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Modelling Dual-Processes in a Connectionist Network 

Toby Johnson (T.Johnson@exeter.ac.uk) 

IPL McLaren (i.p.l@mclaren@exeter.ac.uk) 

 
Psychology, University of Exeter, Exeter, UK, EX4 4QG 

 

Abstract 

This paper presents a connectionist network simulation of 
Livesey and McLaren’s (2009) results. In that paper they 
showed that participants with post-discrimination gradients 
that were initially peak shifted became monotonic as they were 
exposed to the full range of test stimuli. While the authors 
suggest that this is the result of rule-based processes ‘taking 
over’ responding, we show how a connectionist network with 
an attentional parameter and realistic activation functions for 
the input can simulate both the peak shifted and monotonic 
gradients. Although we do not infer that the monotonic 
gradient obtained in peak shift paradigms is entirely the result 
of associative, rather than propositional processes, we suggest 
that perhaps it is a change in the allocation of attention, in 
conjunction with the underlying representational structures 
used for the stimuli that facilitates rule induction in this case. 

 

Keywords: Associative Learning; Connectionist Network; 
Peak Shift; Dual-Process; Single Process 
 

Introduction 

Dual-Process theorists assume that human associative 

learning relies upon two sets of processes (see McLaren et al., 

2014; 2019). One set, aptly named ‘associative processes’, 

are those also found in non-human animals, and were the 

initial focus of learning theory. This resulted in the 

algorithms developed by Rescorla and Wagner (1972) and 

Mackintosh (1975), which provided the foundations for the 

development of more sophisticated models of associative 

learning that now describe both the representation of stimuli, 

as well as the learning algorithms that govern association 

formation (e.g., McLaren & Mackintosh, 2002). The other set 

of processes are more complex, higher-level cognitive 

processes, that are unique to humans. These ‘propositional 

processes’ are conscious and result in articulable rules about 

the relationship between stimuli. Another approach, espoused 

by single-process theorists (see Mitchell, de Houwer, & 

Lovibond, 2009) assumes that human associative learning 

can be explained entirely via propositional processes. But 

what both approaches agree on is the need for rule-based 

processes to explain at least some learning and behavior in 

humans. 

Connectionist theorists, however, have a long history of 

analyzing psychological domains thought to require multiple 

processes or rules and showing that in fact they can be 

modelled in terms of networks using just one set of basic 

processes in a quite simple architecture. An excellent 

example of this approach can be found in the Seidenberg and 

McClelland (1989) model of reading aloud developed in the 

last century, which was able to produce effects that, up until 

then, had been imputed to a dual process account of reading 

using separate lexically-based and grapheme-phoneme 

conversion routes. In fact, this use of one network to replace 

a more complex set of routes/processes goes all the way back 

to theorists such as Spence (1937) who showed how 

phenomena such as transposition which seemed to imply 

relational learning would, in fact, emerge from a very simple 

associative model. The example that we will consider here is 

one that Spence also dealt with at the time, peak shift, but 

now we will show how this type of approach can be extended 

to also explain the monotonic gradients typically obtained 

when people have become aware of the rule governing 

responding. 

 

Peak Shift  

The peak shift effect (e.g., Hanson, 1957; Livesey & 

McLaren, 2009) has provided what has been taken to be 

evidence for the existence of associative processes in 

humans. This effect occurs after discrimination training with 

two similar stimuli that vary along a dimension (e.g., colored 

rectangles, varying from green to blue). When tested with 

several stimuli that vary more extremely along the same 

dimension, participants who have been unable to induce a 

rule during training, show a peak shift. That is, they are most 

accurate not to the training stimuli, but to stimuli located 

slightly farther along the dimension, away from the opposite 

training stimulus. Accuracy then reduces as the testing 

stimulus moves even farther along the dimension. For 

participants who have induced a rule to aid with 

discrimination, such as ‘if the stimulus is green then it 

belongs to category A, if it is blue then it belongs to category 

B’, then participants peak accuracy will typically be to the 

bluest and the greenest stimuli they are presented with. As 

such, these participants show monotonically increasing 

accuracy as the stimuli moves farther along the dimension. 

Quite apart from this dissociation in the pattern of 

responding between people who have induced a rule and 

those who have not, peak shift is reliably seen in pigeons 

(e.g., Hanson, 1957), and there is evidence that learning in 

pigeons is the result of associative, rather than propositional 

processes (e.g., Meier, Lea, & McLaren, 2016). Furthermore, 

it can be easily modelled by associative networks that assume 

elemental representations of stimuli (e.g., McLaren & 

Mackintosh, 2002). 
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Livesey & McLaren (2009) 

Livesey and McLaren (2009) conducted an extended peak 

shift experiment in which participants were trained to 

categorize, with feedback, two similar stimuli that varied 

only in their hue. At test, they were required to categorize a 

wider range of stimuli (12 in Experiment One and 6 in 

Experiment Two), varying more along the hue dimension. 

The authors reported that, on average, responding across the 

test phase was not peak shifted. There was a significant rise 

in accuracy, but not a significant fall. However, they showed 

that participants post-discrimination gradients changed from 

peak shifted at the beginning of the test phase, to 

monotonically increasing at the end. They suggested that 

some associative strength had been accrued during the 

training phase, but not enough to allow for rule induction in 

some participants. Only when participants were shown the 

full range of stimuli during test were they able to articulate 

the difference between the stimuli (that they varied in hue). 

This explained why responding changed from associatively 

based, resulting in peak shift at the start, to rule-based, 

resulting in the monotonic gradient by the end. Moreover, in 

experiment 2, they reported that this change in the post-

discrimination gradients only occurred in those who were 

unable to induce a rule during training, or who induced the 

wrong rule (see Figure 1). For those who noticed the 

difference in hue during training, responding followed the 

monotonic gradient throughout the entirety of the test phase. 

 

Figure 1: Graph from Livesey & McLaren (2009) experiment 

2, showing how the post-discrimination gradient changed for 

those who reported noticing no difference (hollow circles) 

between the training stimuli from peak shifted at the 

beginning of testing to monotonic at the end. 

 

Historically, not a great deal of further analysis has been 

seen as necessary for the monotonic gradient. If participants 

have induced a rule such as ‘if blue then respond A, if green 

then respond B’, then their behavior has been taken as 

accounted for. But what this fails to explain is how the rule 

itself has been induced, and indeed how it controls 

responding. During testing, participants received no feedback 

on their responses, yet responding to stimuli at the extreme 

ends of the dimension became more accurate. This suggests 

that whatever associative strength had accrued as a result of 

training is influencing rule induction. If these two processes 

were completely separate, then the hypothesis testing 

involved in rule induction would not yield more accurate 

responding during testing, as there is no feedback.  

One way in which associative processes may be 

influencing rule induction is through participants observing 

their own responses. Indeed, Livesey and McLaren (2009) 

offered the same argument. If participants become aware that 

they are pressing a particular response key to a stimulus, then 

they may begin trying to understand why. It would then not 

be long until they become aware of the subtle differences 

between the stimuli (i.e., hue) and focus their attention on that 

dimension. Our thought was that this change in attention can 

be modelled using the same associative network that can 

simulate peak shift. Previous networks, such as Kruschke’s 

(1992) ALCOVE (itself using an algorithm that owes much 

to Mackintosh, 1975), have suggested that attentional 

changes can affect learning and performance, and have 

incorporated this in their model. 

Here we will present a new model that can simulate the 

pattern of results found in Livesey & McLaren (2009). We 

have not attempted to fit the model to the data, and as such 

the overall accuracies are not identical to those reported by 

the authors. However, we will show how an associative 

network can simulate peak shift and then generate the 

monotonic gradient, through a simple mechanism that acts to 

both increase the gain on the input, and in doing so varies the 

representational structure of the stimuli under test. We 

theorize that this captures the shift in attention and 

consequent change in the underlying representational 

structure with which stimuli are encoded.  

 

The Model 

Summary of the model 

The model we describe in the present paper is a feedforward-

backpropagation connectionist network with a winner-take-

all (WTA) system for determining responses (Rumelhart, 

Hinton, & Williams, 1986; Wills & McLaren, 1997). Both 

the input and hidden layers comprises 10 units. The output 

layer and WTA system comprises two units. All units in the 

input layer are connected to all those in the hidden layer, and 

all those in the hidden layer are connected to each unit in the 

output layer. These two units reflect the two different key 

presses that could be used to classify stimuli, and were each 

connected to their respective WTA units, which determined 

the final output for that particular trial. Connections between 

the input and hidden, as well as the hidden and output layers 

were modified using the delta rule and backpropagation, 

allowing the network to learn. Our model assumes elemental 

representation of stimuli, and thus for any given stimulus, 

several input units will be activated. Figure 2 shows the basic 
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architecture of the model. The details and unique formal 

equations of the model will be described below. 

 

 

Figure 2: The basic architecture of the connectionist network 

outlined in this paper. 

Stimulus representation & attentional mechanism 

Stimuli were represented as a pattern of activation across the 

input units that followed a Gaussian distribution. The 10 

input units corresponded to the dimension (i.e., hue), and for 

any given stimulus, several would be activated. Thus, the two 

training stimuli activated overlapping sets of units, however 

the magnitude of activation differed such that the peak 

activation for one stimulus may have been at input unit 4, but 

for the other at unit 5. In reality, for any given stimulus, peak 

activation may not necessarily have been located perfectly on 

an input unit, but rather could have been located ‘between’ 

units. Most importantly, stimuli located closer to each other 

on the dimension activated many more overlapping units 

compared to stimuli located farther apart, but the pattern of 

activation for each stimulus across the 10 input units was 

unique.  

 

𝐼𝑖 = 𝑣𝑒−𝑘 (𝑖−
ℎ𝑢𝑒

𝑙
)

2

 

      

Equation 1 describes the Gaussian function that produces 

the initial input for a given input unit, 𝐼𝑖 . Here 𝑣 is a constant 

that determines the maximum amplitude of the gradient. The 

value of this constant has very important implications with 

regards to Equation 2 (below), as it essentially acts as an 

attentional parameter in two different ways. First it controls 

the strength of the input, with higher numbers resulting in 

higher peak amplitudes. Secondly, it interacts with Equation 

2, to alter the shape of the Gaussian function, irrespective of 

𝑘. This was the only parameter that was changed to produce 

our results. 𝑘 determines the broadness of the gradient, with 

lower numbers resulting in broader gradients, ℎ𝑢𝑒 refers to 

the hue of the stimulus, and 𝑙 is a constant that determines 

how the changes in hue affect the overall position of the 

gradient across the input units. A low value will result in 

similar stimuli activating less overlapping units, whereas a 

high value will result in similar stimuli activating more 

overlapping units. This input is then passed through an 

activation function to produce the final activation, 𝐴𝑖 for any 

given input unit. 

 

𝐴𝑖 = 𝑝 (
𝐼𝑖

(𝐼𝑖 + 𝑡)
) 

 

Equation 2 is derived from the initial input to a unit,  𝐼𝑖 . 

That is, each unit’s final activation is calculated from its own 

initial input via this function. Here, 𝑝 is a constant that 

determines the final maximum activation of the unit and 𝑡 is 

a constant that affects the shape of the final activation 

gradient.  Equation 2 interacts with Equation 1 such that units 

with a low input are influenced much more greatly compared 

to units with already high inputs. Differences across units 

with an initial input lower than 𝑡 will remain more similar in 

their magnitude after calculation of the final activation 

compared to differences across units with an initial input 

higher than 𝑡, which will be limited by 𝑝.  

 

 

Figure 3: Diagrams showing the Gaussian pattern of 

activation after the initial input function (equation 1: orange 

line) and the final activation function (equation 2: black line). 

Figure 3A shows the difference between initial input and final 

activation for a set of units with a low initial input. Figure 3B 

shows the difference between initial and final activation for a 

set of units with a high input, arising from attending more 

closely on the stimulus (and in particular to the dimension 

that is deemed relevant). The constant 𝑣 determines the peak 

amplitude for the initial input. 

 

Learning & output 

Both the hidden and output layer were activated using the 

logistic activation function, whereby 0.5 represents a resting 

level, 0.1 represents maximum inhibition and 0.9 represents 

maximum excitation. The strength of the connections 

between the input and hidden, and hidden and output layers 

were modified using the delta rule and backpropagation 

(Rumelhart, Hinton, & Williams, 1986). For the two output 

units, representing different key presses, target activation was 

set to 0.9 and 0.5, respectively, representing one key press, or 

0.5 and 0.9, respectively, representing the other key press. 

The WTA system (Wills & McLaren, 1997) is comprised of 

two units, connected to their respective output units, that are 

A B 

(2) 

(1) 
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self-excitatory and mutually inhibitory and used a similar 

activation function to Equation 2. Each WTA unit takes the 

activation from its respective output unit and competes with 

the other WTA unit until one unit's activation reaches a 

criterion and is labelled a winner. This system has the benefit 

of labelling one output, or key press, as a winner on each trial, 

making it clear what the response on that trial is. In this way 

we are able to obtain data similar to those generated in 

experiments with human participants. 

Simulations 

We simulated 100 experiments, with each experiment 

consisting of 100 simulated participants. All constants, 

except the main attentional constant, 𝑣, remained the same 

throughout the simulation and for all participants. For 

Equation 1, the constant determining the shape of the 

Gaussian gradient for the initial activation was 𝑘 = 0.8, and 

the constant determining how changes in hue affect the 

location of the Gaussian gradient was 𝑙 = 25.5. For equation 

2, the constant determining peak final activation was 𝑝 = 2, 

and the constant determining the shape of the Gaussian 

gradient for the final activation was 𝑡 = 1. 𝑣, the attentional 

constant was 𝑣  = 0.2 during training and the first stage of 

testing and was changed to 𝑣  = 12, for the second stage of 

testing.  

For each simulated participant, the weights between the 

input and hidden, and hidden and output layers were initially 

randomized. Each simulated participant was trained with 

10,000 iterations of each of the two training stimuli (using 𝑣 

= 0.2). They were then tested twice each on stimuli that varied 

more greatly across the dimension. This comprised of the two 

training stimuli, T, stimuli on each side of the dimension 

which lay further along the dimension than T, ‘Near’ (N), and 

stimuli at either end of the dimension, ‘Distant’ (D). This 

testing stage occurred twice, with different constants for 𝑣 in 

each (0.2 for the first test and 12 for the second, although due 

to the various parameters in our model there are likely to be 

many more). We have not undertaken any formal model 

fitting, and thus the values we have used for the parameters 

are not necessarily the only ones, nor the best, in replicating 

the exact pattern of results. But they will serve to illustrate 

the principles involved. 

For each testing stage, analysis is separate. For each 

simulated participant, the accuracy for each test stimulus was 

calculated. A final average accuracy for each stimulus was 

then calculated across the 100 simulated participants for that 

particular simulated experiment. This was done for all 100 

simulations. As per Livesey and McLaren (2009), we then 

collapsed across either side of the dimension, around the 

training stimulus to produce the average accuracy for each 

test stimulus as a function of its distance away from the 

training stimulus. Thus, as described above, we have the 

average for test stimuli at positions, T, N, and D; and although 

McLaren and Livesey had 3 positions other than training, we 

reiterate that we are not trying to directly replicate their 

results, but simply to show that the gradients of responding 

can be simulated entirely using an associative network, by 

changing an attentional parameter. Similarly, previous 

research on peak shift and post-discrimination gradients has 

collapsed test stimuli into three position, often labelled as 

Training, Near, and Distant/Far and has successfully reported 

peak shifted gradients (Wills & Mackintosh, 1998, Jones & 

McLaren, 1999). 

Results & Discussion 

As the simulation comprises of, essentially, 10,000 

participants, all differences, however small, are significant. 

However, again we direct the reader to the point above 

concerning the post-discrimination gradients and patterns of 

responding. Figure 4 shows the results of the simulation with 

both values for the constant 𝑣. The value of 0.2 was set during 

the training and the first testing stage, resulting in peak shift, 

and the value of 12 was set during the second testing stage, 

resulting in the monotonic gradient. 

 

 
 

Figure 4: Graph showing the simulation results using the 

model outlined in this paper. All simulated participants were 

trained with the constant 𝑣 = 0.2. The hollow triangles show 

the results for testing using the constant 𝑣 = 0.2, and the 

hollow circles show the results for testing using 𝑣 = 12. Error 

bars indicating standard error would normally be included but 

we have omitted them as they are so small.  

 

What is important here is that when our constant is set to 

0.2 (remembering that all of the simulated participants were 

trained with this constant also), the simulation produces a 

distinctly peak shifted gradient, similar to that produced by 

the ‘Incorrect/No Difference’ participants, in Block one of 

Livesey and McLaren’s (2009) test phase. However, when 

our attentional input parameter is set to 12, during the final 

stage of testing, the simulation produces a monotonic 

gradient, similar to that produced by the participants in Block 

3 of Livesey and McLaren’s test phase. Admittedly, our 

simulation does not produce the linearly increasing function 

that Livesey and McLaren found, but it is not uncommon to 

find only a small numerical, and statistically insignificant, 

increase between extreme stimuli (see Jones & McLaren, 

1999). Moreover, In Livesey and McLaren, we can see how 

participants overall accuracy does not increase when their 
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gradient of responding becomes more monotonic, at least not 

to the same extent as in our simulation. However, this is 

perhaps to be expected as testing can be construed as a period 

of extinction, and our model does not implement this aspect 

of the procedures used.  

Livesey and McLaren (2009) suggested that for 

participants who reported an incorrect rule or did not notice a 

difference between the training stimuli, responding at test 

was initially governed by the associative strength that had 

accrued due to more basic associative processes. There is 

good evidence to suggest that peak shift is the result of these 

processes, and it is commonly modelled using elemental 

representation, as we have done so here (see McLaren & 

Mackintosh, 2002 for a more detailed account, but see also 

Lee, Hayes, & Lovibond, 2018 for an alternative account). 

The authors go on to state that the change in post-

discrimination gradients between the first and final block of 

testing, becoming monotonic, is the result of these 

participants being exposed to the full range of stimuli, which 

vary more greatly in hue, facilitating rule induction as this 

becomes an easily perceivable difference in the stimuli.  

However, whilst it is straightforward to suggest that the 

monotonic gradient is due to propositional, rule-based 

processes, this account does not necessarily answer the 

question of how these processes begin to take over, or, and 

perhaps more importantly, how they control responding.  

As mentioned in the beginning, if participants begin 

hypothesis testing during the testing stage, a period in which 

there is no feedback, then, in the absence of any associatively 

generated expectations, there is no reason that accuracy 

should improve over trials, yet it does. Our suggestion is that 

they are receiving information from something that 

demonstrates to them that one hypothesis, or rule (i.e., that 

blue belongs to category A and green belongs to category B) 

is more likely to yield the correct answer, compared to 

another (i.e., that blue belongs to category B and green 

belongs to category A) and that it is the associative system 

that provides this information. Whilst participants are 

consciously unsure of the particular category with which the 

stimulus they are presented with belongs to, they may begin 

to notice a pattern in their own responding. When they are 

presented with a particular stimulus they tend to want to press 

the key corresponding to category ‘A’. This would prompt 

participants to attempt to understand why they have been 

inclined to press that button and they would focus their 

attention more closely on properties of the stimulus. At the 

same time, the sheer range of variation in the stimuli that they 

are now attending to would lead them to become aware of 

what dimensional variation was occurring. Importantly, this 

happens quickly during testing, because there is a greater 

range of stimuli available and once participants become 

aware of their own responses they are likely to soon be 

presented with stimuli that vary obviously on a dimension. 

This is also in keeping with the results of Livesey and 

McLaren who showed that post-discrimination gradients 

move from peak shifted to monotonic within three blocks of 

testing. Overall, we suggest that it is the associative strength 

accrued by associative processes that serves as the basis for 

the formation of rules and the switch to propositionally-based 

responding. This conclusion fits neatly with existing Dual-

Process accounts (e.g., McLaren et al., 2019). 

Now we turn to the important theoretical underpinnings of 

the transition from associative to cognitive processes we have 

just outlined. How do propositional processes come to 

actually control responding? This is important because, 

whilst a rule allows a participant to describe the differences 

between the stimuli, it doesn’t explain the process of 

classification according to that rule. For example, take the 

rule, ‘blue belongs to category A and green belongs to 

category B’. What denotes blue and what denotes green? 

Granted, this may be obvious for stimuli lying at extremes of 

the dimension, but for those that are not, at what point does 

green become blue? There must be a category boundary at 

which point the participant switches from responding 

"category A" to "category B", yet answers to post-

experimental questionnaires rarely detail any such 

mechanism, leaving a great deal to still be explained.  

If we return to the participant who has begun to notice that 

they are making consistent responses to certain stimuli, and 

who is now attending more closely to the stimuli they are 

being presented with, we can see where the input parameters 

of our network may have an effect. In focusing more closely 

on the stimulus, and in particular on the dimension that they 

deem relevant, participants encode more strongly the 

information about those features in that stimulus, and it is this 

that corresponds to the change in the constant, 𝑣 from 0.2 to 

12, that we have made in the network simulations, causing 

the underlying representational structure to change slightly, 

such that the final Gaussian gradient with which it is 

represented becomes broader. This in turn then also allows 

for generalization to a greater range of stimuli in our 

connectionist network, which results in stimuli at the more 

extreme values of the dimension being responded to more 

accurately. It is the control of that increase in attention to the 

appropriate dimension that is triggered by noticing that there 

is variation on that dimension, and that this variation seems 

to be related to responding on the part of the participant. And 

this, in itself, leads to the new, monotonic pattern of 

responding which has been reported as evidence of rule-

based responding (and which undoubtedly co-varies with 

ability to report the appropriate rule; Jones & McLaren, 1999; 

Livesey & McLaren, 2009).  

There is an even more extreme version of this hypothesis 

which makes the change in attention for the relevant 

dimension automatic rather than controlled in nature. This 

would posit something like the algorithm used in Mackintosh 

(1975, see also Sutherland and Mackintosh, 1971) or 

Kruschke (1992) acting to automatically increase attention to 

the relevant dimension and thus facilitate the transition from 

a peak shift pattern of results to a monotonic one. This type 

of explanation would undoubtedly work when comparing 

participants who did not get the rule during training to those 

who did in the first test block, as long as we argue that ability 

to articulate the rule is now epiphenomenal, and simply 
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enabled by the high level of performance achieved once 

attention to the relevant dimension is high enough. But this 

explanation has difficulty with the changing pattern of results 

across test blocks for the "no rule" participants. In the absence 

of feedback, the algorithms in question would actually tend 

to reduce attention to the relevant dimension if this were to 

be interpreted as an extinction phase, and certainly wouldn't 

act to increase it further. Given this, the transition to a 

monotonic pattern of responding would not be generated, and 

so we would once again have to posit some element of control 

on the part of these participants. Nevertheless, we can see the 

possibility of a mechanism of this kind facilitating learning 

and eventual rule induction. 

It could be argued that the inclusion of equation 2 in our 

model is not necessary, as it simply serves to broaden the 

generalization gradient. We could simulate a similar effect by 

foregoing equation 2 and instead only changing parameter 𝑘 

of equation 1, however we argue against this for several 

reasons. First, this would create similar questions to those we 

have attempted to answer in this article. What causes the 

broadening of this stimulus representation and does this occur 

before or after perceiving the dimensional variation of the 

stimulus? If we suggest that the broadening is the result of 

noticing the dimensional variation, then the question is how 

is this done? How is control implemented to do this? Instead, 

by including equation 2, we can allow the initial activation 

resulting from equation 1 to not change in its characteristics, 

but merely to increase in amplitude, which we believe better 

reflects the focusing of attention toward the dimensional 

features of that stimulus, which in turn broadens the final 

gradient of activation and allows for more encoding of them.  

 

 
 

Figure 5: Graph simulating the participants who induced the 

correct rule either during training (so that they received half 

the training while 𝑣 = 12) or during test using the model 

outlined in this paper.  Hollow circles indicate participants 

who induced the rule during training, hollow triangles 

indicate participants who induced the rule at test. All tests 

were done with 𝑣 = 12 and after 5000 cycles of training.  

 

There are, of course, other ways in which a participant 

might begin to respond monotonically during the testing 

stage, which don’t necessarily rely entirely upon the same 

style of explanation that we have offered here. It may be that 

soon after noticing some dimensional variation, participants 

are presented with a stimulus that lies at the extreme end of 

the dimension. If they assume their response to this is correct, 

then the shift in responding to a monotonic gradient could 

occur through associating these stimuli with the category 

appropriate response. However, such an explanation cannot 

apply to those who reported the correct rule during the 

training stage, as during this stage only two stimuli (that lay 

close to the category boundary) were presented. For these 

participants, who show a monotonic gradient from the outset 

of testing, there must be something that follows from their 

inducing the appropriate rule without experiencing extreme 

values on the dimension. 

Figure 5 shows a comparison of simulations for those who 

induced the rule during training to those who induced it 

during test (essentially everyone else) with their performance 

sampled at the end of the testing period. What we see is an 

advantage in terms of overall performance for those that 

induce the rule earlier. This mirrors the advantage observed 

empirically (see Figure 1, Block 3), which we can expect is 

amplified by those who "get" the rule during training being 

the faster learners anyway. We would be the first to admit that 

the detailed fit to the empirical data is not perfect here, in 

particular, empirically there is less of a difference on the 

training stimuli than we have in the simulation, and indeed, 

performance during test on the training stimuli is rather poor. 

This is something that may well be amenable to a slight 

revision in the overlap of our representations of the training 

stimuli, however, and the fact that the large overall effect can 

be captured is encouraging. 

To summarize, we have developed a connectionist network 

with a novel attentional control mechanism that serves to 

change both the overall levels of input a connectionist 

network would be receiving from stimuli, and also alters the 

underlying representational structure of that input. 

Connectionist networks that represent stimuli elementally 

have no problem simulating peak shift, through representing 

stimuli as a pattern of activation that varies in a Gaussian 

manner. Our attentional mechanism allows for that, but also 

generates the monotonic gradient that is often found in peak 

shift studies in some participants, which is correlated with the 

ability to articulate a rule. Using this model, we have been 

able to simulate a similar pattern of results to those found by 

Livesey and McLaren (2009), who reported that post-

discrimination gradients for participants who were unable to 

induce a rule during training changed from peak shifted, to 

monotonic throughout testing as exposure to the full range of 

test stimuli facilitated rule induction. Although we are not 

suggesting that associative processes are entirely responsible 

for the monotonic gradient, we believe that propositional 

processes may be grounded in their associative counterparts 

and manifest by exerting control over them.  
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