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Abstract 

Using interactive computer-based methods of instruction, this 
research examined the contribution of whole (3D) anatomical 
knowledge to learning sectional anatomy. Participants either 
learned sectional anatomy alone or learned whole anatomy 
prior to learning sectional anatomy. Sectional anatomy was 
explored either with perceptually continuous navigation or 
discretely, as in the use of an anatomical atlas. Learning 
occurred over repeated cycles of study, test, and feedback, 
and continued to a high performance criterion. After learning, 
transfer of knowledge to interpreting biomedical images and 
long-term retention were tested. Whole anatomy was learned 
quickly and transferred well to the learning of sectional 
anatomy: initial accuracy was higher, learning of sectional 
anatomy was completed more rapidly, and there was less 
error over the entire course of learning. Knowledge of whole 
anatomy benefited the long-term retention of sectional 
anatomy at 2-3 weeks. Learners demonstrated high levels of 
transfer to the interpretation of biomedical images. 

Keywords: learning; transfer; computer; anatomy. 

Introduction 

In medicine and many areas of science, anatomy education 

serves as a vital foundation for high level knowledge and 

skill. Unfortunately, anatomy is challenging to learn. Large 

volumes of material must be learned in relatively short 

periods of time. Anatomical structures often have irregular 

and indistinct shapes. They have little variation in color and 

texture, and they are related to each other in complex three-

dimensional arrangements. Moreover, a comprehensive 

education in anatomy extends to include a thorough 

knowledge of sectional anatomy, which is necessary for 

diagnostic imaging, microscopy, and dissection.  

Sectional anatomy is particularly challenging to learn. A 

spatial transformation occurs when a two-dimensional 

section is taken from a three-dimensional object. The two 

and three-dimensional structures may look very different 

from each other. In addition, multiple mappings are possible 

between these representations of anatomy. One-to-many 

mappings occur because anatomy can be sectioned at 

different depths and orientations, resulting in significant 

variation in the presentation of structures across a series of 

sections. Many-to-one mappings occur because differently 

shaped structures can appear similar in a sectional image. 

The challenges in learning sectional anatomy might be 

reduced by facilitating cognitive organization of the mass of 

information in the sections (consider Bower, Clark, Lesgold, 

& Winzenz, 1969). Given that anatomical sections are 

derived from whole anatomy, helping students develop a 

thorough understanding of the shapes and relationships of 

whole structures prior to learning sectional anatomy would 

seem an ideal way to help students organize the information 

in the sections. The benefit of organization for learning and 

memory has been established for verbal materials, but it is 

not clear what effect organization has in domains where 

spatial reasoning is required.  

Knowledge of whole anatomy may also serve as a mental 

model that supports reasoning about sectional anatomy. 

Reasoning has been found to play a large role in the 

successful interpretation of histological sections viewed 

under the microscope (e.g., Pani, Chariker, & Fell, 2005).  

A second approach to helping students organize 

information in sectional anatomy may be in the presentation 

of sectional anatomy itself. Serial presentation of the 

sections would be expected at a minimum, but additional 

support may be found by providing smooth, seamless 

navigation through the sections. Work in anorthoscopic 

perception and kinetic completion suggests that with this 

approach, learners may see the series of sections as a unified 

whole.  On the other hand, continuous presentation of 

sectional anatomy can be considered a form of animation, 

and there has been mixed success in using animation in 

instruction (e.g., Hegarty, 2005; Tversky, Morrison, & 

Betrancourt, 2002).  

In the current study, we explored both approaches to 

organizing sectional anatomy. Half of the participants 

learned whole anatomy before learning sectional anatomy 

(transfer groups), while the other half learned only sectional 

anatomy (sections alone groups). Within each of these 

groups, half of the participants learned sectional anatomy 

using a continuous presentation, and half learned with a 

discrete presentation -- analogous to turning the pages of an 

anatomical atlas.  

Participants learned neuroanatomy in interactive 

computer-based environments. This approach holds 

potential for helping learners build rich mental 

representations of anatomy. For example, a computer-based 

model of 3D anatomy can be rotated to allow exploration of 

anatomy from any angle. It can be virtually dissected, 

restored to its original state, and then dissected again.  

The instructional programs were designed to promote 

efficient learning through a method that we call adaptive 

exploration. With graphical models and exploratory tools 
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available, learning was measured over multiple trials of 

study, test, and feedback until a high performance criterion 

was reached. In testing and feedback, participants learned 

the nature of the test to be mastered and were continually 

updated on progress in learning. This information allowed 

learners to adaptively adjust exploration of anatomy during 

study. Additionally, this approach to learning conforms to 

what appears to be best practices in regard to optimizing 

long-term retention through repeated testing (e.g., Karpicke 

& Roediger, 2008). 

All participants learned 19 neuroanatomical structures 

across three standard views of anatomy: coronal, sagittal, 

and axial. After learning was completed, we measured the 

degree to which participants could transfer anatomical 

knowledge to interpreting biomedical images.  Retention of 

anatomical knowledge was measured 2-3 weeks after 

learning was completed. 

Method 

Participants 

Seventy-two undergraduate students at the University of 

Louisville were recruited for the study through 

advertisements placed around campus. All were at least 18 

years of age. Only those respondents who reported minimal 

knowledge of neuroanatomy were enrolled. Participants 

were paid $8.00 per hour for their participation. 

Each participant was administered the Space Relations 

subtest of the Differential Aptitude Tests, a test of spatial 

ability, prior to beginning the study (DAT-SR; Bennett, 

Seashore, & Wesman, 1989). The mean and the distribution 

of scores were balanced across the four learning groups.  

Materials 

A three-dimensional (3D) computer graphical model of the 

human brain was created for this research (see Figure 1). 

Digital images of neuroanatomical cryosections in the 

Visible Human project (Vers. 2.0) of the National Library of 

Medicine were used as source material for the model (Ratiu, 

Hillen, Glaser, & Jenkins, 2003). The brain model is 

composed of 19 structures, including the cerebral cortex, 

ventricles, cerebellum, brainstem, amygdala, caudate 

nucleus, fornix, globus pallidus, hypothalamus, 

hippocampus, mammillary bodies, nucleus accumbens, 

optic tract, pituitary, putamen, red nucleus, substantia nigra, 

subthalamic nucleus, and thalamus. The structures were 

colored in dark gray (ventricles), medium gray, and white to 

approximate the basic appearance of light and dark 

structures in typical biomedical images of the brain.  

Three relatively dense sets of serial sections were created 

from the brain model. There were 60 coronal sections, 50 

sagittal sections, and 46 axial sections. All sections were 

taken at equal intervals.  
MRI images were used to test transfer of knowledge.  The 

images were made available from the SPL-PNL Brain Atlas 

(Kikinis et al., 1996). The images are typical gray scale T1 

images of structures in the head and neck. The images were 

slightly brightened and contrast enhanced and presented at a 

screen resolution of 895 x 895 pixels. Visible Human 

images also were used to test transfer. These images were 

from the Visible Human 2.0 dataset. The images were high 

resolution color images of structures in the head and neck.  

Computer programs for learning neuroanatomy were 

created using the C++ programming language and the Open 

Inventor library for interactive graphics. There was a 

common format for all of the learning programs. The 

differences between the programs were modifications 

related to the type of anatomy presented and the different 

presentations of sectional anatomy.  

In all of the learning programs, a participant completed 

two learning trials -- one block of trials -- before a single 

run of the program terminated. Participants were presented 

with the same form and view of anatomy (e.g., sectional 

anatomy, coronal view) throughout the two trials in a block.  

Each learning trial was composed of three phases: study, 

test, and feedback. Throughout each phase, tools were 

available that functioned specifically for either whole or 

sectional anatomy. In the study phase, participants had three 

minutes to freely explore the brain. On selecting a structure, 

its name appeared on the screen. In the test phase, the 

Figure 1: Screenshots of the anatomical model and the interface in the study phase of the whole anatomy learning 

program (left) and the sectional anatomy learning program (right).  
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participant’s task was to identify the anatomical structures 

in the model. Testing was self-paced. In the feedback phase, 

the participant saw the same orientation of the brain, and 

used the same tools and procedures, as in the study phase. In 

addition, structures were color coded to provide participants 

with information about their performance on the test.  

In the study and feedback phases for whole anatomy 

learning, a rotation tool allowed participants to smoothly 

rotate the model 360 degrees forward and backward or right 

and left. A zoom tool allowed participants to move the 

model closer or further from view. Buttons were available 

that allowed participants to remove or restore structures.  

In the test phase of a trial, model rotation was constrained 

to a total range of 90 degrees of motion -- 45 degrees in any 

direction from the initial viewpoint. This ensured that a 

participant’s performance on the test was specific to the 

viewpoint being learned in that trial.  

Two programs were created for learning sectional 

anatomy, one for the continuous and one for the discrete 

form of navigation. In the study phase of a trial, both 

programs presented a set of anatomical sections in serial 

order in a single viewing plane. There was a slider at the 

bottom of the screen, and the two learning programs 

differed in the way the slider functioned. In the continuous 

program, moving the slider resulted in continuous 

movement back and forth through the series of sections. A 

section of the brain was always visible, and the transition 

between sections comprised a type of animation. In 

addition, a highlighted structure remained highlighted in 

each section in which it appeared.  

In the discrete presentation program, movement between 

sections was perceptually discontinuous. When participants 

moved the slider, the brain became invisible. The number of 

the corresponding section in the series appeared prominently 

at the bottom of the viewing area. On stopping at a 

numbered section, a 0.75 second delay occurred before the 

appropriate section of the brain appeared. When participants 

moved to a new section, highlighting was removed. 

The test phase of a learning trial was the same in the two 

programs. Participants were given a series of test sections, 

presented one at a time. In each section, one or more 

structures were indicated with a red arrow, and the 

participant’s task was to correctly label those structures. 

Although all 19 structures were tested in each trial, the 

section of a structure that was tested varied across trials. 

During the feedback phase of the trial, participants used 

the slider to find each of the test sections in the series. A 

message reading “Test Section” appeared prominently on 

the screen when a test section was accessed by the slider. 

The tested structures in each test section were identified 

with the same red arrows that appeared in the test. 

Three computer programs were created to test transfer of 

knowledge to the interpretation of biomedical images. In the 

first test, Uncued Recognition, participants were presented 

with a set of 9 images, one at a time, and asked to identify 

all of the structures they thought they recognized in each 

image. Participants identified structures by indicating the 

location of a structure with the mouse (leaving a red dot on 

the image) and then selecting the name of the structure from 

a list on the interface. The images alternated through 

coronal, sagittal, and axial views, in that order. 

The remaining two test programs provided cues to the 

presence of structures in the images. In the Submit Structure 

test, the name of a single structure was presented at the 

bottom of each image, and participants selected the 

appropriate structure in the image. In the Submit Name test, 

a single structure was designated by a red arrow in each 

image, and participants selected its name from a list on the 

interface. Each test was comprised of three subtests, one for 

each view of anatomy. 

A sectional anatomy test and a whole anatomy test were 

created for testing long-term retention. For participants who 

had only seen sectional anatomy, the test of whole anatomy 

was a test of transfer rather than retention. These tests were 

the same as tests given during learning and were created for 

all three views of anatomy. 

Apparatus 

Participants sat individually at computer workstations with 

large high resolution LCD screens (24 inch, 1200 x 1952 

pixels). Participants were tested alone in small quiet rooms 

with the doors closed. 

Design and Procedure 

The core experimental design was a 2 X 2 between-groups 

factorial: anatomy course (transfer vs. sections alone) by 

sectional anatomy presentation (continuous vs. discrete). 

Prior to beginning any of the learning or testing programs 

in the study, participants were trained on all aspects of the 

task using instructional software developed for this purpose.  

During the learning portion of the study, performance in 

identifying 19 neuroanatomical structures was measured 

over multiple blocks of trials. Percent correct was calculated 

for each trial, and mean percent correct was calculated for 

each block of two trials. Participants continued learning 

anatomy until they reached a minimum of 89.5 percent 

accuracy (17 of 19 structures) in each of three consecutive 

learning blocks—all three views of anatomy. Across blocks 

of learning trials and throughout testing, the order in which 

view was presented was standardized at coronal, followed 

by sagittal, and then axial. 

Immediately after learning was completed, participants 

were given the three tests of transfer to biomedical images 

in the order Uncued Recognition, Submit Structure, and 

Submit Name. For each test, participants were tested with 

each image type (MRI and Visible Human) in all three 

views of anatomy. The two image types were 

counterbalanced across participants.  

Two to three weeks after learning was completed, 

participants were given the test of long-term retention for 

sectional anatomy followed by the test of long-term 

retention/transfer for whole anatomy. Tests were given for 

all three views of anatomy.  
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Results 

Learning 

Learning Trajectories Multilevel modeling was used for 

statistical analysis of performance in learning (Raudenbush 

& Bryk, 2002). Binomial models were appropriate for these 

data. Variables tested for inclusion in the multilevel model 

included learning block, anatomy course (AC), sectional 

anatomy presentation (SAP), and spatial ability (DAT-SR). 

Spatial ability was a significant factor in each of the models 

of learning but will not be discussed in this paper. Details of 

model parameters are available from the authors. 

To establish the relative efficiency of learning whole 

anatomy and sectional anatomy, the transfer group’s 

performance in whole anatomy was compared to the 

sections alone group’s performance in sectional anatomy. 

Participants learning whole anatomy had substantially 

higher performance in the first block of trials and learned at 

a faster rate than participants learning sectional anatomy 

(see Figure 2). Mean percent correct identification in block 

one was 54 percent for whole anatomy and 36 percent for 

sectional anatomy, t(69) = 5.780, p < .001. Both groups 

improved in performance over successive blocks, t(68) = 

15.746, p < .001; however, the increase in performance was 

much greater for participants learning whole anatomy: AC, 

t(68) = 7.359, p < .001. 

There were no effects on the efficiency of learning 

sectional anatomy due to the type of sectional anatomy 

presentation in any of the analyses of learning. This variable 

was not retained in the multilevel models and will not be 

discussed further in the presentation of results on learning. 

In a second analysis, transfer of learning from whole to 

sectional anatomy was measured by comparing performance 

in sectional anatomy for the transfer and sections alone 

groups. Participants in the transfer groups performed 

significantly better in the first block of sectional anatomy 

learning than participants in the sections alone groups (see 

Figure 2). Mean percent correct identification was 73 

percent in the transfer groups and 36 percent in the sections 

alone groups, t(69) = 13.522, p < .001. Although both 

groups improved over time, the transfer groups continued 

their learning at a slower rate than the sections alone groups: 

AC, t(70) = -3.321, p  = .002. 

In a third analysis, differences between conditions were 

further explored by comparing performance in sectional 

anatomy for the transfer and sections alone groups after 

relating performance to the total time spent learning 

neuroanatomy. For the transfer groups, learning blocks were 

numbered to reflect the time participants spent learning both 

whole and sectional anatomy. Nearly two thirds of the 

participants in the Transfer groups (21 of 36) completed 

whole anatomy learning in 4 blocks and transferred to 

sectional anatomy in block 5. Therefore, performance in 

sectional anatomy learning was compared beginning at 

block 5. Modeled performance in Block 5 was 71 percent 

for the Transfer groups and 81 percent for the Sections 

alone groups, AC, t(69) = -3.030, p = .004. The 10 percent 

difference is equivalent to 2 of the 19 structures on the test. 

 

Learning Time to Achieve Criterion Performance In 

each learning trial, time was constrained to 3 minutes for 

study and 3 minutes for feedback. Therefore, we considered 

the number of blocks required to reach the performance 

criterion as one measure of learning efficiency. An 

ANCOVA was performed to compare the number of blocks 

of trials required to complete learning for whole and 

Figure 2: A comparison of performance in whole anatomy and sectional anatomy (left) and a comparison of performance 

in sectional anatomy beginning at block 1 (right). 
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sectional anatomy. Spatial ability was correlated with the 

number of blocks required (r = -.236, p = .046) and was 

entered as a covariate, F(1,67) = 7.785, p = .007. 

Participants learned whole anatomy in significantly fewer 

blocks (M = 5.2) than participants learned sectional anatomy 

(M = 10.7), F(1, 67) = 57.555, p < .001. 

A second ANCOVA compared the transfer and the 

sections alone groups on the number of trial blocks required 

to reach criterion in sectional anatomy learning. Again, 

spatial ability was correlated with the number of blocks to 

reach criterion (r = -.298, p = .011) and was included as a 

covariate, F(1,67) = 7.678, p = .007. Participants in the 

transfer groups completed sectional anatomy in 2.5 fewer 

blocks (M = 8.2) than participants in the sections alone 

groups (M = 10.7), F(1, 67) = 7.282, p = .009.  

A third ANCOVA was performed to look for differences 

between the groups in the number of blocks of trials 

necessary to complete all learning in neuroanatomy. Spatial 

ability was correlated with the number of blocks to reach 

criterion (r = -.344, p = .003) and was included as a 

covariate, F(1,67) = 10.129, p = .002. Participants in the 

transfer groups completed whole anatomy and sectional 

anatomy in 2.7 more blocks than participants in the sections 

alone groups completed sectional anatomy (transfer, M = 

13.4; sections alone, M = 10.7), F(1, 67) = 6.021, p = .017. 

 

Total Error in Learning Neuroanatomy Over the entire 

course of learning, participants in the transfer groups made 

fewer errors (M = 77) in learning neuroanatomy than 

participants in the sections alone groups (M = 100), F(1, 67) 

= 3.870, p = .053. This occurred even though the transfer 

groups were required to complete two presentations of 

anatomy and took 2.7 more blocks to do so. Spatial ability 

was a significant covariate in the analysis of total error, F(1, 

67) = 13.995, p < .001. 

 

Testing 

Long-Term Retention and Transfer MANCOVA was 

used to analyze retention of sectional anatomy and 

retention/transfer of whole anatomy. DAT-SR was included 

as a covariate. 

Retention of sectional anatomy remained high two to 

three weeks after learning, with several participants 

reaching 100% accuracy in the first test (see Figure 3). 

There was an interaction of AC with view, Wilks’ Lambda 

(Λ) = .898, F(2, 63) = 3.570, p = .034. The transfer groups 

were more accurate than the sections alone groups for 

retention of the sagittal view of sectional anatomy (transfer 

M = 87.8, sections alone M = 83.1), t(57) = -2.675, p = .03 

(Bonferroni). No differences between the groups occurred 

for retention of the coronal and axial views.  

In the analysis of retention/transfer for whole anatomy, 

participants in the transfer groups were more accurate than 

participants in the sections alone groups in identifying 

whole anatomy, F(1, 64) = 15.306, p < .001. Participants in 

the transfer groups tested at 97% mean accuracy in 

identifying whole brain structures. Although participants in 

the sections alone groups had never seen whole anatomy, 

they reached an overall mean accuracy of 89.5%. This meets 

the numerical criterion used for successful learning. Given 

this high rate of transfer, it is important to consider that 

there was a relatively substantial effort required to achieve 

this performance. All tests in this experiment were self-

paced. In an analysis of test duration, participants in the 

sections alone groups took substantially more time than the 

transfer groups to complete the three tests for whole 

anatomy (M = 14.5 minutes vs. 8.8 minutes, a difference of 

nearly 6 minutes), F(1, 61) = 54.331, p < .001. This 

Figure 4: Transfer to MRI and Visible Human images for 

the discrete and the continuous sectional anatomy 

presentation groups. 

Figure 3: Sectional anatomy retention. 
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suggests that participants who had received sectional 

learning alone were not recalling a representation of whole 

anatomy but were inferring it.  

 

Transfer to Biomedical Images In scoring Uncued 

Recognition and Submit Structure, correct answers were 

decided ahead of time, and images were created with the 

structure boundaries drawn on them. During scoring, the 

experimenters were blind to the participants' identities and 

experimental conditions. MANOVA was used to analyze 

performance on each test.  

Transfer performance was quite high, particularly for the 

two cued tests (Submit Structure and Submit Name; see 

Figure 4). Within each test, performance varied widely 

among individuals, with some participants performing 

extremely well. In Submit Structure and Submit Name, the 

best performing participants were above 90% accuracy. 

There were no differences in transfer due to learning 

group. Performance was higher for Visible Human than for 

MRI images in all three tests: Uncued Recognition, VH M = 

47%, MRI M = 40%, Λ = .440, F(1, 65) = 82.659, p < .001; 

Submit Structure, VH M = 72%, MRI M = 58%, Λ = .704, 

F(1, 64) = 26.913, p < .001; Submit Name, VH M = 80%, 

MRI M = 64%, Λ = .378, F(1, 64) = 105.282, p < .001.  

In two of the three transfer tests, Uncued Recognition and 

Submit Name, there was a main effect of sectional anatomy 

presentation: Uncued Recognition (continuous M = 41.7, 

discrete M = 44.9), F(1, 65) = 3.962, p = .051; Submit Name 

(continuous M = 70.1, discrete M = 73.4), F(1, 64) = 4.835, 

p = .032. Participants who learned with a discrete 

presentation were more accurate in identifying structures 

than participants who learned with a continuous 

presentation. 

Discussion 

Knowledge of whole anatomy served as an effective basis 

for learning sectional anatomy.  Whole anatomy was learned 

quickly—in half of the time of sectional anatomy. 

Knowledge of whole anatomy transferred well to learning 

sectional anatomy. Accuracy in block 1 of sectional 

anatomy was twice as high for the transfer groups, and 

learning of sectional anatomy was completed more quickly. 

There was less error over the entire course of learning for 

participants learning both representations of anatomy. 

Knowledge of whole anatomy benefited long term 

retention of sectional anatomy. Because the participants 

who learned whole anatomy required fewer trials with 

sectional anatomy, this advantage for retention is 

inconsistent with the well-known test effect. In the test 

effect, a greater number of tests of knowledge during 

learning leads to an advantage for long-term retention. 

However, tests administered during learning and at retention 

are identical to each other. For the present research, such a 

test effect would show better long-term retention for the 

sections alone groups.  

On the other hand, the groups that learned both whole and 

sectional anatomy did require more total trials to learn. 

Thus, the improvement in long-term retention is potentially 

due to a type of test effect, one that we have not seen 

described elsewhere. In this case, additional testing of whole 

anatomy is contributing to the long-term retention of 

sectional anatomy, a further instance of transfer of learning.  

The transfer of knowledge to the interpretation of 

biomedical images served as a gold-standard test of the 

present methods of computer-based learning of 

neuroanatomy.  The high levels of transfer obtained, along 

with the high levels of long-term retention, strongly 

encourage the use of these methods in neuroanatomy 

instruction. 
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