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Classroom-based Experiments in Productive Failure 
 

Manu Kapur & Katerine Bielaczyc 
National Institute of Education, Singapore 

 
 

Abstract 
We present evidence from three quasi-experimental studies on 
productive failure. In Experiment 1, students experienced either 
direct instruction (DI) or productive failure (PF), wherein they 
were first asked to generate a quantitative index for variance before 
receiving direct instruction on the concept. Experiment 2 examined 
if it was necessary for students to generate solutions or can these 
solutions be simply given to the students to study and evaluate. 
Experiment 3 examined if it was necessary for students to generate 
solutions before receiving the critical features of the targeted 
concept, or would simply telling the critical features without any 
such generation work just as well. In Experiment 1, PF students 
performed on par with DI students on procedural fluency, and 
significantly outperformed them on data analysis and conceptual 
insight items. In Experiment 2, only the effects on conceptual 
insight and near transfer were significant. In Experiment 3, only 
the effect on conceptual insight remained significant. Overall, 
these results challenge the claim that that direct instruction alone is 
the most effective approach for teaching novel concepts to 
learners. 

Introduction 

Proponents of direct instruction bring to bear substantive 
empirical evidence against un-guided or minimally-guided 
instruction to claim that there is little efficacy in having 
learners solve problems that target novel concepts, and that 
learners should receive direct instruction on the concepts 
before any problem solving (Kirschner, Sweller, & Clark, 
2006). Kirschner et al. (2006) argued that “Controlled 
experiments almost uniformly indicate that when dealing 
with novel information, learners should be explicitly shown 
what to do and how to do it” (p. 79). Based on cognitive 
load theory, commonly-cited problems with un-guided or 
minimally-guided instruction include increased working 
memory load that interferes with schema formation 
(Tuovinen & Sweller, 1999; Sweller, 1988), encoding of 
errors and misconceptions (Brown & Campione, 1994), lack 
of adequate practice and elaboration (Klahr & Nigam, 
2004), as well as affective problems of frustration and de-
motivation (Hardiman et al., 1986).  

Klahr & Nigam’s (2004) often-cited study compared the 
relative effectiveness of discovery learning and direct 
instruction approaches on learning the control of variable 
strategy (CVS) in scientific experimentation. On the 
acquisition of basic CVS skill as well as ability to transfer 
the skill to evaluate the design of science experiments, their 
findings suggested that students in the direct instruction 
condition who were explicitly taught how to design un-
confounded experiments outperformed their counterparts in 
the discovery learning condition who were simply left alone 
to design experiments without any instructional structure or 
feedback from the instructor. Further experiments by Klahr 
and colleagues (e.g., Strand-Cary & Klahr, 2008), and 
others as well have largely bolstered the ineffectiveness of 

discovery learning compared with direct instruction (for 
reviews, see Kirschner et al., 2006). 

However, we question whether there is little efficacy in 
having learners solve problems that target concepts they 
have not learnt yet. To determine if there such an efficacy, a 
stricter comparison for direct instruction would be to 
compare it with an approach where students first generate 
representations and methods on their own followed by direct 
instruction. As it can be expected, the generation process 
will invariably lead to failure, that is, students are rarely 
able to solve the problems and discover the canonical 
solutions by themselves. Yet, this very process can be 
productive for learning provided direct instruction on the 
targeted concepts is subsequently provided (Schwartz & 
Martin, 2004). As a case in point, we present evidence from 
our research program on productive failure (Kapur, 2008). 

Designing for Productive Failure 

Productive failure focuses on engaging students in processes 
that serve two critical cognitive functions, which in turn, 
prepare students for subsequent direct instruction: a) 
activating and differentiating prior knowledge in relation to 
the targeted concepts, and b) affording attention to critical 
features of the targeted concepts. PF comprises two 
phases—a generation and exploration phase followed by a 
direct instruction phase. In the generation and exploration 
phase, the focus is on affording students the opportunity to 
leverage their formal as well as intuitive prior knowledge 
and resources to generate a diversity of solutions for a 
complex problem; a problem that targets concepts that they 
have not yet learnt. Research suggests that students do have 
rich constructive resources (diSessa & Sherin, 2000) to 
generate a variety of solutions for novel problems. At the 
same time, research also suggests that one cannot expect 
students, who are novices to the target content, to somehow 
generate or discover the canonical representations and 
domain-specific methods for solving the problem (Kirschner 
et al., 2006).  

However, the expectation for the generation and 
exploration phase is not for students to be able to solve the 
problem successfully. Instead, it is to generate and explore 
the affordances and constraints of a diversity of solutions for 
solving the problem. Our hypothesis is that this process both 
activates and differentiates prior knowledge (as evidenced in 
the diversity of student-generated solutions). Furthermore, a 
comparison and contrast between the various solutions 
affords opportunities to attend to critical features of the 
targeted concept. Consequently, the generation and 
exploration phase provides the necessary foundation for 
developing deeper understanding of the canonical concept 
during direct instruction (Kapur, 2009, 2010a/b; Schwartz & 
Martin, 2004). 
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Purpose 

The purpose of this paper is to report three quasi-
experimental studies that help unpack the efficacy of the 
productive failure (PF) effect. In Experiment 1, we compare 
PF with direct instruction (DI) to show that PF engenders 
better prior knowledge differentiation (as evidenced in 
student-generated solutions), and affords opportunities for 
students to attend to critical features of the targeted concept. 
Experiment 2 tests whether prior knowledge differentiation 
can be engendered by simply giving student-generated 
solutions to the students to study and evaluate. Finally, 
Experiment 3 examines the extent to which attention to and 
understanding of critical features is contingent upon having 
students go through the generation and exploration phase, or 
could these critical features simply be told to students as 
part of direct instruction. 

Experiment 1: PF vs. DI 

Participants 

Participants were 74, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public 
school in Singapore. In all three experiments reported in this 
paper, students were almost all of Chinese ethnicity.  

Research Design 

A quasi-experimental, pre-post design was used with one 
class (n = 39) assigned to the ‘Productive Failure’ (PF) 
condition, and the other class (n = 35) to the ‘Direct 
Instruction’ (DI) condition. Both classes were taught by the 
same teacher. 
Pretest First, all students took a five-item paper and 

pencil pretest (α = .75) on the concept of variance.  

Intervention Next, all classes participated in four, 55-
minute periods of instruction on the concept as appropriate 
to their assigned condition.  

In the DI condition, the teacher first explained the concept 
of variance, and its canonical formulation as the square of 

the standard deviation ( ( ) nxxSD
n

i

2

1

2 ∑ −= ) using a data 

analysis problem. Next, the teacher modeled the application 
of the concept by working through several data analysis 
problems, highlighting common errors and misconceptions, 
and drawing attention to critical features of the concept in 
the process. The data analysis problems required students to 
compare the variability in 2-3 given data sets, for example, 
comparing the variability in rainfall in two different months 
of a year, or comparing the consistency of performance of 
three soccer players, and so on. To ensure students were 
engaged and motivated throughout, they were told that they 
will be asked to solve isomorphic problems after the teacher 
had worked through the examples with the class. Thereafter, 
students worked face-to-face in triads on more data analysis 
problems so that they could benefit from the processes of 
explanation and elaboration afforded by collaboration. The 
teacher then discussed the solutions with the class. After 
each period, students were given isomorphic data analysis 

problems for homework, which the teacher marked and 
returned to the students, usually by the following period.  

The PF condition differed from the DI condition in one 
important aspect. Instead of receiving direct instruction 
upfront, students spent two periods working face-to-face in 
triads to solve one of the data analysis problems on their 
own. The data analysis problem presented a distribution of 
goals scored each year by three soccer players over a 
twenty-year period. Students were asked to design a 
quantitative index to determine the most consistent player. 
During this generation phase, no instructional support or 
scaffolds were provided. Following this, two periods were 
spent on direct instruction where the teacher first 
consolidated by comparing and contrasting student-
generated solutions with each other, and then explained the 
canonical solution just like in the DI condition. Note that 
because students in the PF condition spent the first two 
periods generating an index for variance, they solved fewer 
data analysis problems overall than their counterparts in the 
DI condition. To make this contrast even sharper, PF 
students did not receive any homework. 

After the second and fourth periods, students from all 
classes took a five-item, five-point (1=low to 5=high) Likert 

scale engagement survey (α = .79).  

Posttest All students took a five-item, paper and pencil 

posttest (α = .74) comprising:  

i. one item on procedural fluency (calculating SD for a 
given dataset),  

ii. two items on data analysis (comparing means and SDs of 
two samples; these items were isomorphic with the data 
analysis problems covered during instruction), and 

iii. two items on conceptual insight (required students to 
evaluate sub-optimal solutions; one item dealing with 
sensitivity to ordering of data points, and another with 
outliers) 

Maximum score for each of the three types of items was 
10; two raters independently scored the items using a rubric 
with an inter-rater reliability of .92. 

Results 

Process PF groups generated on average 7 solutions (M = 
6.98, SD = 2.48) to the problem. Four categories emerged:  
a. Central tendencies (e.g., using mean, median, mode); 
b. Qualitative methods (e.g., organizing data using dot 

diagrams, frequency polygons, line graphs to examine 
clustering and fluctuations patterns); 

c. Frequency methods (e.g., counting the frequency with 
which a player scored above, below, and at the mean to 
argue that the greater the frequency at the mean relative 
to away from the mean, the better the consistency); and  

d. Deviation methods (e.g., range; calculating the sum of 
year-on-year deviations to argue that the greater the 
sum, the lower the consistency; calculating absolute 
deviations to avoid deviations of opposite signs 
cancelling each other; calculating the average instead of 
the sum of the deviations).  

Elsewhere, we have described these student-generated 
solutions in greater detail (Kapur, 2010b). Note that none of 
the groups were able to generate the canonical formulation 

2813



 

of SD. In contrast, analysis of DI students’ classroom work 
revealed that students relied only on the canonical 
formulation to solve data analysis problems. This was not 
surprising given that had been taught the canonical 
formulation of SD, which is also easy to compute and apply. 
All students were accurately able to apply the concept of SD 
to solve the very problem that the PF students tried to 
generate a solution to. Finally, on the mean of the two self-
reported engagement ratings, there was no difference 
between the PF condition, M = 3.84, SD = .51, and the DI 

condition, M = 3.82, SD = .43.  
These process findings serve as a manipulation check 

demonstrating that students in the PF condition experienced 
“failure,” at least in the conventional sense of not being able 
to generate the canonical solutions. In contrast, DI students 
were not only just as engaged as PF students but also 
demonstrated successful application of the canonical 
formulation to solve data analysis problems, including the 
one that the PF students solved during the generation phase. 
The high engagement ratings and performance results also 
suggest that the DI condition was not simply a case of poor 
instruction. 
Outcome On the pretest, no student demonstrated 

canonical knowledge of SD, and there was no significant 
difference between the conditions, F(1, 72) = 2.56, p = .114.  

Posttest performance on the three types of items formed 
the three dependent variables. Controlling for the effect of 
prior knowledge as measured by the pretest, F(4, 134) = 
1.89, p = .112, a MANCOVA revealed a significant 
multivariate effect of condition, F(4, 134) = 16.802, p < 
.001, partial η

2
 = .33. Interaction between prior knowledge 

and experimental condition was not significant. 
 
Table 1: Experiment 1 posttest performance by item type 

Experiment 1 PF 
M (SD) 

DI 
M (SD) 

p / η
2
 

ProceduralFluency 8.70 (2.07) 8.69 (2.19) ns 
Data Analysis 7.39 (1.94) 5.97 (2.48) .013*/.09 
Conceptual Insight 6.12 (2.38) 3.01 (1.93) .001*/.31 

 
PF students significantly outperformed their DI 

counterparts on data analysis and conceptual insight 
problems without compromising on procedural fluency. 

Discussion 

As hypothesized, the PF design invoked learning processes 
that not only activated but also differentiated students’ prior 
knowledge (as evidenced by the diversity of student-
generated solutions). Whereas PF students worked with the 
solutions that they generated and the canonical solutions 
(that they received during direct instruction), DI students 
worked with only the canonical ones. Hence, DI students 
worked with a smaller diversity of solutions, and 
consequently, their prior knowledge was arguably not as 
differentiated as their PF counterparts. This was a 
significant difference between the conditions by design. 
Proponents of DI have repeatedly questioned the utility of 
getting students to solve novel problems on their own. 
Instead, they argue that students should be given the 

canonical solutions (either through worked examples or 
direct instruction) before getting them to apply these to 
solve problems on their own (Sweller, 2010).  

Experiment 1’s findings suggest that there is in fact a 
utility in having students solve novel problems first. What 
prior knowledge differentiation affords in part is a 
comparison and contrast between the various solutions—
among the student-generated solutions as well as between 
the student-generated and canonical solutions. Specifically, 
these contrasts afford opportunities to attend to the 
following critical features of the targeted concept that are 
necessary to develop a deep understanding of the concept: 
1. What is the difference between the mean and the 

distribution around the mean?  
2. What is the difference between a qualitative description 

of the data (e.g., dot diagram, line graphs) and a 
quantitative description (e.g., range, SD)? 

3. What is the difference between the frequency of a point 
and its position relative to a fixed reference point? 

4. Why must we take deviations from a fixed point? 
5. Why is the mean usually the fixed point; why can’t it be 

the maximum or the minimum point, or even the 
median or the mode? 

6. Why must we take deviations from the mean for all the 
points; why not just choose the maximum and the 
minimum point, or simply the range? 

7. Why must deviations from the mean be made positive?  
8. Why must we divide the sum of the squared deviations 

by n; why not simply work with their or sum? 
9. Why must we take the square root of the average of the 

squared deviations? 
10. How do outliers affect SD? 

However, Experiment 1 raises two further questions:  
1. If exposure to both student-generated and canonical 

solutions is what is essential, then instead of getting 
students to generate solutions, why not simply let 
students study the student-generated solutions first 
(e.g., in the form of well-designed worked examples) 
and then give them the canonical solutions through 
direct instruction? Simply put, is it really necessary for 
students to generate the solutions or can these be given 
to them? Experiment 2 addresses this question. 

2. If what is essential is that students attend to the ten 
critical features, then why not simply tell students these 
critical features? Why bother having them generate, and 
compare and contrast the solutions? Simply put, do 
students really need to generate before receiving the 
critical features, or would telling the critical features 
without any generation work just as well? Experiment 3 
addresses this question.  

Experiment 2: PF vs. Evaluation 

The purpose of Experiment 2 was to examine the difference 
between: a) having students generate solutions to solve a 
novel problem, and b) having them study and evaluate 
student-generated solutions (also see Roll, 2009).  
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Participants 

Participants were 54, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public 
school in Singapore.  

Research Design 

One class (n = 31) was assigned to the PF condition, and the 
other class (n = 23) to the ‘Evaluation’ (EV) condition. Both 
classes were taught by the same teacher. The PF condition 
was exactly the same as in Experiment 1. The EV condition 
differed from the PF condition in one important aspect: The 
generation phase was replaced with an evaluation phase; the 
subsequent direct instruction phase was the same as in the 
PF condition.  

Whereas PF students had to collaboratively generate 
solutions to solve the complex problem during the first two 
periods, EV students took the same two periods to 
collaboratively study and evaluate the peer-generated 
solutions (available from Experiment 1). To ensure that 
students were motivated to understand the given solutions, 
students were asked to evaluate and rank order the solutions 
so that they would indirectly be forced to compare and 
contrast the solutions. Each solution was presented on an A4 
sheet of paper with the prompt: “Evaluate whether this 
solution is a good measure of consistency. Explain and give 
reasons to support your evaluation.”   

The number of solutions given was pegged to the average 
number of solutions produced by the PF groups, that is, 
seven. The most frequently-generated solutions by the PF 
students were chosen for EV condition, and none of the 
chosen solutions contained misconceptions. The seven 
solutions included one on central tendencies, two on 
qualitative methods (dot diagram and line graph), two on 
frequency methods (frequency of the mean and frequency of 
the mean relative to away from the mean), and two on 
deviation methods (sum of year-on-year deviation with 
signs, and average year-on-year deviations without signs).  

Because student-generated solutions sometimes lack 
conceptual clarity in their presentation that may make it 
difficult for other students to understand and evaluate them, 
they were converted into well-designed worked examples. 
EV students received these solutions in the form of worked 
examples one-by-one (counterbalanced for order), and were 
given approximately 10-12 minutes for each. The remaining 
time (approximately 30 minutes) was spent on rank ordering 
the solutions. Finally, to ensure that EV groups understood 
the student-generated solutions, the teacher and a research 
assistant conducted an in-situ check for understanding with 
the EV groups by asking them to explain their 
understanding of the solutions. Where students needed help 
in understanding the solutions, it was readily provided 
because we did not want students’ lack of understanding to 
adversely affect the fidelity of the EV condition. 

Results 

Process PF groups produced on average just under 7 
solutions (M = 6.78, SD = 2.03) to the problem. As 
expected, these solutions fell into the four broad categories 
identified earlier. As in Experiment 1, the mean self-

reported engagement ratings were, on average, high, and 
there was no difference between the PF condition, M = 4.07, 

SD = .61, and the EV condition, M = 4.12, SD = .53. 
Outcome On the pretest, no student demonstrated 

canonical knowledge of SD, and there was no significant 
difference between the conditions, F(1, 63) = 1.16, p = .285. 

On the posttest (α = .78), an item on near transfer was 

added to increase the discriminatory power of the posttest. 
The near transfer item required students to add data points 
to a given dataset without changing its mean and SD. Two 
raters independently scored the items using the same rubric 
as in Experiment 1 with an inter-rater reliability of .95. 
Performance on the four types of items formed the four 
dependent variables. Controlling for the effect of prior 
knowledge as measured by the pretest, F(4, 48) = 1.04, p = 
.398, a MANCOVA revealed a significant multivariate 
effect of condition, F(4, 48) = 3.34, p = .017, partial η

2
 = 

.22. Interaction between prior knowledge and experimental 
condition was not significant. 

 
Table 2: Experiment 2 posttest performance by item type 

Experiment 2 PF 
M (SD) 

EV 
M (SD) 

p / η
2
 

Procedural Fluency 9.60 (0.98) 9.43 (1.73) ns 
Data Analysis 9.83 (0.90) 9.34 (2.28) ns 
Conceptual Insight 4.77 (1.02) 3.44 (1.67) .001*/.19 
Near Transfer 7.50 (3.35) 5.08 (4.73) .039*/.08 

 
PF students significantly outperformed their EV 

counterparts on conceptual insight and near transfer 
problems without compromising on procedural fluency and 
data analysis. Consistent with Roll (2009), exposing 
students to and having them evaluate student-generated 
solutions does not seem to be as efficacious as having them 
generate those solutions before direct instruction.  

Experiment 3: PF vs. Strong-DI 

The purpose of Experiment 3 was to compare PF condition 
with a strong DI condition, in which the teacher explicitly 
explains the 10 critical features. 

Participants 

Participants were 57, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public 
school in Singapore. 

Research Design 

One class (n = 31) was assigned to the PF condition, and the 
other class (n = 26) to the ‘Strong-DI’ condition. Both 
classes were taught by the same teacher. The PF condition 
was exactly the same as in Experiment 1. The Strong-DI 
condition was the same as in Experiment 1 except that the 
teacher drew attention to the ten critical features during 
instruction. While explaining each step of formulating and 
calculating SD, the teacher explained the appropriate critical 
features relevant for that step. For example, when 
explaining the concept of “deviation of a point from the 
mean”, the teacher discussed why deviations need to be 
from a fixed point, why the fixed point should be the mean, 
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and why deviations must be positive. During subsequent 
problem solving and feedback, the teacher repeatedly 
reinforced these critical features throughout the lessons. 

Results 

Process PF groups produced on average just over 7 
solutions (M = 7.24, SD = 2.56). These solutions fell into 
the four broad categories identified earlier. DI students 
relied only on the canonical formulation to solve data 
analysis problems, and all were accurately able to apply the 
concept to solve the very problem that the PF students tried 
to generate solutions to. As in Experiments 1 and 2, the 
engagement ratings were on average high, and there was no 
difference between the PF condition, M = 4.15, SD = .44, 

and the Strong-DI condition, M = 4.22, SD = .32. 
Outcome On the pretest, no student demonstrated 

canonical knowledge of SD, and there was no significant 
difference between the conditions, F(1, 55) = .25, p = .618. 

The posttest (α = .79) was the same as in Experiment 2. 

Two raters independently scored the items using the same 
rubric as in Experiment 2 with an inter-rater reliability of 
.98. Controlling for the effect of prior knowledge as 
measured by the pretest, F(4, 51) = .25, p = .907, a 
MANCOVA revealed a significant multivariate effect of 
condition, F(4, 51) = 2.65, p =.044, partial η

2
 = .17. 

Interaction between prior knowledge and experimental 
condition was not significant. 

 
Table 3: Experiment 3 posttest performance by item type 

Experiment 3 PF 
M (SD) 

Strong-DI 
M (SD) 

p / η2 

Procedural Fluency 9.50 (1.01) 9.69 (1.00) ns 
Data Analysis 9.84 (0.90) 9.81 (0.98) ns 
Conceptual Insight 4.44 (1.24) 3.55 (1.13) .007*/.13 
Near Transfer 7.89 (2.52) 7.06 (2.73) ns 

 
PF students significantly outperformed their Strong-DI 

counterparts on conceptual insight without compromising 
on procedural fluency. Effect on data analysis, which was 
significant in Experiment 1, was no longer significant in 
Experiment 3. Effect on near transfer, which was significant 
in Experiment 2, was no longer significant in Experiment 3.  
It can be concluded that direct instruction on the critical 
features appears to be helpful indeed. However, PF students 
still maintained an edge in terms of conceptual insight. 
Perhaps one could argue that exposure to sub-optimal 
solutions in the PF condition can alone explain their better 
performance on conceptual insight items on the posttest. 
While this explanation cannot be fully ruled out, Experiment 
2 helps mitigate this concern because students in the 
Evaluation condition were also exposed to the sub-optimal 
solutions but they still did not perform as well as PF 
students on conceptual insight. 

General Discussion 

We reported on three quasi-experimental studies that helped 
unpack the productive failure (PF) effect. Experiment 1 
showed that compared to DI, PF a) engendered better prior 
knowledge differentiation, and b) afforded opportunities to 

attend to critical features of the concept of variance, which 
in turn helped PF students better understand the concept 
when presented by the teacher during direct instruction 
subsequently (Schwartz & Martin, 2004). Consequently, PF 
students performed on par with DI students on procedural 
fluency, but significantly outperformed them on data 
analysis and conceptual insight. Although the limitations 
inherent in quasi-experimental studies with intact 
classrooms cannot be completely mitigated, note that both 
the conditions were taught by the same teacher for the same 
amount of time, exposed students to the same materials 
(except that DI students were exposed to more data analysis 
problems), and afforded students the opportunity to benefit 
from collaborative problem solving.  

Experiment 2 further examined prior knowledge 
differentiation by testing whether it was necessary for 
students to generate solutions themselves (to engender prior 
knowledge differentiation), or can these solutions be simply 
given to the students to study and evaluate. Findings 
suggested that PF students performed significantly better on 
conceptual insight and near transfer without compromising 
on procedural fluency and data analysis.  

Because Experiment 1 showed that students do not 
necessarily attend to or notice deep critical features on their 
own during direct instruction, Experiment 3 examined 
whether these features could simply be told to students as 
part of direct instruction, or if it was more effective for 
students to generate solutions before receiving these critical 
features. Findings suggested that although direct instruction 
on the critical features was effective, having students 
generate solutions first was still better for developing deep 
conceptual insight.  

In sum, therefore, all three experiments suggested that 
there is indeed an efficacy in having learners generate and 
explore representations and methods for solving problems 
on their own even if they do not formally know the 
underlying concepts needed to solve the problems, and even 
if such un-supported problem solving leads to failure 
initially. By failure, we mean that students were unable to 
generate the canonical solutions by themselves. Of course, 
one could argue that PF students were not really failing 
because they were engaged in processes that were germane 
for learning (Schmidt & Bjork, 1992). However, when we 
situate the PF design in the argument made by the 
proponents of DI, the generation process is invariably seen 
as failure because the proponents of DI question the utility 
students generating solutions to novel problems. They argue 
that students should be given the canonical solutions (either 
through worked examples or direct instruction) before 
getting them to apply these to solve problems on their own 
(Sweller, 2010).  

Implications of the above findings pose an interesting 
dilemma for the limits of working memory (WM) capacity 
as argued by cognitive load theorists: How is it that students 
who had not learnt the concept of variance were able to 
generate multiple representations and solutions to a novel, 
complex problem targeting that concept in the first place? 
After all, a complex problem should in and of itself impose 
a heavy cognitive load on a limited WM capacity, let alone 
one that targets a novel concept.  
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To resolve this dilemma, one only need realize that the 
limits of WM only apply to new or yet-to-be learned 
information not in the long-term memory (LTM) (Sweller, 
2010). However, when dealing with previously stored 
information in the LTM, these limits tend to be mitigated. 
Indeed, as Kirschner et al. (2006) argued, “Any instructional 
theory that ignores the limits of working memory when 
dealing with novel information or ignores the disappearance 
of those limits when dealing with familiar information is 
unlikely to be effective” (p. 77). 

If the constraints of WM are contingent upon the novelty 
of information, and novelty is a function of how what a 
learner already knows (stored in the LTM) is brought to 
bear on the new concept being learnt, then it follows that 
activating relevant prior knowledge in the LTM can help 
mitigate the constraints of WM. This precisely what PF is 
designed to do: by designing to activate prior knowledge, 
PF works to mitigate the WM constraints. This may explain 
why PF students were able to generate a several solutions to 
the novel problem. Furthermore, it can be argued that once a 
particular solution is generated, it forms a resource in the 
LTM for further generation, that is, generated solutions 
stored in the LTM can potentially interact with the WM to 
aid more generation. Finally, these generated structures also 
become a powerful resource in the LTM that can interact 
with WM and reduce the cognitive load during subsequent 
direct instruction, thereby resulting in better learning of 
conceptual features during direct instruction. Both DI and 
Strong-DI students did not have these LTM resources that 
they could leverage to learn better from direct instruction. 
Thus conceived, one can see why the process of evaluating 
student-generated solutions can impose a higher WM load 
than actually generating those very solutions, and 
consequently interfere with learning. 

In sum, if what a learner already knows about a concept is 
a critical determinant of either limiting or expanding the 
WM capacity, then does not a commitment to cognitive load 
theory entail a commitment to understanding whether and to 
what extent the targeted concept is novel to the learner? 
However, in our reading, this is rarely taken up by the 
proponents of DI. Their conception of prior knowledge 
remains limited to canonical domain-specific knowledge, 
which in turn, constrains one to work within the limiting 
aspects of the working memory (e.g., Sweller & Cooper, 
1985; Paas, 1992). However, if we allow for the possibility 
that learners may have some prior knowledge and resources 
about a concept they have yet to learn, could we not design 
tasks and activity structures to elicit this knowledge, and by 
activating and working with these priors in the long-term 
memory, leverage the expandable aspects of working 
memory capacity? At the very least, this is a theoretical 
possibility that the cognitive load theory allows for, and one 
that should be explored.  
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