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Abstract 

Prior research has found that comparison fosters abstraction 
and transfer of concepts (e.g., categories, solution methods). 
These learning benefits are often explained by virtue of 
comparison’s ability to highlight common relational structure 
between cases. Here we explore the role of comparison in 
identifying critical differences. Participants compared 
contrastive cases, listed differences between them, and 
completed a classification task. We found that carrying out a 
structural alignment prior to listing differences influenced the 
kinds of differences people noticed. Further, the kinds of 
differences people noticed predicted their subsequent 
classification performance. 

Keywords: Analogy; structural alignment; comparison; 
contrast; learning 

Introduction 
Comparison has been shown to lead to learning in a 

number of different realms for both children and adults. 
Comparing cases facilitates transfer and problem-solving in 
adults (e.g., Catrambone & Holyoak, 1989; Gentner, 
Loewenstein, Thompson, & Forbus, 2009; Gick & Holyoak, 
1983). Comparison also fosters children’s learning of 
relational categories (Gentner, Anggoro & Klibanoff, 2011) 
and relational language (Childers, 2011; Gentner & Namy, 
2006; Haryu, Imai & Uchida, 2011). A recent meta-analysis 
by Alfieri et al., (2013) found that the use of comparison in 
classrooms is a strong predictor of learning gains.  

How do these benefits come about? According to 
structure-mapping theory (Gentner, 1983), when learners 
compare two cases, they generate a structural alignment 
between the two representations. This fosters learning in at 
least three ways (Gentner, 2010; Gentner & Markman, 
1997). First, it increases the salience of their common 
structure; second, it invites inferences from one case to the 
other; and, third, it highlights alignable differences—
differences connected to the common structure.   

Much of the research showing positive effects of 
comparison on learning has focused on its effects in 
abstracting commonalities and inviting inferences (e.g., 
Catrambone & Holyoak, 1989; Gentner et al, 2009). 
However, there is mounting evidence that comparison can 
aid in differentiation as well as in abstraction. For example, 
comparing two “near-miss” cases (McClure, Friedman, & 
Forbus, 2010), which are identical except for a crucial 
structural difference, improves learning (e.g., Gick & 

Paterson, 1992). Comparison also fosters discrimination 
between more complex cases, such as alternative solution 
methods (Rittle-Johnson & Star, 2009), easily confusable 
concepts (e.g., Day, Goldstone & Hills, 2010; VanderStoep 
& Seifert, 1993), and category exemplars vs. non-exemplars 
(Gick & Paterson, 1992; Kok, de Bruin, Robben, & van 
Merriënboer, 2012; Kurtz & Gentner, 2013). For example, 
Day et al. (2010) found that having middle-school students 
contrast positive and negative feedback systems could 
improve classification of new examples. An open question is 
how exactly the observed learning effects come about in 
contrastive case comparisons. These findings underscore the 
benefit of contrastive cases in learning. Many of these 
studies utilize pairs that are highly similar except for the 
crucial difference. Such pairs have two advantages. First, 
they are ‘self-aligning”—that is, they are extremely easy to 
align, even for children and novices. Second, once aligned, 
they have few or no competing alignable differences besides 
the key intended difference. For example, Kurtz and Gentner 
(2013) found that people could identify an error in a skeleton 
faster if they compared it with a highly alignable correct 
example than if they compared it with the same correct 
example mirror-reversed (and thus less perceptually 
alignable). 

But not all important distinctions can be illustrated with 
very close ‘near-miss’ pairs. Many important category 
distinctions involve moderate similarity, with some overlap 
and many differences. Here we ask what kinds of learning 
processes best facilitate learning in these more complex 
cases, in which pairs from different categories are only 
moderately similar—not so close as to be “self-aligning.”  
Because structural alignment highlights not only 
commonalities but also alignable differences, we propose 
that explicitly encouraging comparison between members of 
the two categories will facilitate noticing differences and 
thereby facilitate learning the category distinction.   

Prior work has shown a relationship between structural 
alignment and difference-detection (e.g., Gentner & Gunn, 
2001; Sagi et al., 2012) and between comparing contrastive 
cases and transfer (e.g., Day, Goldstone, & Hills, 2010; 
Rittle-Johnson & Star, 2009); our goal is to clarify the 
relationships between these phenomena. Thus, the current 
study examines the connections between structural 
alignment, difference-detection, and subsequent ability to 
classify new examples of the two categories.  

We chose positive and negative feedback systems as our 

1473



domain of inquiry. These two kinds of systems are of wide 
importance across both physical and social domains, yet 
prior work suggests that these causal structures are not 
salient, even to college students (Rottmann, Gentner, & 
Goldwater, 2012; see also Day et al., 2010). These categories 
make an ideal testing ground because they share significant 
common structure as well as significant differences. As 
feedback systems, they are both causal systems that share the 
commonality that both are causal systems in which part of 
the output is returned to serve as input to the same system. 
Thus in both cases the output ultimately re-affects itself. 
These two kinds of systems also differ in a fundamental 
way: In positive feedback the output increases the input; this 
in turn produces a greater output. This results in a cycle of 
increasing magnitude of effect. In negative feedback, the 
output reduces the input. Thus if the input is increased, this 
will increase the output, which will decrease the subsequent 
input. This results in a cycle that stabilizes the system.  

In our study, participants were given two contrastive 
cases—a positive feedback case and a negative feedback 
case, exemplified in Table 1. Although the two cases were 
always from the same domain, they differed in many ways 
beyond the positive-vs.-negative feedback distinction. For 
example, the two cases in Table 1 involve different 
hormones, and they differ in that one concerns healthy cells 
and the other, cancer cells.  Participants were told that one of 
the cases was an example of “System A” and the other, of 
“System B.” Participants listed differences between them 
and went on to complete a transfer task in which they had to 
classify examples into these two systems. The key 
manipulation was that half the participants were asked to list 
commonalities before listing differences. Then participants 
went on to carry out a classification task in which they had 
to decide whether new phenomena were exemplars of 
System A or System B—that is, of positive vs. negative 
feedback.  

We assume, based on prior research, that listing 
commonalities will induce people to carry out a structural 
alignment between the two cases, and that this will lead them 
to focus on the maximal common relational structure—
namely, that both are causal systems and that in both of 
them, the output is ‘fed back’ into the system. We 
hypothesize that structurally aligning the two cases will lead 
people to notice alignable differences connected to this 
causal structure—leading to greater likelihood of noticing 
the key difference between positive and negative feedback. 
We further predict that people who have noticed a key 
difference will be better able to classify further phenomena 
as positive versus negative feedback systems than those who 
have not. 

Thus, our hypotheses are (1) that people who list 
commonalities before they list differences will be more 
likely to produce key differences than those who simply list 
differences; and (2) that listing key differences between the 
study pair of exemplars will be causally related to better 
performance on the classification task.  

The first hypothesis—that people who list commonalities 

and who therefore carry out a structural alignment between 
the cases) will be more likely to notice the key alignable 
difference than those who do not—has some support from 
prior findings. Gentner and Gunn (2001) found that people 
were more likely to list a difference (typically, an alignable 
difference) between a pair of concepts if they had previously 
listed commonalities for that pair. More to the point, Kurtz, 
Miao, & Gentner (2001) gave people two physics scenarios 
and varied the level of comparison intensity that participants 
were asked to engage in—from separate descriptions (no 
comparison) to similarity ratings (shallow comparison) to 
writing out commonalities and stating correspondences 
(intensive comparison), Then participants were given both 
scenarios and asked to state a difference between them. 
People were more likely to list an important alignable 
difference—that is, one that was related to the key causal 
commonality (heat flow)—if they had engaged in more 
intensive comparison. These results lend support for the 
prediction that inducing participants to list commonalities 
will foster noticing key alignable differences.  

  However our second hypothesis—that participants who 
list key differences will perform better on the classification 
task—needs some unpacking. A link between difference 
detection and later classification performance could come 
about in at least two ways. One possibility—the one we 
favor—is that detecting a key difference is causally related 
to learning and transfer to the classification task. But an 
alternate possibility is that identifying a key difference is 
simply diagnostic of having achieved a structural 
alignment—better alignment (as prompted by a commonality 
task) leads both to better difference-detection and to better 
transfer. To this end, we test whether difference-detection 
mediates the link between structural alignment 
(commonality listing) and classification task performance. 
Finding this mediation effect will provide strong support for 
a causal link between difference-detection and 
discrimination learning.  

Experiment 
Participants were presented with two contrastive cases, listed 
any differences they noticed between them, then completed a 
classification task where they had to identify new cases as 
either examples of positive or negative feedback.  

Participants  
152 participants were recruited through Amazon Mechanical 
Turk. Participants were all located in the United States and 
appeared to be fluent English speakers. The task required 15-
20 minutes. 

Materials and Design 
Difference Listing Task Each participant was randomly 
assigned to one of two conditions: Explicit Comparison or 
Control. In the Control condition, participants were asked to 
“Write a difference between System A and System B (feel 
free to list more than one if you choose).” In the Explicit 
Comparison condition, participants were invited to compare 
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the cases (“Write out any important similarities between 
System A and System B”) before they listed differences. The 
experiment was presented within the Qualtrics interface.  
 
Contrastive Cases Examples of positive and negative 
feedback were drawn from four domains: ecology, 
economics, engineering, and physiology. The two feedback 
cases from physiology are shown in Table 1. 

 
Table 1. Sample positive (System A) and negative (System 

B) feedback passages, from the physiology domain 
 

System A 
When a tumor grows, cancerous cells manufacture excess 
growth hormones. These hormones send a signal that 
causes the body to increase production of cancer cells. This 
increase in cancer cells leads to a further increase in 
growth hormones. This in turn leads the body to produce 
even more cancer cells, which leads to an even higher 
concentration of growth hormones. The further increase in 
growth hormones encourages additional proliferation of 
cancer cells. 
 

System B 
In normal cell proliferation, healthy cells release growth 
inhibitory factors—chemicals that tell the body to reduce 
the rate of cell growth. As the body produces more cells, the 
concentration of growth inhibitory chemicals in the body 
increases. Consequently, the body begins to produce fewer 
new cells. With fewer new cells being produced, there is a 
reduction in the amount of inhibitory chemicals produced. 
Once again, cell production begins to increase. 

 
Participants received two examples from a single domain. 

To ensure that any effects we observed were tied to the 
actual case comparisons rather than to knowledge of the 
terms positive and negative feedback, we introduced each 
case using the generic labels System A and System B. The 
selection of cases was randomized and their position on the 
screen was counterbalanced.  

 
Classification Task The classification task was designed to 
assess learners’ ability to discriminate between positive and 
negative feedback systems. These materials included 16 
brief scenarios, each describing a real-world phenomenon 
(some scenarios were adapted from Rottmann et al., 2012). 
Eight of these scenarios described positive feedback 
systems, and eight described negative feedback systems. 
Furthermore, the 16 scenarios were drawn from the same 
four domains that were used in the contrastive cases—this 
allowed us to assess how narrow or broad peoples’ category 
generalizations were. Feedback type and Domain varied 
orthogonally—there were two examples of positive feedback 
and two examples of negative feedback for each of the four 
domains. Participants classified each scenario as an example 
of either a positive or negative feedback system by selecting 
one of four multiple choice options: System A, System B, 
neither, or I don’t know. The scenarios were presented in 

random order. Because the 16 scenarios were drawn from 
the same four domains that had been used in the study cases, 
each participant saw four examples from the studied domain 
and twelve from non-studied domains. This allowed us to 
assess how narrow or broad peoples’ category 
generalizations were. 

Measures  
Difference Ratings We coded several aspects of 
participants’ difference listings. First, we coded whether or 
not the participant provided a key difference—the crucial 
alignable difference that captures the distinction between 
positive and negative feedbacks. For key differences, we 
further coded them as being: (1) a global or process-level 
description, and (2) an abstract or concrete description. A 
global key difference captures the higher-order difference 
between positive and negative feedbacks. A process-level 
key difference invokes a distinction in the specific causal 
structures of the cases. Participants who gave process-level 
descriptions typically used language expressing qualitative 
relations such as “X increased [decreased] Y.” A concrete 
key difference describes the difference by referring to 
particular elements in the passages (e.g., cells), whereas an 
abstract key difference does not. The first two examples 
below exemplify global descriptions at the concrete and 
abstract levels. 
 
System B controls the rate at which cells grow. In System 
A, the cancerous cells have the ability to grow with no 
inhibition, unlike System B which keeps itself balanced 
out. (Global, Concrete) 
 
The difference between System A and B is that in System 
A, one action causes a reaction that eventually leads to a 
balance. In System B, the reaction continues to increase 
in intensity until it is out of control. (Global, Abstract) 

 
The next two examples illustrate process-level descriptions 
at the concrete and abstract levels. 
 
System A just produces more cancer cells as growth 
hormones increase.  System B regulates the production of 
cells producing less with the increase in inhibitory 
chemicals and more when there is a reduction of 
inhibitory chemicals. (Process, Concrete) 
 
System B describes a system that increases, then 
decreases, then increases as production increases and 
decreases, whereas System A describes a system that only 
increases no matter the production. (Process, Abstract) 
 
Two raters, blind to instructional condition, coded the 

differences. Inter-rater Reliability was high for all measures 
(Key Difference: κ=.87, p<.001; Global/Process: κ=.88, 
p<.001; Abstract/Concrete: κ=.90, p<.001). Disagreements 
were resolved through discussion. 
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Classification Score Each participant received a score based 
on total correct answers (max=16). To assess the broadness 
of transfer, we calculated separate scores for scenarios drawn 
from the training domain (Close Transfer Score) and 
domains that the participant was not trained on (Far Transfer 
Score). For example, if an individual compared cases from 
Engineering, their Close Transfer Score consisted of their 
total score on the four scenarios from Engineering (max=4), 
whereas their Far Transfer Score would consist of their score 
on the scenarios from Economics, Ecology, and Physiology 
(max=12). All scores were converted to percent correct.  
 
Predictions There are two variables of interest here: key 
difference detection and classification task performance. 
Compressing our hypotheses into the key predictions, we 
predict, first, that listing similarities will induce a structural 
alignment; thus people who explicitly list similarities before 
differences will more often produce the key alignable 
difference than people who only list differences; and, 
second, that key difference detection will lead to better 
understanding of the distinction between positive and 
negative feedback, and therefore to better performance on 
the classification task. A strong version of this second 
prediction—that difference detection is causally related to 
discrimination learning—further predicts that key difference-
detection should mediate the relationship between Explicit 
Comparison and Classification Score. 

Results  
To test our first prediction—that similarity-listing will 
induce a structural alignment and that this will foster key 
difference-detection—we examined how Explicit 
Comparison influenced key difference identification (Figure 
1). Overall, people who listed similarities produced the key 
difference 57% of the time versus 28% of the time for people 
who only listed differences. A binary logistic regression 
revealed that Task (Explicit Comparison vs. Control) was a 
significant predictor of whether people produced the key 
difference. People who listed similarities were more likely to 
generate the key difference than people who did not list 
similarities (Wald χ2 = 12.73, df=1, p<.001, Odds 
Ratio=3.42).  

 
 

Figure 1: Key differences produced, by Task 
 

To test our second hypothesis—that difference-detection 
predicts performance on the classification task—we assessed 

the relationship between key difference detection and later 
classification. Figure 2 shows the dispersion of scores for 
individuals who produced the key difference and those who 
did not. Participants who detected the key difference had 
higher scores on the classification test (m=0.79, SD=0.16) 
than participants who did not identify the key difference 
(m=0.52, SD=0.23), t(149.89)=8.61, p<.001, d=1.37. 
Exploratory analyses revealed that that the effect size was 
much larger for Far Transfer (d=1.50) than for Near Transfer 
problems (d=0.88), suggesting a particularly strong 
relationship between difference-detection and far transfer. 

 
 

Figure 2: Dispersion of classification task scores, by key 
difference production 

 
To test the plausibility of a causal link between difference-

detection and discrimination—a strong interpretation of our 
second hypothesis—we conducted a simple mediation 
analysis (Hayes, 2013). This analysis involved a standard 
three-variable path model (Figure 3; Baron & Kenny, 1986). 
Three tests must reach statistical significance to conclude 
mediation: (1) the initial variable (Task) must be related to 
the mediating variable (Difference-Detection; Figure 3, Path 
a); (2) the mediating variable must be related to the outcome 
variable (Classification Score) after controlling for the initial 
variable (Figure 3, Path b); and (3) the mediation effect 
(a*b) must be significant (Hayes, 2013).  

 
 
Figure 3: Mediation analysis. Unstandardized coefficients 

are shown, significant at ***p < 0.001.  
 
The mediation analysis indicates that explicit comparison 

indirectly influenced classification performance through its 
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effect on key difference detection. As can be seen in Figure 
3, participants who listed similarities were more likely to 
notice the key difference (a=.29, p<.001), and participants 
who noticed the key difference did better on the 
classification task (b=.286, p<.001). To put this another way, 
participants who listed a key difference scored on average 
28.6% above participants who did not list the key difference. 
The indirect effect was significant1 (p<.001). The direct 
effect was non-significant, indicating that explicit 
comparison did not influence classification task performance 
independent of is effect on key difference detection (direct 
=-.052, p >.05). 
  
Types of Key Differences and Later Transfer An 
examination of the kinds of key differences produced 
revealed that, overall, 54% of key differences were process-
level descriptions and 46% were global descriptions, a non-
significant difference, z=0.5, p=0.61. People also produced 
many more Concrete differences (83%) than Abstract 
differences (17%), z=5.04, p<.001. We explored two aspects 
of the data concerning the kinds of key differences produced. 
First, we asked whether there was a connection between 
explicit comparison and the types of key differences 
generated. For instance, listing similarities between cases 
may have lead to the production of more process-level 
differences since people explicitly specified the common 
relational structure.  However, the distribution of difference 
types did not vary by task, χ2 (3)=.63, p=0.89. There was no 
evidence that explicit comparison influenced the kinds of 
differences people generated here. 

Second, we asked whether the type of key difference was 
related to breadth of transfer. For example, if a person 
generated an abstract difference they may hold a more 
general representation of the key category distinction; 
therefore they may do better on Far Transfer than a person 
who produced a concrete difference. To identify connections 
between the types of key differences produced and transfer, 
we ran three separate regression models for the dependent 
measures of Overall Transfer, Close Transfer, and Far 
Transfer. Explanation Type (Process/Global) and 
Abstractness (Abstract/Concrete) were entered as predictors. 
Explanation Type was a significant predictor of far transfer 
(β=0.32, p<.05)—people who produced global differences 
scored higher on far transfer than people who produced 
process-level differences. No other significant relationships 
between key difference type and transfer were found.  

Discussion 
There are two main findings. First, we found evidence for 
our first hypothesis—that structural alignment would 
facilitate key difference-detection. People who explicitly 
compared cases and stated commonalities were more likely 
to go on to generate a key alignable difference between the 

                                                             
1A bias-corrected bootstrap confidence interval for the indirect 

effect (a*b=.083) based on 5,000 bootstrap samples was entirely 
above zero (.039 to 0.137, p=.001). 

positive and negative feedback cases than were those who 
simply listed differences. This result is consistent with prior 
work that demonstrates (a) that structural alignment favors 
discovering the maximal common relational structure 
(Clement & Gentner, 1991)—in this case the causal structure 
of feedback systems—and (b) that structural alignment 
facilitates detection of alignable differences connected to the 
common structure (Markman & Gentner, 1993a; 1994; 
Gentner & Gunn, 2001). 

In line with our second hypothesis—that difference 
detection predicts discrimination learning—we found that 
people who generated a key difference did better on the 
subsequent classification task than people who did not 
generate the key difference, suggesting that difference-
detection plays a critical role in learning. Indeed, the data 
support a particularly strong version of the second 
hypothesis. We found that difference-detection mediated the 
link between structural alignment (or more precisely, 
between whether people received explicit comparison 
instructions) and classification performance. There was no 
direct effect of explicit comparison on later classification –
that is, the effect of explicit comparison on contrastive case 
learning was only observed through its effect on key 
difference detection.  This suggests that the effect of 
structural alignment here was to promote key difference-
detection, which in turn led to higher performance on the 
classification task.  

Prior research has found that comparison fosters 
abstraction and transfer of concepts (e.g., categories, solution 
methods). These learning benefits are often explained by 
virtue of comparison’s ability to highlight common relational 
structure between cases. There has been far less attention to 
the role of structural alignment in identifying critical 
differences. (but see Hammer, Diesendruck, Weinshall, & 
Hochstein, 2009; Higgins & Ross, 2011; Rittle-Johnson & 
Star, 2009). Our finding that focusing on commonalties prior 
to listing differences led people to notice more critical 
differences—and that this improved subsequent 
classification performance—suggests ways of better using 
comparison processes to foster discrimination learning.  

Of course, we would not want to claim that comparing two 
cases from different categories will necessarily lead to 
deeper understanding of the key category differences. We 
suspect that this effect depends on there being significant 
structural overlap between the categories, as is the case for 
positive and negative feedback. But because overlapping 
category descriptions are likely to be difficult to 
discriminate, the methods described here may have an 
important role to play in complex learning, including 
learning in mathematics and science.  Future work should 
explore to what degree the patterns found here extend to 
other categorical contrasts. 

There are specific limitations in the current study that our 
ongoing work aims to address. First, we are verifying that 
key-difference facilitation is due to structural alignment in 
particular rather than simply a consequence of spending 
more time processing the cases (since the Control group 
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didn’t engage in an alternative task while the Explicit 
Comparison group listed commonalities). Second, while the 
mediation analysis provides strong support for a causal link 
between difference-detection and discrimination learning, 
convergent evidence is required to substantiate this claim. In 
current studies we are directly manipulating difference-
detection to determine its effects on classification task 
performance.  

There remain many open questions regarding the links 
between comparison, difference-detection, and learning. For 
example, how might other factors of the comparison task, 
such as surface similarity between the cases, influence 
difference-detection and learning? Perhaps key difference 
detection is best when the features of the compared cases are 
relatively similar to one another, versus when their content is 
more dissimilar. However, comparison of dissimilar cases 
may lead to key difference representations with broader 
generalizability, whereas comparison of highly similar 
contrastive cases may lead to relatively specific common 
representations, which could limit transfer (Goldstone & 
Sakamoto, 2003). 

Conclusions 
We find that the simple act of comparing two contrastive 
cases is helpful in learning to distinguish between two 
complex interrelated relational concepts. These findings 
offer insight the role of comparison in learning from 
contrastive cases.  
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