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Abstract 

We examined short-term changes in children’s numerical 
estimation, the representational changes that gave rise to 
improved estimates, and the hypothesis that experiences that 
highlight discrepancies between logarithmic and linear 
representations of numerical magnitude result in the greatest 
changes in estimation accuracy. 
Keywords:  Number representation; microgenetic studies; 
cognitive development  

 
Introduction 

Numerical estimation is a pervasive process, both in school and 
in everyday life, but also a process that children find difficult. 
Whether estimating distance (Cohen et al., 1979), number of 
objects (Hecox & Hagen, 1971), answers to arithmetic 
problems (LeFevre, Greenham, & Naheed, 1993), or locations 
of numbers on number lines (Siegler & Opfer, 2003), 5- to 10-
year-olds’ estimation is highly inaccurate. The poor quality of 
children’s performance, and the positive relation between 
estimation proficiency and math achievement (Dowker, 2003; 
Siegler & Booth, 2004), have led educators to assign a high 
priority to improving estimation for many years (e.g., NCTM, 
1980, 2001). Despite this prolonged effort, most children’s 
estimation skills continue to be poor (Siegler & Booth, 2005).  

One likely reason for failures to help children estimate more 
accurately is that little is known about the representations and 
processes that underlie estimation, much less about how they 
develop or what types of experiences produce improvement in 
them. To help address these limitations of current 
understanding, we examine in this study how children’s choice 
of representations contributes to their difficulties with 
estimation. We also propose and test the log discrepancy 
hypothesis, which predicts the relative effectiveness of different 
types of experiences for improving children’s estimates. 

Our account of the development of estimation begins with 
the assumption that 5- to 10-year-olds’ difficulties are due in 
large measure to inappropriate choices of numerical 
representation. Specifically, although children in this age range 
appear to possess multiple representations of numerical 
magnitudes, they often use an early-developing logarithmic 
representation (a representation within which the magnitudes 
denoted by numbers increase logarithmically) in situations 
where accurate estimation requires use of a linear 
representation (a representation within which the magnitudes 
associated with numbers increase linearly). 

This analysis raises the issue of how children come to 
change their representations of numerical magnitude and to use 
linear representations in situations in which they once used 
logarithmic ones. It seems likely that over the course of 
development, children encounter information that does not 
match their logarithmic representation of numerical 
magnitudes. If children already know and use linear 
representations in some numerical contexts, such experiences 
may lead them to extend the linear representation to numerical 
ranges where they previously used logarithmic representations.  

This logic suggests the log discrepancy hypothesis: 
Experiences should promote extensions of linear 
representations to new numerical contexts to the extent that the 
experiences highlight discrepancies between logarithmic and 
linear representations of numerical magnitudes and clarify the 
appropriateness of the linear representation. The discrepancy 
between logarithmic and linear representations of values on a 
0-1,000 number line (with both functions constrained to pass 
through 0 and 1000) is illustrated in Figure 1.  

 
 

Figure 1: Discrepancy between a logarithmic and linear 
representation of numeric values on a 0-1,000 number line is 
greatest at 150; the discrepancies for 5 and 725 are equal to 

each other and about half as great as that at 150. 
 

1684



If this hypothesis is correct, and improvements in estimation 
stem from a switch in representations, then changes in patterns 
of estimates may occur abruptly rather than gradually, and 
across a broad range of numerical values rather than being local 
to the numerical range on which feedback is given.  

The present study was designed to test the log discrepancy 
hypothesis regarding how children acquire more advanced 
representations of numerical magnitudes. The experimental 
design did this by examining changes in children’s number line 
estimates in response to feedback on numbers around 150, 5, or 
725, or in response to answering the same problems without 
feedback. These experimental conditions allowed tests of the 
predictions that feedback on numbers around 150 would elicit 
the largest and quickest change (because it is the area of 
maximum discrepancy between logarithmic and linear 
representations), that the change would involve a broad range 
of numbers and would occur abruptly rather than gradually 
(because the change involved a choice of a different 
representation, rather than a local repair to the original 
representation), and that regardless of the feedback condition, 
the greatest change would occur on the numbers where 
logarithmic and linear functions differed by the greatest 
amount, rather than on the numbers around which children 
received feedback (again because change was hypothesized to 
involve substituting linear representations for logarithmic 
ones).  

The design of the current study also allowed us to learn 
about five key dimensions of cognitive change: the source, rate, 
path, breadth, and variability of change. These dimensions have 
proved useful in describing cognitive change in a number of 
previous contexts (Siegler, 1996). To test the effects of 
different sources of change, we compared the amount of 
improvement elicited by the four experimental groups. To 
examine the rate of change, we measured how many feedback 
problems children required in each condition before they 
adopted a linear representation. To learn about the path of 
change, we tested whether children showed an abrupt shift 
from a logarithmic pattern to a linear pattern of estimates or 
whether they progressed from a clear logarithmic pattern to a 
pattern intermediate between the two functions to a clear linear 
pattern. To investigate the breadth of change, we tested 
whether amount of change in children’s estimates for particular 
numbers was best predicted by proximity of those numbers to 
the feedback set or whether the greatest change occurred on the 
numbers where the discrepancy between the logarithmic and 
linear representations was greatest, regardless of the feedback 
set that children received. Finally, to enhance understanding of 
the variability of change, we tested the prediction that children 
whose pretest estimates adhered most closely to a logarithmic 
function would learn more than other children and would 
adhere more closely to the linear function on the posttest.  
 

Method 
Participants  
Participants included 61 second graders (mean age = 8.2, SD = 
0.6) whose estimates in a screening task indicated a better 

fitting logarithmic than linear function. A female research 
assistant served as experimenter. 
 
Task  
Each problem consisted of a 25 cm line, with the left end 
labeled “0,” the right end labeled “1,000,”and the number to be 
estimated appearing 2 cm above the center of the line. The 
numbers presented were 2, 5, 11, 18, 27, 34, 42, 56, 67, 78, 89, 
100, 111, 122, 133, 147, 150, 156, 163, 172, 179, 187, 246, 
306, 366, 426, 486, 546, 606, 666, 722, 725, 731, 738, 747, 
754, 762, 818, 878, and 938. These numbers included 7 that 
were between 3 below and 37 above the focal number for each 
feedback condition (5, 150, and 725); the purpose was to 
include enough values for the seven feedback problems that 
children received in each feedback condition. 

 
Design and Procedure 
Children were randomly assigned to four experimental 
conditions: 150-feedback, 5-feedback, 725-feedback, or no-
feedback. Children in all four groups completed the number-
line estimation task for three trial blocks and a posttest. For 
children in the three feedback groups, each trial block included 
a feedback phase and a test phase. The feedback phase included 
one or three items on which children received feedback; the test 
phase included 10 items on which children did not receive 
feedback. Children in the no-feedback group received the same 
number of estimation trials but always with no feedback. On 
the posttest, children in all four groups were presented the same 
22 problems without feedback as in screening. The children’s 
estimates in screening provided pretest data, which was used as 
a point of comparison for their subsequent performance. 

The only way in which the treatment of children in the three 
feedback groups differed was in the numbers whose positions 
they were asked to estimate during the feedback phases. 
Participants in the 150-feedback group were asked to mark the 
position of 150 on the first trial block, to mark the positions of 
3 numbers from 147–187 on the second trial block, and to mark 
the positions of a different 3 numbers from 147–187 on the 
third trial block. Participants in the 5-feedback group were 
asked to mark the position of 5 on the first trial block, of 3 
numbers from 2 – 42 on the second trial block, and of a 
different 3 numbers from 2 – 42 on the third trial block. 
Participants in the 725-feedback group were asked to mark the 
position of 725 on the first trial block, of 3 numbers from 722–
762 on the second trial block, and of a different 3 numbers 
from 722-762 on the third trial block.  One-third of the children 
in the no-feedback group were presented the same problems as 
the children in the 150-feedback group, one-third were 
presented the same problems as the children in the 5-feedback 
group, and one-third were presented the same problems as the 
children in the 725-feedback group. 

The feedback procedure was as follows.  On the first 
feedback problem, children were told, “After you mark where 
you think the number goes, I’ll show you where it really goes, 
so you can see how close you were.” After the child answered, 
the experimenter took the page from the child and 
superimposed on the number line a 25 cm ruler (hidden from 
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the child) that indicated the location of every 10th number from 
0-1,000. Then the experimenter wrote the number 
corresponding to the child’s mark (Nestimate) above the mark, 
and indicated the correct location of the number that had been 
presented (N) with a hatch mark. After this, the experimenter 
showed the corrected number line to the child. Pointing to the 
child’s mark, she said, “You told me that N would go here. 
Actually, this is where N goes (pointing). The line that you 
marked is where Nestimate actually goes.”  When children’s 
answers deviated from the correct answer by no more than 
10%, the experimenter said, “You can see these two lines are 
really quite close.  How did you know to put it there?”  When 
children’s answers deviated from the correct answer by more 
than 10%, the experimenter said, “That’s quite a bit too 
high/too low. You can see these two lines [the child’s and 
experimenter’s hatch marks] are really quite far from each 
other. Why do you think that this is too high/low for N?” 

 
Results and Discussion 

Source of change 
We first examined the source of change, the experiences that 
set the change in motion. To determine whether the particular 
experience that children received during the feedback phase 
influenced the degree to which their estimates came to follow a 
linear function, we compared pretest and posttest performance 
for the four experimental conditions. In particular, we 
performed regression analyses on the fit between the children’s 
median estimates for each number and the best fitting 
logarithmic and linear functions on the pretest and on the 
posttest.  

As shown in Figure 2, on the pretest, all four groups of 
second graders’ median estimates for each number were better 
fit by the logarithmic function than by the linear one. The 
precision of the fit of the logarithmic function, and the degree 
of superiority to the linear function, was similar across the four 
conditions (5-feedback: log R2 = .95, lin R2 = .71, t [21] = 2.71, 
p < .05; 150-feedback: log R2 = .95, lin R2 = .72, t [21] = 2.46, 
p < .05; 725-feedback: log R2 = .93, lin R2 = .68, t [21] = 2.54, 
p < .05; no-feedback: log R2 = .94, lin R2 = .64, t [21] = 2.39, p 
< .05).  

In contrast, the four groups differed considerably in their 
posttest estimation patterns. Children in the no-feedback group 
continued to generate estimates that fit the logarithmic function 
better than the linear one (log R2 = .90, lin R2= .61, t [21] = 
2.78, p < .05). Children in the 5- and 725-feedback groups 
generated posttest estimates for which the fit of the linear 
function was somewhat, but not significantly, greater than that 
of the logarithmic function (5-feedback: lin R2= .92, log R2 = 
.80, t [21] = 1.87, ns; 725-feedback: lin R2= .91, log R2 = .84, t 
[21] = 1.18, ns). Finally, children in the 150-feedback group 
generated estimates that fit the linear function significantly and 
substantially better than the logarithmic one (lin R2= .95, log R2 
= .74, t [21] = 2.40, p < .05). This pattern of changes was 
consistent with the prediction of the log discrepancy 
hypothesis; the largest change came in response to feedback on 
problems where the logarithmic and linear functions were most 
discrepant.  

 

Figure 2: Best fitting functions for pretest (light colored) and 
posttest (dark colored) median estimates. 

 
 
A comparison of pretest-posttest improvements in percent 

absolute error also revealed differences in improvements 
among the four conditions, F(3, 87) = 2.82, p< . 05. On this 
measure, performance of children in all three feedback 
conditions improved more than performance of children in the 
no-feedback control, with no significant differences among the 
feedback groups. 

 
Rate of change   
To examine the rate of change under the four experimental 
conditions, we compared pretest estimates to estimates given 
during the no-feedback portion of each trial block during 
training. We assigned a 1 to the trial blocks of each child that 
were best fit by the linear function and a 0 to the trial blocks 
that were best fit by the logarithmic function. The key 
prediction was that training group and trial block would 
interact, with the interaction due to children learning fastest in 
the 150-feedback group and slowest in the no-feedback group. 

A 4 (training group:  5-feedback, 150-feedback, 725-
feedback, or no-feedback) X 4 (trial block: pretest, 1, 2, 3) 
repeated-measures ANOVA indicated effects for training 
group, F (3, 57) = 13.50, p < .001, for trial block, F (3, 171) = 
26.36, p < .001, and for the interaction between the two 
variables, F (9, 171) = 3.83, p < .001. The linear function more 
frequently fit the estimates of children in the 150-feedback 
group (60% of trial blocks) than the estimates of children in the 
no-feedback group (3% of trial blocks, p < .001), 5-feedback 
group (29% of trial blocks, p < .001) or 725-feedback group 
(37% of trial blocks, p < .05). The linear function was also the 
better fitting equation more often for the 5- and 725-feedback 
groups than for the no-feedback group (p’s < .01). The effect of 
trial block was due to the linear function providing the better fit 
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more often on trial blocks 1, 2, and 3 (38%, 39%, and 48%, 
respectively) than on the pretest (0%, p’s < .001).   

 The interaction between training group and trial block 
(Figure 3) reflected different rates of learning in the four 
groups. On the pretest, there were no differences among groups 
in the percentage of children for whom the linear function 
provided the better fit (it was 0% in all cases). On trial block 1, 
the linear function fit more children’s estimates in the 150-
feedback group than in the no-feedback group (p < .001), 5-
feedback group (p < .005), or 725-feedback group (all p’s < 
.05). What this meant was that the superiority of the 150-
condition for promoting learning manifested itself after 
feedback on a single estimate. Feedback on this one trial 
increased the percentage of children for whom the linear 
function provided the better fit from 0% on the pretest to 85% 
on the test phase of trial block 1. The linear model also fit more 
children’s estimates in the test phase of trial block 1 among 
children in the 5- and 725-feedback groups than among 
children in the no-feedback group (33% and 40% versus 0%, 
p’s < .05).  

 

 
Figure 3: Trial block-to-trial block changes in percentage of 

children in each condition whose estimates were best fit by the 
linear function. 

 
On trial block 2, children in the 150-feedback group 

continued to generate linear patterns of estimates more 
frequently than children in the 5-feedback and no-feedback 
groups (77% versus 28% and 7%, p’s < .01). The percentage of 
children in the 725-feedback group who generated linear 
estimation patterns also was higher than the percentage who 
did in the no-feedback group (53% versus 7%, p < .01).  

By trial block 3, the differences diminished among the three 
groups that received feedback. The percentage of children 
whose estimates were better fit by the linear function did not 
differ among the 150-feedback group (77%), 725-feedback 

group (53%), and 5-feedback group (56%), though all three 
percentages were higher than that in the no-feedback group 
(7%, all p’s < .005). 

Another way of testing whether children in the four 
experimental conditions differed in how quickly they adopted 
the linear representation was to compare the number of trial 
blocks before the linear function first provided the better fit to 
each child’s estimates. For this analysis, we excluded children 
whose estimates were never better fit by the linear function and 
children in the no-feedback condition, where only one child 
ever met that criterion on even a single trial block. The fastest 
learners, children whose estimates were better fit by the linear 
model on trial block 1, were assigned a score of 1; the slowest 
learners, children whose estimates were better fit by the linear 
model for the first time on the posttest, were assigned a score of 
4. An ANOVA indicated a trend toward differences among the 
three feedback groups in the rate of learning, F (2, 37) = 2.51, p 
< .10. The first trial block on which the linear function 
provided a better fit occurred earlier in the 150-feedback group 
than in the 5-feedback group ( (M = 1.23 trial blocks versus 
2.07, t (25) = 2.37, p < .05). The first trial block on which the 
estimates of children in the 725-feedback group were better fit 
by the linear function (M = 1.72) did not differ from that in 
either of the other two feedback groups.   

Once a child’s estimates were better fit by the linear function 
on one trial block, the child’s estimates generally continued to 
be better fit by it on subsequent blocks. This was true in all 
three feedback conditions: 73% of trial blocks for children in 
the 5-feedback condition, 82% of blocks for children in the 
150-feedback condition, and 91% of blocks for children in the 
725-feedback condition. Thus, once children adopted the linear 
representation, they generally continued to use it, regardless of 
the feedback problems that led to its adoption. 

 
Breadth of change.   
To examine the breadth of change in children’s estimates, 
we first examined the percentage of the 22 items on which 
children in the four groups showed pretest-posttest 
improvements. Children in the no-feedback condition 
generated more accurate posttest estimates on only 36% of 
items (8 of 22.) In contrast, the estimation accuracy of 
children in the three feedback groups improved on an 
average of 70% of items, with similar percentages (64%-
77%) in the three groups. Thus, feedback produced 
improvement on a broader range of items than simply 
performing the estimation task. 

The next goal was to identify the range of numbers on which 
the greatest improvement in estimation accuracy occurred. In 
particular, we wanted to examine whether improvements in 
accuracy followed a standard generalization gradient, in which 
learning decreases with distance from feedback items, or 
whether the discrepancy between logarithmic and linear 
representations for each number was the key determinant of 
improvement, regardless of the particular feedback problems.  

We first tested the generalization gradient hypothesis. To do 
this, we regressed pretest-posttest change in absolute error for 
each number against the distance between that number and the 
focal number for each feedback group (5, 150, or 725). Results 
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of this analysis presented a puzzling pattern. Results for two of 
the three feedback conditions were consistent with the 
generalization gradient hypothesis. Percent variance in pretest-
posttest improvement accounted for by distance between the 
feedback and test items was R2 = .72 in the 5-feedback group 
(F(1,21) = 50.52, p < .001), and R2 = .82 in the 150-feedback 
group (F(1,21) = 91.79, p < .001). However, the relation in the 
725-feedback condition was not only much weaker (R2 = .33, 
F(1, 21) = 9.87, p < .01) -- it was actually in the opposite 
direction of that predicted by the generalization gradient 
hypothesis. That is, in the 725-feedback group, the 
improvement following feedback was greater for test items that 
were further from the feedback items.  

Fortunately, there was a straightforward explanation for this 
seemingly odd pattern: Improvement in estimation was not a 
function of distance from the feedback problems but rather of 
the discrepancy between the logarithmic and linear 
representations. In all three feedback conditions, the largest 
improvements occurred for numbers where the discrepancies 
between the logarithmic and linear representations were 
greatest (numbers around 150), regardless of how far those 
numbers were from the numbers on which children received 
feedback. This pattern emerged most dramatically in 
comparisons between amount of pretest-posttest improvement 
on the exact items on which children received feedback and 
amount of pretest-posttest improvement on the numbers around 
150. In the 5-feedback group, pretest-posttest improvements for 
the numbers on which children had received feedback and that 
were also on the pretest and posttest (2, 5, and 18) were quite 
modest (4%, 9%, and 18% of the possible improvement, 
respectively). The improvements for the numbers around 150 
(147, 150, and 163) were noticeably larger (36%, 31%, and 
25% of the possible improvement), despite these numbers 
being further away from the numbers on which feedback had 
been given. A similar pattern was evident for the 725-feedback 
group, where improvements for the three values near 150 
(16%, 13%, and 17% of the possible improvement) were 
among the greatest in the group, whereas accuracy on the 
numbers on which feedback had been given actually showed 
small decreases (-4%, -1%, and -4%). No comparable 
comparison for the 150-feedback condition was possible, 
because in it, the generalization gradient and log discrepancy 
hypotheses led to identical predictions that numbers around 150 
should show especially large improvements (which they did, 
21%, 30%, and 25% of the possible improvement.) 

To examine the breadth of change in a way that would 
include all 22 numbers on the pretest and posttest and would 
also allow tests for all three feedback conditions, we regressed 
pretest-to-posttest change in accuracy against the discrepancy 
between logarithmic and linear representations for the to-be-
estimated number. To compute the discrepancies between the 
linear and logarithmic functions, we used the formula y=x for 
the linear function and y = 144.761(ln(x), the same equations 
used in Siegler and Opfer (2003). These equations were chosen 
so that both functions would pass through 1 and 1,000.  

The discrepancy between the logarithmic and linear 
functions provided an excellent fit to the improvement in all 
three feedback conditions, and the effect was in the predicted 

direction in all conditions: in the 5-feedback group, R2 = .76, F 
(1, 21) = 64.37, p < .001; in the 725-feedback group, R2 = .62, 
F (1, 21) = 32.67, p < .001; and in the 150-feedback group, R2 
= .73, F (1, 21) = 52.69, p < .001. The findings were not 
attributable to regression to the mean being greatest at the 
points where the pretest estimates were most discrepant; the 
parallel analysis for children in the no-feedback group did not 
show any relation between log-linear discrepancy and pretest-
posttest improvement, R2 = .12, F (1, 21) = 2.84, ns. 

To appreciate just how powerful this relationship was, 
consider the subset of 9 numbers on which the discrepancy 
between the logarithmic and linear functions was above 500. 
These 9 numbers, which ranged from 56 to 246, were the items 
on which the log discrepancy hypothesis predicted the greatest 
improvement regardless of experimental condition. In both the 
5-feedback condition and the 725-feedback condition, all 9 
numbers were among the 11 on which children showed the 
greatest improvement; in the 150-feedback condition, the 9 
numbers were exactly the 9 numbers on which improvement 
was greatest. Again, this was not attributable to regression to 
the mean. In the no-feedback condition, only 3 of the 11 
numbers on which change was most positive (or least negative) 
were in this range. Particularly striking, children who received 
feedback on numbers from 722-762, like the other children, 
showed the greatest improvement on numbers from 56 to 246. 

These results suggested two conclusions regarding the 
breadth of change. First, the change was more than a local 
repair to children’s estimation procedures; improvements in 
posttest accuracy were not limited to, or even greatest at, the 
areas of the number line on which children received feedback. 
Second, the change seemed to entail substitution of a linear 
representation for a logarithmic one, as indicated by the 
improvements in estimates being greatest for numbers where 
the two representations differed by the greatest amount. 
Analyses of children’s path of change lent additional support to 
these conclusions, as described in the next section. 

 
Path of change.   
Children could have moved from a logarithmic to a linear 
representation via several paths. To examine which path(s) 
they actually took, we examined trial-block-to-trial-block 
changes in individual children’s estimates. In particular, we 
identified the first trial block on which the linear function 
provided a better fit than did the logarithmic function to a 
given child’s estimates on the 10 no-feedback test items, 
and we labeled it “trial block 0.” The trial block 
immediately before each child’s trial block 0 was that 
child’s trial block –1”, the trial block before that was the 
child’s “trial block -2” and so on.  

These assessments of the trial block on which children’s 
estimates first fit the linear function made possible a backward-
trials analysis that allowed us to test alternative hypotheses 
about the path of change from a logarithmic to a linear 
representation. One hypothesis was that the path of change 
entailed gradual, incremental improvements in the linearity of 
estimates. According to this hypothesis, the fit of the linear 
model would have gradually increased, and the fit of 
logarithmic model would have gradually decreased, from Trial 
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Block -3 to Trial Block +3. In this scenario, Trial Block 0 — 
the first trial block in which the linear model provided the 
better fit — would mark an arbitrary point along a continuum 
of gradual improvement, rather than a point at which children 
switched from one representation to another.  

A second hypothesis was that the path of change involved 
initial reliance on a logarithmic representation, followed by a 
period of disequilibrium or confusion, followed by reliance on 
a linear representation. According to this Piagetian-inspired 
hypothesis, the fit of the logarithmic model would have been 
very good initially (e.g., in Trial Blocks -3 and -2). However, 
feedback would then have confused the child and led to a poor 
fit of both linear and logarithmic models immediately before 
the change (i.e., in Trial Block -1). Then the child would 
resolve the conflict by adopting the linear representation (on 
Trial Block 0 and thereafter).  

A third hypothesis was that the path of change involved a 
discontinuous switch from a logarithmic to a linear 
representation, with no intermediate state. This would have 
entailed no change in the fit of the linear model from Trial 
Block –3 to –1, a large change from Trial Block -1 to Trial 
Block 0, and no further change after Trial Block 0. 

This third hypothesis fit the data. From Trial Block -3 to -1, 
there was no change in the fit to children’s estimates of either 
the linear function or the logarithmic function (F’s< 1). There 
also was no change from Trial Block 0 to Trial Block 3 in the 
fit to children’s data of either the linear or the logarithmic 
function (F’s< 1). However, from Trial Block –1 to Trial 
Block 0, there was a large increase in the fit of the linear 
function to individual children’s estimates, from an average R2 
= .57 to an average R2 = .80, F (1, 75) = 25.67, p < .001. 
Complementarily, there was a decrease from Trial Block –1 to 
Trial Block 0 in the fit of the logarithmic function to children’s 
estimates, from an average R2 = .74 to an average R2 = .64, F 
(1, 75) = 4.95, p < .05. Thus, rather than Trial Block 0 
reflecting an arbitrary point along a continuous path of 
improvement, or reflecting the end of a period of 
disequilibrium, it seemed to mark the point at which children 
switched from a logarithmic representation to a linear one. 

 
Variability of change 
The log discrepancy hypothesis suggested that children 
whose initial representations were consistently logarithmic 
might respond to feedback by adopting representations that 
were more consistently linear than would children whose 
initial representations were less consistently logarithmic. 
The reason is that the difference between the children’s 
estimates and the feedback they received would be more 
dramatic, and thus more likely to motivate a shift to the 
alternative (linear) representation, among children whose 
initial estimates were most strongly logarithmic.  

To test this hypothesis, we correlated percent variance 
accounted for by the logarithmic function on the pretest with 
percent variance accounted for by the linear function on the 
posttest. As hypothesized, the fit of the logarithmic model to 
each child’s pretest estimates predicted the fit of the linear 
model to the child’s posttest estimates (r= .36, F (1, 45) = 6.75, 
p < .05). The better the logarithmic model fit the children’s 

pretest estimates, the better the linear model fit their posttest 
estimates. This correlation was chiefly evident among children 
whose posttest estimates were better fit by the linear function (r 
= .42, F [1, 29] = 6.02, p < .05); it was not found among 
children whose posttest estimates were not better fit by the 
linear function (r = .08, ns). In contrast, the fit of the linear 
function to children’s pretest estimates did not predict the fit of 
the linear function to their posttest estimates among either 
children who adopted the linear model (r = .19, ns) or those 
who did not (r = .32, ns). Thus, the log discrepancy hypothesis 
yielded counterintuitive but accurate predictions regarding 
individual differences in learning, as well as the types of 
feedback that would trigger the largest changes and the types of 
numbers on which improvements in estimation would be 
greatest. 
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