrieval
Retrieval starts from the primary group. The retriever selects
the unit x with the strongest output strength s(x) and above
the retrieve threshold θ:

s(x) = A(x)/ρ − r(x) + ε, (3)

where ε is the noise term with ε ∼ N (0, σ2) and σ is a noise
level parameter. After outputting the item, the unit is de-
pressed by a high r(x) value. If the content of the unit is
a pattern or a chunk, items in it are recursively retrieved.

Parameter estimation
Parameters of this model are as shown in Table 3. There are
5 parameters. For each we have chosen 4-10 levels based on
pilot experiments. There are about 30,000 combinations of
parameters. Instead of fitting all parameters at once, we sepa-
rated parameters in two groups (ρ, η, σ) and (T ,θ) and alterna-
tively fit each group, until the RMS converges. The optimal
sets of parameters for different experimental data vary in a
range, due to differences in materials, procedure and subject
population, but the parameters ρ, η about the neural mecha-
nism are relatively stable. The ranges of optimal parameters
are given in Table 3.

Table 3: Model parametrization
Param. Range Description

ρ .02-.03 Divergent density
η 3-6 Lateral inhibition factor
σ .02-.04 Std. Dev. of Gaussian noise
T 50-100 sec Activation timescale
θ 5-20% Retrieve threshold

Simulations
Serial position curves
We first examine the models’ capability of fitting human ex-
perimental data. The material for this simulation is lists of
non-repeating items (lists with repeated items will be ana-
lyzed next). We used two versions of the model: the first is
an activation-gradient model without repetition patterns and
chunks (NC, no chunking), and the second chunks the lists
into two groups (AC, averaged chunking). The chunking
boundary is randomly chosen for each list from 2-4, 3-3 and
4-2 (for 6-item lists), and 3-5, 4-4 and 5-3 (for 8-item lists).
The two models have the same set of parameters, optimized
with the above method.

The results are shown in Figure 4. Both models fit the data
fairly well. This confirms the validity of activation-gradient-
based serial recall (Page & Norris, 1998; Shieh & Elman,
2006). Since there are no repeating item, the new mechanism
(patterns and chunks) is not expected to make a big differ-
ence. Nonetheless, the new model fits human data a little

better. If this effect is true, it may suggest that people may
voluntarily chunk the lists into 3 or 4 items even when this is
not required.
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Human
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A B

C D

RMS errors of A: 2.50%, B: 1.54%, C: 8.28%, D: 2.34%.

Figure 4: Serial-position curves of the model and human data.
The top panels (A,B) are based on lists of phonologically dis-
similar letters in Experiment 1 of Henson et al. (1996). The
bottom panels (C,D) are based on Experiment 1 of Page and
Norris (1998).

Recall of lists with repetitions

In this simulation, we include lists with and without repeated
items. A basic activation-gradient model would systemati-
cally fail to encode repeated items. Here, we measure how
much the new model improves recall of lists with repeated
items.

0%

20%

40%

60%

1-2-2-2 2-2-3 1-3-3 3-4
Grouping types

A
cc

ur
ac

y

0%
25%
50%
75%

100%

1 2 3 4 5 6 7 8 9 10
List length

A
cc

ur
ac

y

No Repetition
No Rep. Code
Rep. Code

A B

Figure 5: Recall accuracy of lists with repetitions

After the model parameters are optimized by the serial po-
sition curve above, its recall accuracy for lists of different
lengths but without repeated items is plotted (Figure 5B, No
repetition). This list-length curve exhibits the typical reversed
S-shape as in people’s serial recall. When we fit the model
against a human list-length curve (Guildford & Dallenbach,
1925), the fit is very tight with RMS error as low as 1.2%.
This suggests a good match of the model to human perfor-
mance.

Next and crucially, we repeated this simulation with lists
containing repeated items. Performance of the model without
repetition coding (patterns and chunks) dropped dramatically
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(No. Rep. Code). However, the model with repetition encod-
ing (Rep. Code) remained at same performance level as for
lists without repeated items (No repetition). The difference is
dramatic, as shown in Figure 5B. With the new mechanism,
the activation-gradient model can recall lists with repeated
items as accurately as lists without repeated items. The mech-
anism effectively remedied representational deficiency in ba-
sic activation-gradient models.

At last, we tested the model’s recall accuracy on pre-
chunked lists of 7 items, in order to find out the best chunking
strategy for the model. Four grouping types are compared as
shown in Figure 5A. The 3-4 pattern is the most suitable for
the model, consistent with the result in human experiments
(Severin & Rigby, 1963). The reason, we believe, is that the
chunk sizes of three and four make the best use of the en-
coding power of the repetition patterns. This result further
supports the validity of the patterns used.

Conclusion
This research proposes a new theory of how the brain encodes
and retrieves sequences with repeated items, and its process-
ing of repeated items in general. Using patterns and chunks,
any span-length lists with repeated items can be robustly en-
coded, in a way that is suitable for a biologically plausible
serial order mechanism (Shieh & Elman, 2006).

The above theory is implemented in our computational
model of immediate serial recall, the Repetition Encoding and
Chunking (REC) model. The model can produce serial posi-
tion effects, list-length effects, and chunking effects as found
in human immediate serial recall tasks.

The repetition encoding scheme gives it the potential to ac-
count for many errors that have not been adequately stud-
ied: misplaced repetitions (233→223), alternation errors
(858→585), wrong repetition numbers (cheese → cheeese),
grouped transposition (233 → 332). It also gives working
memory models the potential for language processing, by
virtue of the activation-based serial order and repetition en-
coding, chunking, and variable binding mechanisms. Many
aspects of this model deserve further investigation, including
but not limited to position coding, temporal grouping, cogni-
tive control and language processing. They are directions for
future research.
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