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Abstract 

Previous research has shown that the mental models partici-

pants use throughout a task influence the efficiency with 

which they learn and adapt to changes in their environment 

(Lee & Johnson-Laird, 2013; Stöttinger et al, 2014). We 

wanted to measure the influence of different types of mental 

models participants hold before engaging in a task. Using a 

modified version of the game “Plinko”, participants predict-

ed the likelihood that a ball falling through pegs would land 

in one of forty slots. Importantly, participants were asked to 

make likelihood estimations before seeing the first ball 

drop. This initial probability estimate was used to categorize 

participants into different groups based on distinct a priori 

models. Results indicated that participants came into this 

task with a number of distinct initial models, and that the 

type of model influenced their ability to accurately represent 

different distributions of ball drops in Plinko. 

 

Introduction 
Humans are proficient at detecting regularities in 

their environment (Turk-Browne et al., 2005; 

Griffiths & Tenenbaum, 2006). This ability al-

lows us to compress large volumes of sensory in-

formation and build mental models to represent 

the events we perceive (Tenebaum et al., 2011). 

When these models fail to explain certain obser-

vations, they must be updated to reflect new envi-

ronmental contingencies (Danckert et al., 2012: 

Filipowicz et al., 2013). The ability to build and 

update models depends in part on the expectations 

we have when interpreting sensory information 

(Lee & Johnson-Laird, 2013; Stöttinger et al., 

2014). The aim of the present study was to ex-

plore the role of prior expectations on model 

building and updating. 

    A large body of research has demonstrated the 

efficiency with which humans detect regularities 

in their environment (Turk-Browne et al., 2005). 

These processes can occur automatically (Turk-

Browne et al., 2005; Nissen & Bullemer, 1987) 

and manifest themselves at an early age (Saffran 

et al., 1996). Yet despite this seemingly optimal 

proficiency, studies have found consistent subop-

timal behavior on certain statistical learning tasks. 

One classic example is a phenomenon known as 

probability matching: when asked to predict the 

result of a stochastic event with a specific rate of 

bias, rather than choose the biased event 100% of 

the time, participants tend to predict the biased 

event at the same rate as its underlying probability 

(e.g., if a biased coin comes up heads 70% of the 

time, participants will choose heads as the likely 

next outcome on 70% of their guesses rather than 

following the optimal prediction strategy of 

choosing heads 100% of the time; Vulkan, 2000). 

How do we reconcile findings that show optimali-

ty in some forms of learning, yet suboptimal be-

havior in others? 

    Mental model theory attempts to explain this 

discrepancy by implicating prior knowledge in 

our ability to learn from our environment. One of 

the primary tenets of this theory describes mental 

models as being formed by an interaction between 

our direct perception of events and the knowledge 

we have accumulated over our lifetime (Johnson-

Laird, 2004). This theory suggests that our a pri-

ori expectations related to specific events influ-

ence our current predictions. Indeed, Green and 

colleagues (2010) found that probability matching 

behaviour depended on a participant’s belief re-

garding the underlying process responsible for 

generating the events. Participants who believed 

they had control over the task parameters were 

much more likely to maximize their selection of 

the optimal choice than those that revealed uncer-
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tainty about the task’s underlying generative pro-

cess (Green et al., 2010). This suggests that our 

ability to build and update models depends not 

only on the current sensory information we are 

attempting to interpret, but also on the beliefs and 

expectations we use to interpret the information. 

In support of this notion, studies have found that 

model building and updating are facilitated when 

the expectations relating to a task closely match 

the task’s underlying structure (Lee & Johnson-

Laird, 2013; Stöttinger et al., 2014). 

    Most research exploring our ability to exploit 

event regularities does not take into account a par-

ticipant’s prior belief insofar as they are not 

measured prior to commencing the task of inter-

est.  Clearly, it is challenging to first objectively 

establish what prior beliefs a participant has be-

fore they begin a task in which we have external 

control of the contingencies. Here we present a 

novel task that provides a measure of a partici-

pant’s a priori expectations coming into the task, 

before they have seen or responded to any actual 

stimulus events. This allows us to then measure 

the influence of these a priori models on a partici-

pant’s ability to learn and adapt to task probabili-

ties. Using a computerized version of the game 

“Plinko”, we had participants make estimations of 

the probability that a ball would land in a series of 

slots before starting the task. We used these initial 

estimates to categorize different participant mod-

els and measured the efficiency with which par-

ticipants managed to learn a distribution of 

events. 

 

Methods 
Participants 

40 undergraduates from the University of Water-

loo participated in our study (27 female, mean age 

= 19.5 years, SD = 1.6 years). The study protocol 

was approved by the University of Waterloo’s 

Office of Research Ethics and each participant 

gave informed consent before participating in the 

study. 

 

Task environment and instructions 

Participants were exposed to a computerized ver-

sion of the game “Plinko” (a game featured on the 

American game show The Price is Right). The 

entire task environment was programmed in Py-

thon using the PsychoPy library (Peirce, 2009). In 

our game, a red ball would fall through a pyramid 

of pegs and land in one of 40 possible slots locat-

ed side by side below the pegs. The pyramid con-

sisted of 29 rows of black pegs that increased in 

number from the top to the bottom of the pyramid 

(i.e., the top row contained 1 peg and the bottom 

row contained 29 pegs). A rectangle was located 

below the 40 slots spanning their width. Partici-

pants were instructed to make their responses in 

this space (Fig. 1).  

 
Figure 1. Example of a single trial. 

    Participants were instructed that a ball would 

fall through a series of pegs and that their goal 

was to accurately predict the likelihood that a ball 

would fall in any of the 40 slots on future trials. 

Participants adjusted bars under each slot in the 

space below the pyramid to represent their likeli-

hood estimations. Bars were drawn using the 

computer mouse: the height of the bars could be 

adjusted by holding down the left mouse button 

and changing the position of the cursor. The 

height of the bar would match the position of the 

cursor within the limits of the rectangle below the 

slots. Participants could also erase a single bar by 

right clicking with the cursor on the bar they 

wished to delete, or by clicking the backspace key 

to delete all bars on the screen. The bars were not 

assigned any value; participants were simply told 

that taller bars represented a higher probability 

that a ball would fall in a slot, shorter bars a lower 

probability, and no bars represented zero proba-

bility. Participants were informed that they had 

the option of adjusting their bars at the start of 

every trial and that they had to have bars on 

screen before proceeding with the trial. Crucially, 

this instruction was applied at the start of the task 

– that is, participants had to indicate their likeli-
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hood estimates before seeing the first ball drop. 

Once participants had indicated their likelihood 

estimates, they pressed the spacebar to proceed 

with the trial (Fig. 1).  

 

Ball distributions 

Participants were exposed to one of two distribu-

tions of ball drops. Both distributions were gener-

ated by randomly sampling 100 integers from 

Gaussian distributions with a mean of 17, but dif-

ferent standard deviations (6.0 and 1.9 respective-

ly). The resulting sequences of 100 integers de-

termined the slot in which the ball fell on each 

trial, with slot 1 representing the slot farthest to 

the left of the screen and slot 40 representing the 

slot farthest to the right. 20 participants were ex-

posed to the distribution with a wider variance, 

while 20 participants were exposed to the distri-

bution with a narrow variance. Participants in 

each of the two conditions were exposed to the 

same respective sequences of ball drops. 

 

Results 
Accuracy measurements 

In order to measure participant estimates, partici-

pant bars were normalized on every trial. The 

height of each bar could have one of 100 equal 

height increments (a height of 1 being the shortest 

bar possible and 100 being the tallest bar possi-

ble). Each bar was normalized by taking its height 

and dividing it by the summed height of all drawn 

bars for that trial. This normalization provided a 

probability distribution of a participant’s slot es-

timates on every trial. An accuracy score was 

generated for each participant on each trial by 

comparing the overlap between the participant’s 

distribution of estimates and the computer’s dis-

tribution of ball drops. Accuracy scores could 

range between 0 and 1, with 1 indicating perfect 

overlap between participant and computer distri-

butions. 

 

Participant initial distributions 

We began by categorizing participants based on 

the shape of their initial probability distributions 

prior to seeing a single ball drop. We did this by 

plotting slot estimates on the first trial for each 

individual participant, and categorizing them 

based on similarity in shape (Fig. 2). Initially we 

expected two primary types of distributions. 

Those potentially familiar with Sir Francis Gal-

ton’s work may know that the expected distribu-

tion of ball drops in a Plinko game should approx-

imate a normal distribution, with its mean cen-

tered on the ball’s initial starting position (Galton, 

1889). Those unfamiliar with the task may choose 

to take an approach of extreme uncertainty, and 

report a uniform distribution, similar to uniform 

priors used in Bayesian learning algorithms (e.g., 

Nassar et al., 2010). Of the 40 participants who 

completed the task, 7 participants reported a 

Gaussian-like shape as their first distribution, and 

5 reported uniform distributions. Of the remaining 

28 participants, 12 participants reported a bimodal 

distribution, 2 participants reported negatively 

skewed distributions, and 14 participants reported 

what we termed as “jagged” distributions, where 

participants only drew a few interspersed bars on 

the screen (in some cases only one bar; Fig.2). 

 
Figure 2. Participant estimates on the first trial. Partici-

pants were grouped into categories based on the shape of 

their initial distribution.  
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Measuring participant performance 

In order to measure how well groups managed to 

learn each of the distributions, we fit a standard 

exponential learning curve to the changes in accu-

racy for each group (e.g., Estes, 1950; Heathcote, 

Brown, & Mewhort, 2000; Ritter & Schooler, 

2001): 

                  
    

 

were n denotes the trial number, an a participant’s 

estimated accuracy on trial n, a0 initial accuracy, 

a∞ asymptotic accuracy, and α a constant rate co-

efficient to capture how quickly participants reach 

their asymptote from their initial accuracy. We fit 

this function to each participant’s accuracy scores 

using a nonlinear least squares function in the R 

statistical package (nls function; R Core Team, 

2014). Given that participant accuracy could only 

range between 0 and 1, we set the upper and low-

er limits for both the asymptote and initial accura-

cy to 1 and 0 respectively. Each fit provided ini-

tial, asymptotic, and learning values for each par-

ticipant. This function fit every participant except 

one in the uniform group who did not make any 

changes to their bars throughout the task. We ex-

cluded this participant’s performance from our 

subsequent analyses, resulting in a sample of 19 

participants exposed to the wide Gaussian distri-

bution and 20 exposed to the narrow Gaussian.  

 

Group initial accuracy 

We began by comparing group performance in 

each of the two conditions of ball drops. Many of 

the initial participant distributions had high vari-

ances, spanning a large number of slots (average 

standard deviation for initial distribution = 8.83 

slots). We therefore predicted that participant ini-

tial accuracy values would be lower for partici-

pants exposed to a distribution with a smaller var-

iance. An independent t-test confirmed that initial 

accuracy values in the wide condition were higher 

than those in the narrow condition (Mean initial 

accuracy: wide = 0.45, narrow = 0.32; t(37) = 

2.106, p < 0.05). Participants who reported initial 

estimates with high variance were primarily in the 

Gaussian, uniform, skew, and bimodal groups, 

particularly when compared to participants in the 

jagged condition. We expected that these first 

groups would have higher initial accuracy in the 

wide condition given that their distributions 

would have more total overlap with the comput-

er’s wide distribution. Initial accuracy values 

ranged between 0.58 and 0.65 for non-jagged 

groups, with the Gaussian group having the high-

est initial accuracy value, while participants in the 

jagged group started with a mean initial accuracy 

value of only 0.18 (Fig. 3a,c). 

    These differences were much smaller in partic-

ipant groups exposed to the narrow distribution 

given that the computer’s distribution covered 

fewer slots than in the wide condition. Initial ac-

curacy in all groups other than the skewed condi-

tion ranged between 0.30 and 0.39 (Fig. 3b,d). In 

the narrow condition there was only one partici-

pant that reported a skewed distribution. This par-

ticipant’s initial expectation was that the majority 

of balls would fall to the right of center. The 

computer’s distribution fell slightly to the left of 

center, a stark difference from this participant’s 

initial estimate. Despite having the lowest initial 

accuracy value, this participant’s α value was sec-

ond highest among participants in the narrow 

condition, indicating that this participant’s accu-

racy rapidly reached its maximum value from its 

initial value. When examining the raw accuracy 

data, this participant’s accuracy jumped from .17 

to .75 within 8 trials, and stayed in this range for 

the remainder of the task. 

 

Learning of each distribution 

Next we examined the learning rates within the 

groups that were exposed to wide vs. narrow 

Gaussian distributions. Of particular interest was 

the comparison between participant asymptote 

values in the Gaussian group. Of the 7 partici-

pants categorized in the Gaussian group, 3 partic-

ipants were exposed to the wide distribution, 

while 4 participants were exposed to the narrow 

distribution. In both cases, initial estimates for 

these participants had large variances (mean SD 

for wide group = 7.63 slots, narrow group = 9.20 

slots). This does not present any major conse-

quences for participants exposed to the wide dis-

tribution of ball drops, as their initial beliefs 

match the computer’s variance. However, partici-

pants exposed to the narrow distribution would 

need to change the variance in their estimates to 

reflect the computer’s distribution. In total, partic-

2201



5 

 

ipants exposed to the wide distribution tended to 

have higher mean asymptote values than those in 

the narrow condition (mean asymptote values: 

wide = 0.72, narrow = 0.65). Of the 4 participants 

in the narrow group, 2 participants managed to 

adapt their distributions to reflect a narrow vari-

ance by the end of the task, resulting in a mean 

asymptote of 0.85, while the other 2 participants 

made fewer changes to the variance of their dis-

tributions, resulting in a mean asymptote of 0.45. 

 

Online task performance 

As a last step we were interested in tracking 

changes to participant distributions over the 

course of the experiment. One of the aspects of 

participant performance that is not fully captured 

by the exponential learning curve is some of the 

participant strategies used throughout the task. Of 

particular note, there was a large dip in accuracy 

in the uniform group at trial 43 (Fig. 3a). A closer 

look at individual performances showed that this 

dip is the result of one participant who deleted all 

bars on screen save one, and continued through 

the experiment by drawing bars trial by trial in 

slots that received a ball (ultimately leading to a 

final raw accuracy score of .81, second highest 

among participants exposed to the wide distribu-

tion).  

    A look at the trends from participants estimat-

ing the narrow distribution shows at least one par-

ticipant that followed a similar strategy. As indi-

cated earlier, 2 of the 4 participants in the Gaussi-

an group managed to adjust their distributions to 

reflect the tighter variance in ball drops. One of 

these participants deleted most of their bars on 

trial 53 and followed a strategy similar to that of 

the participant in the uniform condition (leading 

this participant to finish with the highest raw ac-

curacy among those in the Gaussian group; Fig. 

3b).  

 

Discussion 
The aim of the current study was to explore the 

influence of a priori mental models on our ability 

to learn from the regularity of events in our envi-

ronment. Previous research has demonstrated that 

models we build during a task influence our abil-

ity to adapt to later changes in incoming infor-

mation (Lee & Johnson-Laird, 2013; Stöttinger et 

al., 2014). We expanded on this research by 

measuring the influence of a participant’s a priori 

expectations on their ability to learn the probabil-

ity distribution of certain events occurring.  

    We demonstrated that far from being uniform, 

participant expectations coming into our task var-

ied widely.  In addition to the distributions we had 

predicted (i.e., Gaussian and uniform), 30% of the 

participants reported initially expecting a bimodal 

distribution of ball drops, while another 35% of 

participants followed a ‘jagged’ strategy. In the 

Figure 3. Participant accuracy performance in the narrow and wide distribu-

tion conditions. Raw accuracy is depicted in graphs (a) and (b) while fit accu-

racy is depicted in graphs (c) and (d). 
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groups that we did expect to find, performance 

varied, with participants in the Gaussian condition 

performing well on distributions that matched 

their initial estimate of variance, but having more 

difficulty representing distributions with narrower 

variance. Our task also provided us with the op-

portunity to see how these initial models changed 

over time. We found two examples in which par-

ticipants completely abandoned their initial strat-

egies and adopted new ones, eventually leading 

them to high levels of accuracy. We were able to 

locate when this shift in strategy occurred, and 

track the participants’ new strategy as they pro-

gressed on future trials. Finally, we saw one ex-

ample of a highly erroneous a priori model lead-

ing a participant to rapidly and efficiently adapt to 

the correct task contingencies. This example sug-

gests that the level of mismatch between an ex-

pected model and observations can influence the 

efficiency with which we detect and adjust to pre-

diction errors.  

    We acknowledge that our observations are 

based on small groups of participants, and that 

larger samples are needed to make more conclu-

sive statements about the influence of specific a 

priori expectations. Nevertheless, our results pro-

vide evidence to support the notion that our men-

tal models coming into a task are not always uni-

form, and can affect the way we learn and adapt 

to task contingencies.  
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