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Abstract

Prominent theories of decision making, such as proportional
difference model, priority heuristics, decision field theory and
regret theory assume that people do not evaluate options in-
dependently of each other. Instead, these theories predict that
people compare the options’ outcomes with each other. There-
fore the theories’ predictions strongly depend on the associa-
tion between outcomes. In the present work, we examine how
the association between options can be best described. For op-
tions with two outcomes the standard correlation measure be-
tween option’s outcomes does not provide a meaningful inter-
pretation. Therefore, we propose the standardized covariance
between options A and B, denoted as σ∗

AB. We describe the
properties and interpretation of this measurement and show its
similarities and differences with the correlation measurement.
Finally, we show how the predictions of different models of de-
cision making vary depending on the value of the standardized
covariance.
Keywords: decision making models; covariance; gambles;
two-outcome; risky choice

Introduction
Standard economic models of decision making like expected
utility theory assume that people evaluate choice options in-
dependently of each other (Neumann & Morgenstern, 1944).
However, contrary to this basic independence assumption
a vast amount of evidence has shown that people evaluate
choice option depending on the set of alternative choice op-
tions (see Rieskamp, Busemeyer, & Mellers, 2006 for more
details).

For example, choice of between two health insurance offers
is a choice between risky options with payouts depending on
the occurence of an illness. An illness can occur with a certain
probability that can be estimated based on teh patient’s age
and health history. When deciding between the two options,
one would probably compare the insurance coverage in case
of specific illnesses of both offers with each other, rather than
first evaluate one offer and then another.

Many cognitive models of decision making assume that
when people make choices between options they compare the
options’ outcomes with each other. For instance, the priority
heuristics (Brandstätter, Giegerenzer, & Hertwig, 2006) as-
sumes that people first compare all options with respect to
their minimum outcomes. If these outcomes do not allow to
discriminate the options, the options are compared with re-
spect to the probability of the minimum outcomes, and so
forth. Regret theory (Loomes & Sugden, 1982), proportional

difference model (González-Vallejo, 2002), and decision field
theory (Busemeyer & Townsend, 1993) are three other promi-
nent models of decision making assuming that people com-
pare options with respect to their outcomes. These compar-
isons are then accumulated to form an overall preference.
Therefore the predictions of all these models depend on the
associations between the outcomes of options.

How can these associations be best characterized? Using
the covariance of the options’ outcomes would be a sound
solution, especially because many of the studies of decision
making use monetary choices which are an analogy to invest-
ments. Indeed, in portfolio management covariance plays an
important role for selection of assets (i.e. Pafka & Kondor,
2003; Disatnik & Benninga, 2007).

Also, many studies investigating decision making focus on
comparing various models. In such case, the selection of the
choice options, which are usually presented as gambles, is
very important. As highlighted in the work on optimal exper-
imental design, selecting gambles for discriminating between
the models, is an essential issue that determines the effective-
ness of the experiment (see Cavagnaro, Gonzalez, Myung, &
Pitt, 2013; Myung & Pitt, 2009; Zhang & Lee, 2010) The
main problem with using covariance is that its value depends
on the range of the outcomes’ values which makes it hard to
interpret.

As an alternative measurement one could use the corre-
lation between the outcomes. However, a large part of the
research is done with two-outcome choice problems (e.g.
González-Vallejo, 2002; Birnbaum, 2008), for which cor-
relation is either 1 or −1 (see Rodgers & Nicewander, 1988),
so that the correlation measurement does not provide a mean-
ingful interpretation.

Therefore, we propose an alternative measurement, stan-
dardized covariance, as a measure of the strength of the asso-
ciation between the options’ outcomes, which can be easily
interpreted. In the following sections we will first explain
how the standardized covariance is determined and how it
should be understood. Next, we will present relations be-
tween the covariance, variances and expected value of two-
outcome gambles, which will clarify the construction of the
standardized covariance. Finally, we will show how decision
making models make different predictions depending on the
strength of the standardized covariance.
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Table 1: Twelve examples of choice options with different
standardized covariance. In each example, the top row indi-
cates the probability of the occurrence of two outcomes. Two
consecutive rows display the possible outcomes of Option A
and Option B.

σ∗
AB = 1 σ∗

AB =−1
Example 1 60% 40% Example 2 60% 40%
A 80 55 A 80 55
B 80 55 B 55 80

σ∗
AB = .80 σ∗

AB =−.80
Example 3 60% 40% Example 4 60% 40%
A 80 55 A 80 55
B 80 30 B 30 80

σ∗
AB = .80 σ∗

AB = 1
Example 5 40% 60% Example 6 40% 60%
A 80 55 A 80 55
B 80 30 B 70 45

σ∗
AB = .32 σ∗

AB = .05
Example 7 60% 40% Example 8 60% 40%
A 80 20 A 42 40
B 50 40 B 80 6

Standardized Covariance
We denote standardized covariance of a pair of dependent
choice options A and B, with each having two possible out-
comes, as σ∗

AB, where the non-standardized covariance is de-
noted as σAB. Standardized covariance is equal to twice the
covariance divided by the sum of the variances σA and σB of
each of the options (see Equation 1).

σ∗
AB =

2σAB

σ2
A +σ2

B
(1)

For stochastically non-dominant options, σ∗
AB is a continu-

ous variable ranging from -1 (strong negative association) to
1 (strong positive association). When σ∗

AB = 0 either the op-
tions are completely unrelated (e.g. they are statistically in-
dependent, where two options do not depend on one exter-
nal event) or the covariance between the options’ outcomes is
equal to 0. The second case occurs, when one of the options
is a sure thing. When σ∗

AB approaches 0, the variances of both
options are low, and so is the association between the options.

Properties of σ∗
AB

When σ∗
AB reaches its maximum at 1 then the sum of the vari-

ances equals twice the covariance:

σ∗
AB = 1 ⇐⇒ 2σAB = σ2

A +σ2
B. (2)

Analogically, for negatively related gambles the relation is:

σ∗
AB =−1 ⇐⇒ −2σAB = σ2

A +σ2
B. (3)

Situation from Equation 2 occurs when both options are
the same (Example 1 in Table 1) and, analogically, by in-
terchanging the outcomes of Option B we can obtain choice
options for which σ∗

AB = −1 (Example 2), which shows the
symmetricity of options with positive and negative σ∗

AB. Fur-
ther, as shown in Examples 3 and 4, by altering one outcome
from Option B so that the options are not the same any more,
we obtain options with slightly lower σ∗

AB. Interrestingly, the
probabilities of the outcomes do not influence σ∗

AB (compare
Examples 3 and 5). Also, the ”perfect association” does not
occur only when the options are identical, but also, when the
difference between outcomes of option A and B is the same
and this difference is the difference between expected val-
ues (Example 6 with the difference in expected values of 10
points). By making the outcomes corresponding to the same
probabilities more dissimilar, one can decrease σ∗

AB (compare
Examples 3 and 7). Finally, as shown in Example 8, when
outcomes of one option are almost the same (almost a sure
thing), while outcomes of the other option are dissimilar, σ∗

AB
is almost 0.

For stochastically non-dominant options, σ∗
AB is not higher

than 1 or lower than -1 because it is not true that 2σAB >
(σ2

A +σ2
B). Below, we provide the mathematical proof.

Proof. 2σAB > (σ2
A +σ2

B) is false

In stochastically non-dominant options the variances of op-
tions’ outcomes are unequal, thus σ2

A < σ2
B ∨σ2

A > σ2
B.

σ2
A < σ2

B ⇐⇒ σ2
B = σ2

A + s∧ s ∈ R+

Then,
2σAB > σ2

A +σ2
B

2σAB > 2σ2
A + s

0 > σ2
A +

s
2 −σAB

0 > E[a2]+ E[b2]−E[a2]
2 −E[ab]

E[a2]< E[b2] ⇐⇒ b = a+g∧g ∈ R+∧g = const.
By expanding the inequality we get

0 > g2

2
Since g2 > 0 the inequality is false.

Standardized Covariance vs. Correlation
Examples presented in Table 1 indicate that there are similar-
ities between correlation and standardized covariance and the
”perfect” correlation overlaps with the ”perfect” standardized
covariance (e.g. Examples 1, 2 and 3 in Table 1). Correlation
coefficient r equals to

r =
σAB

σAσB
. (4)

The relation between correlation coefficient and standardized
covariance is as follows:

σ∗
AB =

2rσAσB

σ2
A +σ2

B
(5)
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and correlation is equal to standardized covariance when

2σAσB = σ2
A +σ2

B. (6)

Because for stochastically non-dominant options with two
outcomes correlation is always either −1 or 1, σAB = σAσB.
Therefore, the relation between the sum of variances and the
product of the standard deviation is the same as the relation
between the sum of variances and the covariance. Thus, stan-
dardized covariance could also be written as

σ∗
AB =

2σAσB

σ2
A +σ2

B
(7)

when the association between the options’ outcomes is posi-
tive. When the association between the options’ outcomes is
negative, σAB =−2σAσB.

Variances and Covariance of Two-Outcome
Options

In stochastically non-dominant pairs of options which are not
identical, one option has higher variance than the other (com-
pare range of outcomes of options A and B in Table 1 in
Examples 3, 4, 5, 7 and 8, to Example 6 which contains a
stochastically dominant pair of options). Therefore the sum
of variances is composed of a smaller and larger variance.

The relation between the smaller variance and covariance
is close to linear and is symmetric with respect to the x-axis.
In contrast, the relation of the larger variance to covariance
takes the shape of a triangular area and is also symmetric with
respect to the x-axis, as shown in Figure 1. This figure shows
a very interesting pattern in which the graph on the right
side fits into the graph on the left side like ”key and lock”.
The data points in Figure 1 were obtained from 100000 ran-
domly generated two-outcome choice options, with various
differences between expected values. The outcomes’ values
ranged between 1 and 100, and probabilities of their occur-
rence ranged between 1 and 99%.

The relation between the sum of variances and covariance
is symmetric with respect to the x-axis (Figure 2). The gray
data points, which lay on the diagonal of the graph in Fig-
ure 2, are the only ones, for which standardized covariance is
equal to correlation. This is the key property of standardized
covariance, as the gray points correspond to the ”perfect cor-
relation” between the options, for which equation 6 holds. In
contrast, all black points represent the pairs of options whose
relation varies between -1 and 1 (not perfect correlation).

Options with Negative and Mixed Outcomes
Until now, we have discussed the properties of standardized
covariance, covariance and variances of options which gen-
erate only positive outcomes. However, some experiments
might include choice options which generate only losses or
might generate both, gains and losses. As a consequence,
we randomly generated stochastically non-dominant options
with only negative outcomes (N = 100000), to which we will
refer as negative options, and options that have one positive

Figure 1: Left: relation between the lower variance (more
secure option) and covariance between two-outcome options,
Right: relation between the higher variance (more risky op-
tion) and covariance between two-outcome options.

Figure 2: Relation of the sum of variances to twice the covari-
ance. Gray points indicate the cases for which standardized
covariance overlaps with correlation, such that σ∗

AB = r = 1
or σ∗

AB = r =−1.

and one negative outcome (N = 100000), which we call mixed
options. The outcomes of negative options varied between
−100 and −1 points, while the outcomes of mixed options
were in range [−100,1] and [1,100] points. The probabili-
ties of these outcomes ranged from 1% to 99%. We repeated
the analysis of the relation between variances and covariance,
as well as the sum of variances and the product of standard
deviations of the options for the two new types of options.

The obtained results for the negative and mixed options
were the same as for the positive options. Thus, the properties
of the choice options regarding their variances, covariance
and the standardized covariance, depicted in Figures 1 and 2,
apply to various kinds of choice options. The only difference
is that the range of the values of variances and covariance
of mixed options is much greater (range: [−10000,10000]).
This is due to the fact that the range of the possible values is
twice as big compared to the positive and negative options. In
sum, standardized covariance is a stable measure of associa-
tion between options.
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Table 2: Ranges of values of standardized covariance, ratio
of the smaller to the larger variance and the amount of pairs
of options generated for each of the five differences between
expected values between the options.

∆EV σ∗
AB

min(σ2
A,σ

2
B)

min(σ2
A,σ

2
B)

N

10 .02-.99 .00-.72 975021
15 .02-.94 .00-.49 377750
20 .02-.94 .00-.49 418251
25 .02-.94 .00-.49 244734
30 .02-.89 .00-.36 119241

Standardized Covariance vs. Expected Value
Standardized covariance is sensitive to the differences be-
tween expected values of two choice options. We generated
all possible pairs of options with outcomes and probabilities
as previously, for which the difference between the expected
values was either 10, 15, 20, 25 or 30. As shown in Ta-
ble 2, the greater the difference between expected values,
the more narrow the range of possible values of σ∗

AB. Thus,
when manipulating the difference between the expected value
of pairs of options, our analysis shows that this manipulation
will most likely also change the covariance of the options
outcomes. Thus, when not controlling for this aspect, then
variations of the expected value differences will often be con-
founded with variations of covariance differences. Therefore,
the experimenters should keep in mind that the strength of
the association between the gambles that they present to the
participants may depend on the differences between expected
values (∆EV ).

Interestingly, the greater the difference between the ex-
pected values, the fewer choice options could be obtained
(see Table 2). Also, the greater the difference between ex-
pected values, the more narrow the ranges of possible values
of standardized covariance and ratio between the lower and
the higher variance within the pair of options (see Table 2).
Therefore, in experiments that control for the expected value
difference, it might be the standardized covariance between
the options that influences people’s choice, rather than the
expected value.

Further, we selected a group of options for which ∆EV =
15. For these options with fixed difference between expected
values, we tested the relation between the variances of both
options. As shown in Figure 3, the data points create a pattern
that is symmetric with respect to the diagonal of the graph. In
other words, when ∆EV is fixed, the variances of both options
are related to each other with respect to a certain ratio, whose
ranges we listed in Table 2.

Options with More than Two Outcomes
In order to analyze in more detail the relation between the cor-
relation measure and the standardized covariance, one would
have to extend the problem to choices with more than two

Figure 3: Relation between variances of two options with two
outcomes.
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Figure 4: Left: relation between the smaller variance and
the covariance between four-outcome options. Right: rela-
tion between the larger variance and the covariance between
four-outcome options.

possible outcomes. Therefore, we generated 10000 pairs of
stochastically non-dominant options with four outcomes. The
outcomes varied between 1 and 100 points, and probabilities
varied betweeen 1% and 40%.

Firstly, we investigated the relations between the variances
and the covariance. As shown in Figure 4, the relations be-
tween both variances and covariance do not display the ”key-
lock” pattern as in Figure 1, and the patterns are not symmet-
rical. Analogically, the relation between the sum of variances
and twice the covariance is not symmetric with respect to the
x-axis.

Secondly, we looked at the relation between correlation
and standardized covariance. Figure 5 shows a strong re-
lation between the correlation measure and standardized co-
variance. Pearson correlation between these two measures is
very strong, r = .98, p < .001. In the current sample of gen-
erated pairs of options, covariance and correlation are equal
to each other for 24% of the cases. Also, the slope of the
regression line is high and the intercept very small (see cap-
tion of Figure 5). Thus, standardized covariance is a similar
measure as correlation, but it has the advantage that it can be
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Figure 5: Relation between the correlation coefficient and
standardized covariance of options with four outcomes. Gray
line indicates the regression line, with the slope of .87 and
intercept .0027.

applied to both two-outcome choice options and options with
several outcomes.

Model Predictions Depending on the
Standardized Covariance

In the previous sections, we have described features of
stochastically non-dominant options with two outcomes and
how one could measure the association between the options
with the use of standardized covariance. In this section, we
will show why the association between two options is impor-
tant, based on two prominent theories of decision making,
regret theory and decision field theory. Models of decision
making generate different predictions for options with vari-
ous differences between expected values. Thus, we focused
on the choice options for which ∆EV = 15.

For all of these options we generated predictions of the two
models. Following Pathan, Bonsall, and Jong (2011), we de-
fined the regret function of choosing option A over option B
with outcomes xi, i ∈ {1,2} as

RiA = ln(1+ exp(β(xi −max(xiA,xiB)))). (8)

The total regret from choosing option A equals to

RA = Σ2
i=1RiA. (9)

Further, the probability of choosing option A over option B is
estimated using softmax rule

Pr(A|A,B) = 1
1+ exp(θ(RB −RA))

. (10)

β and θ are free parameters of the model. More details regard-
ing regret theory is provided in Loomes and Sugden (1982).
A parsimonious version of decision field theory was used, as
described by Busemeyer and Townsend (1993).

The models’ predictions are expressed as probabilities of
choosing option A over B. We converted these results to
the prediction that the option with the higher expected value

Group 1 Group 2 Group 3
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0.8

0.85
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1

σ∗

AB
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P
r
(A

|A
,
B

)

Group 1 Group 2 Group 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ∗

AB

P
r
(A

|A
,
B

)

Decision field theory

Figure 6: Average predictions of regret theory and decision
field theory. To generate predictions the following parame-
ters were used: regret theory β = .05, θ = 4.6, decision field
theory θ = 1.19. The parameter of decision field theory was
based on Rieskamp (2008) and the parameters of regret the-
ory were adjusted so that the predictions of both models are
at the same level. Error bars indicate standard deviations.

would be chosen, which resulted in all predictions rang-
ing between 0.5 and 1. Next, we grouped the options de-
pending on their standardized covariance, such that group 1:
σ∗

AB < 0.2 (21.2%), group 2: 0.2 < σ∗
AB ≤ 0.5 (34.7%), group

3: 0.5 < σ∗
AB (44.2%). For each of the three groups we calcu-

lated the mean prediction and its standard deviation.
As shown in Figure 6, the models’ predictions differ

among the three groups. This constitutes evidence that some
theories of decision making not only assume on a theoreti-
cal level that the relation between the options’ outcomes play
an important role in decision making, but also provide quan-
titative evidence. Therefore, one should control for the as-
sociation between the options. This is a crucial property of
the standardized covariance, because in experiments in which
the association between options was not examined, the results
might depend on the selected set of choice options.

Furthermore, the models’ predictions for choices with the
same level of association could differ depending on the dif-
ference between expected values. From each group of op-
tions with difference between expected values of 10, 15, 20,
25 and 30 points, we picked all options for which σ∗

AB = .3
and we generated models’ predictions using the same set of
parameters as previously. As shown in Figure 7, decision
field theory makes very systematic predictions in which the
higher the expected value difference, the higher the probabil-
ity of choosing the option with the higher expected value. In
contrast, regret theory indicates some differences but no trend
can be observed.

In sum, predictions of models of decision making result
from the interaction between the difference between expected
values and the strength of the association between the choice
options. This finding is very important, as in most studies
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Figure 7: Average predictions of regret theory and decision
field theory for choices with σ∗

AB = .3 and various expected
values. Error bars indicate standard deviations.

the researchers do not even consider the covariance of the
options’ outcomes, but only report the differences in expected
values.

Discussion
The association between two options’ outcomes may play
an important role in testing models of decision making. As
we have shown, models can generate different predictions
depending on the combination of the expected value differ-
ence and the association between the options. Experiments
that control only for the expected value difference may ob-
tain confounded results.

Therefore, a simple measure of the strength of this associ-
ation is needed. For experiments that employ two-outcome
choice options, we proposed the standardized covariance. Its
values range between -1 and 1, where 1 indicates ”perfect
positive association” and -1 indicates ”perfect negative asso-
ciation”. When standardized covariance equals to 0, one of
the options is a sure thing. When standardized covariance
equals to -1, 0 and 1 it overlaps with correlation.

There is a strong association between correlation measure
and standardized covariance. This constitutes solid evidence
in favor of the reliability of the standardized covariance as a
measure of the association between two choice options. In-
terestingly, there are very clear patterns of relations between
variances and covariance of the two-outcome options. In con-
trast, these patterns are different when there are more out-
comes. Therefore, future empirical research is needed to test
the applicability of the standardized covariance and its per-
ception by human decision makers. Also, as a future inves-
tigation, we suggest that one should test whether the predic-
tions of the aforementioned models of decision making reflect
the real human choice behavior.

In sum, this work was based on extensive simulations of
random choice options and choice options with specific prop-
erties. We have shown that standardized covariance is a ro-

bust measure, with similar properties to the correlation. Fi-
nally, we showed that the covariance strongly influences the
prediction of different cognitive models of decision making
and should be given more attention in empirical work.
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