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Abstract

We compare our model of unsupervised learning of linguistic
structures,ADIOS [1, 2, 3], to some recent work in computa-
tional linguistics and in grammar theory. Our approach resem-
bles the Construction Grammar in its general philosophy (e.g.,
in its reliance on structural generalizations rather than on syn-
tax projected by the lexicon, as in the current generative the-
ories), and the Tree Adjoining Grammar in its computational
characteristics (e.g., in its apparent affinity with Mildly Con-
text Sensitive Languages). The representations learned by our
algorithm are truly emergent from the (unannotated) corpus
data, whereas those found in published works on cognitive and
construction grammars and on TAGs are hand-tailored. Thus,
our results complement and extend both the computational and
the more linguistically oriented research into language acqui-
sition. We conclude by suggesting how empirical and formal
study of language can be best integrated.

The empirical problem of language acquisition
The acquisition of language by children — a largely unsuper-
vised, amazingly fast and almost invariably successful learn-
ing stint — has long been the envy of natural language en-
gineers [4, 5, 6] and a daunting enigma for cognitive scien-
tists [7, 8]. Computational models of language acquisition or
“grammar induction” are usually divided into two categories,
depending on whether they subscribe to the classical gener-
ative theory of syntax, or invoke “general-purpose” statisti-
cal learning mechanisms. We believe that polarization be-
tween classical and statistical approaches to syntax hampers
the integration of the stronger aspects of each method into a
common powerful framework. On the one hand, the statisti-
cal approach is geared to take advantage of the considerable
progress made to date in the areas of distributed represen-
tation, probabilistic learning, and “connectionist” modeling,
yet generic connectionist architectures are ill-suited to the ab-
straction and processing of symbolic information. On the
other hand, classical rule-based systems excel in just those
tasks, yet are brittle and difficult to train.

We are developing an approach to the acquisition of distri-
butional information from raw input (e.g., transcribed speech
corpora) that also supports the distillation of structural reg-
ularities comparable to those captured by Context Sensitive
Grammars out of the accrued statistical knowledge. In think-
ing about such regularities, we adopt Langacker’s notion of
grammar as “simply an inventory of linguistic units” ([9],
p.63). To detect potentially useful units, we identify and pro-
cess partially redundant sentences that share the same word
sequences. We note that the detection of paradigmatic vari-
ation within a slot in a set of otherwise identical aligned se-

quences (syntagms) is the basis for the classical distributional
theory of language [10], as well as for some modern works
[11]. Likewise, thepattern— the syntagm and theequiva-
lence classof complementary-distribution symbols that may
appear in its open slot — is the main representational build-
ing block of our system,ADIOS (for Automatic DIstillation
Of Structure).

Our goal in the present paper is to help bridge statistical
and formal approaches to language [12] by placing our work
on the unsupervised learning of structure in the context of
current research in grammar acquisition in computational lin-
guistics, and at the same time to link it to certain formal theo-
ries of grammar. Consequently, the following sections outline
the main computational principles behind theADIOS model,
and compare these to select approaches from computational
and formal linguistics. The algorithmic details of our ap-
proach and accounts of its learning from CHILDES corpora
and performance in various tests appear elsewhere [1, 2, 3].
In this paper, we chose to exert a tight control over the tar-
get language by using a context-free grammar (Figure 1) to
generate the learning and testing corpora.

Figure 1: the context free grammar used to generate the cor-
pora for the acquisition tests described here.

The principles behind theADIOS algorithm
The representational power ofADIOS and its capacity for un-
supervised learning rest on three principles: (1) probabilistic
inference of pattern significance, (2) context-sensitive gener-
alization, and (3) recursive construction of complex patterns.
Each of these is described briefly below.

Probabilistic inference of pattern significance.ADIOS rep-
resents a corpus of sentences as an initially highly redundant
directed graph, in which the vertices are the lexicon entries
and the paths correspond, prior to running the algorithm, to
corpus sentences. The graph can be informally visualized as
a tangle of strands that are partially segregated intobundles.
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P84 that P58 P63
E63 E64 P48
E64 Beth | Cindy | George | Jim | Joe | Pam | P49 | P51
P48 , doesn't it
P51 the E50
P49 a E50
E50 bird | cat | cow | dog | horse | rabbit
P61 who E62
E62 adores | loves | scolds | worships
E53 Beth | Cindy | George | Jim | Joe | Pam
E85 annoyes | bothers | disturbes | worries
P58 E60 E64
E60 flies | jumps | laughs
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Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

that the bird jumps disturbes Jim who adores the cat, doesn't it?
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Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

that the bird jumps disturbes Jim who adores the cat, doesn't it?

P84 "that" P58 P63
E63 E64 P48
E64 "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam" | P49 | P51
P48 "," "doesn't" "it"
P51 "the" E50
P49 "a" E50
E50 "bird" | "cat" | "cow" | "dog" | "horse" | "rabbit"
P61 "who" E62
E62 "adores" | "loves" | "scolds" | "worships"
E53 "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam"
E85 "annoyes" | "bothers" | "disturbes" | "worries"
P58 E60 E64
E60 "flies" | "jumps" | "laughs"

Long Range Dependency

Figure 2: Left: a pattern (presented in a tree form), capturing a long range dependency (equivalence class labels are under-
scored). This and other examples here were distilled from a 400-sentence corpus generated by the grammar of Figure 1.Right:
the same pattern recast as a set of rewriting rules that can be seen as a Context Free Grammar fragment.

Each of these consists of some strands clumped together; a
bundle is formed when two or more strands join together and
run in parallel, and is dissolved when more strands leave the
bundle than stay in. In a given corpus, there will be many bun-
dles, with each strand (sentence) possibly participating in sev-
eral. Our algorithm, described in detail elsewhere [3],1 iden-
tifies significant bundles iteratively, using a context-sensitive
probabilistic criterion defined in terms of local flow quantities
in the graph. The outcome is a set of patterns, each of which
is an abstraction of a bundle of sentences that are identical
up to variation in one place, where one of several symbols
(the members of the equivalence class associated with the
pattern) may appear (Figure 2). This representation balances
high compression (small size of the pattern lexicon) against
good generalization (the ability to generate new grammatical
sentences from the acquired patterns).

Context sensitivity of patterns. Because an equivalence
class is only defined in the context specified by its parent
pattern, the generalization afforded by a set of patterns is
inherently safer than in approaches that posit globally valid
categories (“parts of speech”) and rules (“grammar”). The
reliance ofADIOS on many context-sensitive patterns rather
than on traditional rules can be compared to the Construc-
tion Grammar idea (discussed later), and is in line with Lan-
gacker’s conception of grammar as a collection of “patterns
of all intermediate degrees of generality” ([9], p.46).

Hierarchical structure of patterns. The ADIOS graph is
rewired every time a new pattern is detected, so that a bundle
of strings subsumed by it is represented by a single new edge.
Following the rewiring, which is context-specific, potentially
far-apart symbols that used to straddle the newly abstracted
pattern become close neighbors. Patterns thus become hi-
erarchically structured in that their elements may be either
terminals (i.e., fully specified strings) or other patterns. The
ability of new patterns and equivalence classes to incorporate
those added previously leads to the emergence of recursively
structured units that support generalization (by opening paths
that do not exist in the original corpus). Moreover, patterns
may refer to themselves, which opens the door for true recur-
sion (Figure 3, right; automatic detection of recursion is not

1The relevant publications can be found online at
http://kybele.psych.cornell.edu/∼edelman/archive.html.

currently implemented).

Two experiments in grammar induction

The results outlined next focus on the power of theADIOS
algorithm, which we assessed by examining the (so-called
“weak”) generativity of the representations it learns.

Experiment 1. In the first of the two studies described here,
we trainedADIOS on 400 sentences produced by the context
free grammar shown in Figure 1. We then compared a cor-
pusCtarget of 3, 607, 240 sentences generated by this CFG
(with up to three levels of recursion) with a corpusClearned

of 1, 916, 061 sentences generated by the patterns that had
been learned byADIOS from the 400-sentence training set. In
both cases the sentences were generated randomly in batches
of size1.5·107 and merged until convergence, defined as95%
overlap between new and existing data. With these data, we
obtained precision of97%, with a recall value of53% (as cus-
tomary in computational linguistics, we define recall as the
proportion ofCtarget sentences appearing inClearned, and
precision as the proportion ofClearned appearing inCtarget).
In this demonstration, no attempt was made to optimize the
two parameters that control pattern acquisition.

Experiment 2. The second experiment involved twoADIOS
instances: a teacher and a student. In each of the four runs,
the teacher was pre-loaded with a ready-made context free
grammar (using the straightforward translation of CFG rules
into patterns), then used to generate a series of training cor-
pora with up to6400 sentences, each with up to seven lev-
els of recursion. After training in each runi (i = [1 . . . 4]),
a student-generated test corpusC

(i)
learned of size10000 was

used in conjunction with a test corpusC(i)
target of the same

size produced by the teacher, to calculate precision and re-
call. This was done by running the teacher as a parser on
C

(i)
learned and the student – as a parser onC

(i)
target. The re-

sults, plotted in Figure 4, indicate a substantial capacity for
unsupervised induction of context-free grammars even from
very small corpora.
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Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

that the bird jumps disturbes Jim who adores the cat, doesn't it?

Figure 3: Left: becauseADIOS does not rewire all the occurrences of a specific pattern, but only those that share the same
context, its power is comparable to that of Context Sensitive Grammars. In this example, equivalence class #75 is not extended
to subsume the subject position, because that position appears in a different context (e.g., immediately to the right of the
symbol BEGIN). Thus, long-range agreement is enforced and over-generalization prevented. The context-sensitive “rules”
corresponding to pattern #210 appear above it.Right: the ADIOS pattern representation facilitates the detection of recursive
structure, exemplified here by the correspondence between equivalence classes #52 and #54.

Figure 4: the results of Experiment 2; precision (squares) and
recall (diamonds), plotted vs. the size of the training corpus;
the error bars are std. dev. computed over four separate train-
ing/testing runs. Note that even the largest training corpus
size, 6400 sentences, is a tiny proportion of the approximately
1.6 · 108 sentences that can be generated by the target gram-
mar under the chosen depth constraint (7).

Related computational and linguistic
formalisms and psycholinguistic findings

Unlike ADIOS, very few existing algorithms for unsupervised
language acquisition use raw, unannotated corpus data (as
opposed, say, to sentences converted into sequences of POS
tags). The only work described in a recent review [6] as com-
pletely unsupervised — the GraSp model [13] — does at-
tempt to induce syntax from raw transcribed speech, yet it is
not completely data-driven in that it makes a prior commit-
ment to a particular theory of syntax (Categorial Grammar,

complete with a pre-specified set of allowed categories). Be-
cause of the unique nature of our chosen challenge — finding
structure in language rather than imposing it — the follow-
ing brief survey of grammar induction focuses on contrasts
and comparisons to approaches that generally stop short of
attempting to do what our algorithm does. We distinguish
below between approaches that are motivated by computa-
tional considerations (Local Grammar and Variable Order
Markov models, and Tree Adjoining Grammar), and those
whose main motivation is linguistic and cognitive psycholog-
ical (Cognitive and Construction grammars).

Local Grammar and Markov models. In capturing the
regularities inherent in multiple criss-crossing paths through
a corpus,ADIOS superficially resembles finite-state Local
Grammars [14] and Variable Order Markov (VOM) mod-
els [15] that aim to produce a minimum-entropy finite-
state encoding of a corpus. There are, however, crucial
differences, as explained below. Our pattern significance
criteria [3] involve conditional probabilities of the form
P (en|e1, e2, e3, . . . , en−1), which does bring to mind an
n’th-order Markov chain, with the (variable)n correspond-
ing roughly to the length of the sentences we deal with. The
VOM approach starts out by postulating a maximum-n VOM
structure, which is then fitted to the data. The maximum
VOM order n, which effectively determines the size of the
window under consideration, is in practice much smaller than
in our approach, because of computational complexity limi-
tations of the VOM algorithms. The final parameters of the
VOM are set by a maximum likelihood condition, fitting the
model to the training data. TheADIOS philosophy differs
from the VOM approach in several key respects.First, rather
than fitting a model to the data, we use the data to construct
a (recursively structured) graph. Thus, our algorithm natu-
rally addresses the inference of the graph’s structure, a task
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that is more difficult than the estimation of parameters for a
given configuration.Second, becauseADIOS works from the
bottom up in a data-driven fashion, it is not hindered by com-
plexity issues, and can be used on huge graphs, with very
large windows sizes.Third, ADIOS transcends the idea of
VOM structure, in the following sense. Consider a set of pat-
terns of the formb1[c1]b2[c2]b3, etc. The equivalence classes
[·] may include vertices of the graph (both words and word
patterns turned into nodes), wild cards (i.e., any node), as well
as ambivalent cards (any node or no node). This means that
the terminal-level length of the string represented by a pat-
tern does not have to be of a fixed length. This goes concep-
tually beyond the variable order Markov structure:b2[c2]b3

do not have to appear in a Markov chain of a finite order
||b2|| + ||c2|| + ||b3|| because the size of[c2] is ill-defined,
as explained above.Fourth, as we showed earlier (Figure 3),
ADIOS incorporates both context-sensitive substitution and
recursion.

Tree Adjoining Grammar. The proper place in the Chom-
sky hierarchy for the class of strings accepted by our model is
between Context Free and Context Sensitive Languages. The
pattern-based representations employed byADIOS have coun-
terparts for each of the two composition operations, substitu-
tion and adjoining, that characterize a Tree Adjoining Gram-
mar, or TAG, developed by Joshi and others [16]. Specifi-
cally, both substitution and adjoining are subsumed in the re-
lationships that hold amongADIOS patterns, such as the mem-
bership of one pattern in another. Consider a patternPi and
its equivalence classE(Pi); any other patternPj ∈ E(Pi)
can be seen as substitutable inPi. Likewise, ifPj ∈ E(Pi),
Pk ∈ E(Pi) andPk ∈ E(Pj), then the patternPj can be
seen as adjoinable toPi. Because of this correspondence be-
tween the TAG operations and theADIOS patterns, we believe
that the latter represent regularities that are best described by
Mildly Context-Sensitive Language formalism [16]. Impor-
tantly, because theADIOS patterns are learned from data, they
already incorporate the constraints on substitution and ad-
joining that in the original TAG framework must be specified
manually.

Psychological and linguistic evidence for pattern-based
representations. Recent advances in understanding the
psychological role of representations based on what we call
patterns, orconstructions[17], focus on the use of statisti-
cal cues such as conditional probabilities in pattern learning
[18, 19], and on the importance of exemplars and construc-
tions in children’s language acquisition [20]. Converging
evidence for the centrality of pattern-like structures is pro-
vided by corpus-based studies of the prevalence of “prefabri-
cated” sequences of words [21], and of the entrenchment of
such sequences in the lexicon [22]. Similar ideas concern-
ing the ubiquity in syntax of structural peculiarities hitherto
marginalized as “exceptions” are now being voiced by lin-
guists [23, 24].

Cognitive Grammar; Construction Grammar. The main
methodological tenets ofADIOS — populating the lexicon
with “units” of varying complexity and degree of entrench-
ment, and using cognition-general mechanisms for learning

and representation — fit the spirit of the foundations of Cog-
nitive Grammar [9]. At the same time, whereas the cognitive
grammarians typically face the chore of hand-crafting struc-
tures that would reflect the logic of language as they perceive
it, ADIOS discovers the primitives of grammar empirically
and autonomously. The same is true also for the compari-
son betweenADIOS and the various Construction Grammars
[17, 24], which are all hand-crafted. A construction gram-
mar consists of elements that differ in their complexity and in
the degree to which they are specified: an idiom such as “big
deal” is a fully specified, immutable construction, whereas
the expression “the X, the Y” – as in “the more, the better”
[25] – is a partially specified template. The patterns learned
by ADIOS likewise vary along the dimensions of complex-
ity and specificity (e.g., not every pattern has an equivalence
class).2

Related computational work on grammar
induction

In natural language processing, a distinction is usually made
between unsupervised learning methods that attempt to find
good structural primitives and those that merely seek good
parameter settings for predefined primitives.ADIOS, which
clearly belongs to the first category, is also capable of learn-
ing from raw data, whereas most other systems start with cor-
pora annotated by part of speech tags [26], or even rely on
treebanks, or collections of hand-parsed sentences [4]. Of the
many such methods, we can mention here only a few.

Global grammar optimization using tagged data. Stol-
cke and Omohundro (1994) learn structure (the topology of
a Hidden Markov Model, or the productions of a Stochastic
Context Free Grammar), by iteratively maximizing the prob-
ability of the current approximation to the target grammar,
given the data. In contrast to this approach, which is global in
that all the data contribute to the figure of merit at each itera-
tion, ADIOS is local in the sense that its inferences only apply
to the current bundle candidate. Another important difference
is that instead of general-scope rules stated in terms of parts of
speech, we seek context-specific patterns. Perhaps because of
its globality and unrestricted-scope rules, Stolcke and Omo-
hundro’s method has “difficulties with large-scale natural lan-
guage applications” [27]. Similar conclusions are reached by
Clark, who observes that POS tags are not enough to learn
syntax from (“a lot of syntax depends on the idiosyncratic
properties of particular words.” [5], p.36). His algorithm at-
tempts to learn a phrase-structure grammar from tagged text,
by starting with local distributional cues, then filtering spu-
rious non-terminals using a mutual information criterion. In
the final stage, his algorithm clusters the results to achieve a
minimum description length (MDL) representation, by start-
ing with maximum likelihood grammar, then greedily select-
ing the candidate for abstraction that would maximally reduce
the description length. In its greedy approach to optimization
(but not in its local search for good patterns or its ability to
deal with untagged data), our approach resembles Clark’s.

2Similarly to constructions, theADIOS patterns carry semantic,
and not just syntactic, information — an important issue that is out-
side the scope of the present paper.
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Probabilistic treebank-based learning. Bod, whose algo-
rithm learns by gathering information about corpus probabil-
ities of potentially complex trees, observes that “[. . . ] the
knowledge of a speaker-hearer cannot be understood as a
grammar, but as a statistical ensemble of language experi-
ences that changes slightly every time a new utterance is
perceived or produced. The regularities we observe in lan-
guage may be viewed as emergent phenomena, but they can-
not be summarized into a consistent non-redundant system
that unequivocally defines the structures of new utterances.”
[4], p.145. This memory- or analogy-based language model,
which is not a typical example of unsupervised learning, is
mentioned here mainly because of the parallels between its
data representation, Stochastic Tree-Substitution Grammar,
and some of the formalisms discussed earlier.

Split and merge pattern learning. The unsupervised
structure learning algorithm developed by Wolff between
1970 and 1985 stands out in that it does not need the cor-
pus to be tagged. An excellent survey of his own and earlier
attempts at unsupervised learning of language, and of much
relevant behavioral data, can be found in [28]. His repre-
sentations consist of SYN (syntagmatic), PAR (paradigmatic)
and M (terminal) elements. Although our patterns and equiv-
alence classes can be seen as analogous to the first two of
these, Wolff’s learning criterion is much simpler than that of
ADIOS: in each iteration, the most frequent pair of contigu-
ous SYN elements are joined together.3 His system, however,
had a unique provision for countering the usual propensity
of unsupervised algorithms for overgeneralization: PAR el-
ements that did not admit free substitution among all their
members in some context were rebuilt in a context-specific
manner. Unfortunately, Wolff’s system has not been tested
on unconstrained natural language.

Summary, prospects and challenges
The ADIOS approach to the representation of linguistic
knowledge resembles the Construction Grammar in its gen-
eral philosophy (e.g., in its reliance on structural generaliza-
tions rather than on syntax projected by the lexicon), and
the Tree Adjoining Grammar in its computational capacity
(e.g., in its apparent ability to accept Mildly Context Sensi-
tive Languages). The representations learned by theADIOS
algorithm are truly emergent from the (unannotated) corpus
data, whereas those found in published works on cognitive
and construction grammars and on TAGs are hand-tailored.
Thus, our results complement and extend both the computa-
tional and the more linguistically oriented research into cog-
nitive/construction grammar.

To further the cause of an integrated understanding of lan-
guage, a crucial challenge must be met: a viable approach to
the evaluation of performance of an unsupervised language
learner must be developed, allowing testing both (1) neutral
with respect to the linguistic dogma, and (2) cognizant of
the plethora of phenomena documented by linguists over the
course of the past half century (see, e.g., Figure 5).

3An even simpler criterion, that of mere repetition, is employed
by the related approach of [29], resulting in a rule set that appears
to grow linearly with the size of the corpus, rather than reaching an
asymptote as in our case.
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Figure 5: As a token of our intention to account, eventually,
for the entire spectrum of English syntax-related phenomena
described in the textbooks — agreement, anaphora, auxil-
iaries,wh-questions, passive, control, etc. [30] — we illus-
trate here the manner in whichADIOS treats tough movement
(another phenomenon, long-range agreement, was discussed
in Figure 2). When trained on sentences exemplifying “tough
movement”,ADIOS forms patterns that represent the correct
phrases (. . . is easy to read, is easy to please, is eager to
read, is eager to please, to read is easy andto please is
easy), but does not over-generalize to the incorrect ones (*to
read is eager or *to please is eager).

Unsupervised grammar induction algorithms that work
from raw data are in principle difficult to test, because any
“gold standard” to which the acquired representation can be
compared (such as the Penn Treebank [31]) invariably reflects
its designers’ preconceptions about language, which may not
be valid, and which usually are controversial among linguists
themselves [32]. Moreover a child “. . . must generalize from
the sample to the language without overgeneralizing into the
area of utterances which are not in the language.What makes
the problem tricky is that both kinds of generalization, by def-
inition, have zero frequency in the child’s experience.” ([28],
p.183, italics in the original). Instead of shifting the onus of
explanation for this “miracle” onto some unspecified evolu-
tionary processes (which is what the innate grammar hypoth-
esis amounts to), we suggest that a system such asADIOS
should be tested by monitoring its acceptance of massive
amounts of human-generated data, and at the same time by
getting human subjects to evaluate sentences generated by the
system (note that this makes psycholinguistics a crucial com-
ponent in the entire undertaking).

A purely empirical approach to the evaluation problem
would, however, waste the many valuable insights into the
regularities of language accrued by the linguists over decades.
Although some empiricists would consider this a fair price
for quarantining what they perceive as a runaway theory that
got out of touch with psychological and computational real-
ity, we believe that searching for a middle way is a better
idea, and that the middle way can be found, if the linguists
can be persuaded to try and present their main findings in a
theory-neutral manner. From recent reviews of syntax that do
attempt to reach out to non-linguists (e.g., [33]), it appears
that the core issues on which every designer of a language ac-
quisition system should be focusing are dependencies (such
as co-reference) and constraints (such as islands), especially
as seen in a typological (cross-linguistic) perspective [24].
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