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Abstract

Communication is highly overloaded. Despite this, even young
children are good at leveraging context to understand ambigu-
ous signals. We propose a computational account of over-
loaded signaling from a shared agency perspective which we
call the Imagined We for Communication. Under this frame-
work, communication is a way for cooperators to coordinate
their perspectives, allowing them to act together to achieve
shared goals. We assume agents are rational, utility maximiz-
ing cooperators, which puts constraints on how signals can be
sent and interpreted. We implement this model in a set of simu-
lations which demonstrate this model’s success under increas-
ing ambiguity as well as increasing layers of reasoning. Our
model is capable of improving performance with deeper re-
cursive reasoning; however, it outperforms comparison base-
lines at even the shallowest level of reasoning, highlighting
how shared knowledge and cooperative logic can do much of
the heavy-lifting in language.

Keywords: Communication; shared agency; cooperation;
pragmatics; Theory of Mind; Bayesian inference

Introduction
Human communication is highly overloaded, conveying rich
meaning through sparse, ambiguous signals. For example:
while two people are sitting at a table, one person exclaims
“the glass!” the other instantly moves her glass away from
a precarious spot at the table’s edge. Here, “glass” is sparse,
leaving the listener to reason why the glass is relevant and
how to respond. Additionally, “glass” is ambiguous, it might
refer to the eyeglasses safely resting on the table in one con-
text, or the request for a refill in the next. These simple, every-
day exchanges involve spontaneity and extreme indirectness,
highlighting that humans are intelligent “inference-making
machines” (Sacks, 1985). To understand the meaning of a
signal in its full context, humans rely on their knowledge of
the world, observability of the visual environment, and the
(potential) behavior of their partner.

Our work is built on the rich tradition of treating language
acquisition as social cognition (Bruner, 1975; Grosse, Moll,
& Tomasello, 2010; Tomasello, 2010). Leveraging these em-
pirical insights as well as current computational work, we
propose a model capable of cooperative, human-like com-
munication with three novel properties. (1) Joint reasoning
using a shared “We” perspective for communication. This
allows cooperators to understand signals in terms of what is
relevant to everyone (I’m referring to the glass’s physical in-
stability, not its shape or content). (2) Joint planning in the

physical and visual environment as a constraint on commu-
nication. Signals are constrained to interpretations that are
expected to improve We’s utility under the cooperative logic
that everyone is treated as an equal (“glass” is not the one
closer to you – that would be your responsibility to save).
(3) Indirectness of speech, for rich, multi-dimensional infer-
ences. Signals may tell you what, but can also give informa-
tion about why or how. (“glass” is not referring to the identity
of the glass, but an action – save it).

Cooperation Under an Imagined We

We advocate for a shared agency model of cooperation: col-
laborators must be committed to achieving a joint intention as
a collective body (Gilbert, 2013). To model this, it is useful
to begin by modeling ideal cooperation; here, a single, cen-
tral “We” agent directs agents as if they were limbs. There is
no need to communicate as We accesses everyone’s knowl-
edge to coordinate agents perfectly. We can be formalized as
a model of the underlying mind, composed of a set of mental
states – beliefs, desires, and intentions. Beliefs are the infor-
mational states of the mind, desires are the motivational states
of the mind, and intentions are the deliberative states of the
mind (Bratman, 1987).

Theory of Mind (ToM) is a well-studied type of social
reasoning (Wellman, 1992), with a powerful computational
counterpart (Baker, Saxe, & Tenenbaum, 2009), providing a
framework to process the mind for rational action planning
and interpretation. Under this framework, agents aim to max-
imize their utility according to their mental states while mini-
mizing costs of acting in the world (Gergely, Nádasdy, Csibra,
& Bı́ró, 1995). This process can also be reversed to under-
stand others’ actions. In inverse planning, an observer uses
Bayesian inference to infer the likely mental states that gen-
erates observed actions.

While We is a collective body of multiple cooperators,
ToM traditionally models the mind of an individual. To
accommodate, individual ToM has been extended to model
the mind of We (mindwe) which contains joint mental states:
joint beliefs (bwe), joint desires (dwe), and joint intentions
(iwe) (Kleiman-Weiner, Ho, Austerweil, Littman, & Tenen-
baum, 2016; Shum, Kleiman-Weiner, Littman, & Tenen-
baum, 2019). This allows reasoning about what we believe,
what we want, and what we intend to do:

1851



P(mindwe) = p(bwe)p(dwe)p(iwe|bwe,dwe) (1)

The problem with a centralized We is that it does not exist
in reality; only You and I exist as individuals. However, We
can be socially real, so long as each individual is imagining
it. To imagine We, each agent tries to imagine how someone
viewing the task from above would coordinate actors, tak-
ing on a “bird’s eye perspective” (Tomasello, 2010) or “view
from nowhere” (Nagel, 1989). While the aim for each agent
is to model the same We as the others, each agent may imag-
ine a slightly different version of We. When these versions of
We are synchronized, agents can coordinate smoothly.

Recent computational successes have shown that shared
agency can help cooperators achieve complex goals with-
out communication. In a gridworld paradigm, joint reason-
ing about high-level cooperation helps constrain joint actions
in low-level coordination to collect joint rewards (Kleiman-
Weiner et al., 2016). Additionally, in a cooking task, agents
use joint reasoning to coordinate the execution of a high-level
recipe step together (Wang et al., 2020). Shared agency also
allows agents to bootstrap joint commitment to one of many
goals, even under observation noise and model uncertainty
(Tang, Stacy, Zhao, Marquez, & Gao, 2020). In these exam-
ples, observed actions serve as feedback that can help align
agents’ imagined We mind. In this paper, we call this model-
ing perspective the Imagined We (IW) to highlight that We is
not real but instead, individually imagined.

As long as agents are able to synchronize their versions of
the IW mind, shared agency is already a successful frame-
work, even without communication. We take the perspective
that communication is an even more powerful mechanism for
coordinating perspectives. A key contribution of this work is
to model communication as a means to synchronize perspec-
tives by first building it up from an underlying shared agency
framework. In addition, under this formalization, synchro-
nization is aided by strong restrictions on what information
is allowed in the IW: the IW considers only publicly shared
information – also called common ground (Clark, 1996). As
agents take in new observations individually, communication
can make this private knowledge mutually known.

Modeling Language Pragmatics
Here we propose a mechanism for processing language. Lan-
guage has been treated as rational and cooperative (Grice,
1975) where communicators aim to make themselves under-
stood by speaking truthfully, relevantly, and efficiently. These
ideas have been incorporated into a successful existing proba-
bilistic model of language pragmatics: Rational Speech Acts
(RSA) (Frank & Goodman, 2012; Goodman & Frank, 2016).
Social reasoning under RSA is recursive – speakers and lis-
teners can model each other, ad infinitum. Deeper reasoning
increases accuracy but at the cost of efficiency.

At the top level, a communicator aims to describe a referent
or state of the world (state) with vocabulary (signal) that is
true but possibly ambiguous. Signals are produced by a prag-

matic speaker (psp) through a decision making process. A
signal is chosen based on a noisy utility maximization (soft-
max), where β ∈ [0,∞) represents the degree of rationality:

Psp(signal|state) ∝ eβE[U(signal,state)] (2)

RSA is a generalizable model of language production that
provides the structure required to connect ambiguous lan-
guage to concrete utilities. In RSA, a signaler’s utility is
evaluated by modeling the pragmatic listener’s (pl p) interpre-
tation of that signal in terms of the states it could refer to.
This requires a simpler, literal speaker (psl) model:

E[U(signal,state)] = pl p(state|signal)

∝ psl(signal|state)p(state)
(3)

In this formulation, “relevance” is determined by the en-
tire set of features in the environment, both ones the speaker
highlights through language and the less direct ones that the
speaker foregoes. It is not a trivial challenge to generalize
utility, but here, it is ultimately limited to the ability to un-
derstand the referent of a signal as a target world state. In
reality, language is often several degrees more indirect: com-
munication can be used to explain not only to referent states
(What?) but also social motivations (Why?) and interactions
in the shared environment (How?).

A large part of non-referent context can be captured by
modeling what an intelligent agent wants to do, why they
want to do it, and how to accomplish it. While RSA language
pragmatics and ToM decision-making in the physical envi-
ronment have been formalized individually, they are rarely
modeled in conjunction. The IW for Communication inte-
grates these two perspectives in a novel way to broaden con-
text, allowing a signal to be more indirect – interpretable in
terms of the IW’s joint beliefs, social motivations, and ac-
tions.

Deriving Signal Utilities from Action Utilities
Here we explore how to formalize the utility of a signal under
the IW. Utilities are measured with respect to a mind because
they are subjective, socially dependent quantities. In the IW,
this utility is in terms of a joint We mind. How can you de-
rive a utility from the physical environment when the signal
cannot actually change that environment? An action’s utility
is measured by its consequence on the environment, so what
are the direct consequences of a signal? Just as actions are
designed to change the world, signals are designed to change
the mind. If we can predict what consequence a signal has on
our beliefs, desires, and intentions, we can connect this back
to actions produced by rational planning in traditional ToM
which have well defined utilities.

We extend the IW for communication (see Fig. 1) by lever-
aging RSA’s existing framework of cooperative, pragmatic
language and redefining the utility of a signal to rely on
shared agency ToM and interactions in the physical world.
We connect these components by recognizing (1) signals
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change each IW, (2) minds produce predictable, rational joint
actions under ToM reasoning, and (3) actions have well de-
fined expected utilities which can be derived through joint
planning.

Figure 1: Signals in the IW are processed through the mind
and connected to joint action utilities.

Grounding a signal’s value in a task where multiple agents
interact in the environment is an approach that has been
adopted in the AI communities. A signal’s value is derived
from its expected action consequences in a task in Recursive
Mind Models (Gmytrasiewicz & Durfee, 2001) which has
been extended to sequential decision making problems with
interactive partially observable Markov decision processes (I-
POMDPs) (Gmytrasiewicz & Doshi, 2005). However, unlike
the IW, I-POMDPs typically maximize an individual, self-
interested reward. A cooperative alternative which assumes
centralized training but individual observations and actions
at execution is the decentralized POMDP (DEC-POMDP)
(Oliehoek & Amato, 2016). Critically, none of these mod-
els deal with the contextual flexibility of human-like commu-
nication. Instead, signal meanings must be pre-determined
through a shared codebook that maps each signal onto its own
thing. These approaches treat uncertainty in communication
as noise in the signal channel instead of the intrinsic uncer-
tainty of a signal that maps onto multiple referents.

Joint Planning in Language: We have introduced ToM as
a model of social cognition, but it also provides a rich frame-
work for harnessing intuitive action costs and preference re-
wards (Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016;
Ullman, Spelke, Battaglia, & Tenenbaum, 2017), which al-
lows planning using the physical scene. Computational suc-
cesses have emphasized the role of joint utility functions in

morality (Kleiman-Weiner, Saxe, & Tenenbaum, 2017) and
team compositions (Shum et al., 2019); furthermore, em-
pirical evidence supports adult cooperators acting according
to joint utilities (Török, Pomiechowska, Csibra, & Sebanz,
2019). Joint utility considerations create a cooperative logic
in communication where agents expect their partners to act
fairly. This constrains a signal’s interpretation to things eas-
ier for the listener to accomplish. Even toddlers can disam-
biguate the referent of an ambiguous request for help through
a basic joint utility consideration (Grosse et al., 2010). In the
scenario, two equivalent objects are equidistant from the tod-
dler but near and far relative to the signaler. Children retrieve
the far object more often when the signaler has free hands
than in a second condition where their hands are occupied,
demonstrating sensitivity to cooperative logic in requests. We
use a similar joint utility calculus to ground signal utilities
back to action utilities in the IW.

Modeling Signaling under the Imagined We
The IW framework allows us to resolve ambiguity in com-
munication by imposing constraints from a rational utility
maximization under cooperative logic. In this framework, the
meaning of a signal is formally defined as the mind that gen-
erates the signal, the mind that the speaker would like the IW
to have: a target. A signal should convey information that
helps resolve uncertainty about what we believe, want, or in-
tend to do. Uncertainty can be in any component of the mind
and even generalize to a joint inference over multiple uncer-
tain components. Here, we focus on uncertainty in goals for
clarity. Thus the speaker rationally selects a potentially over-
loaded signal according to the true goal and target of infer-
ence, goalt , not currently shared in the common ground:

P(signal|goalt) ∝ eβE[U(signal,goalt )] (4)

The utility of a signal is measured by looking at the utility
of the outcome actions, weighted by how often those actions
are expected to occur:

E[U(signal,goalt)] = EP(a|signal)[U(a,goalt)] (5)

This framework actually serves to coordinate different per-
spectives: (1) A speaker predicts how a signal can change the
IW mind (here, shared goal: goalwe) (2) and evaluates how
good that change is according to their private observations
of goalt . The evaluation of U(a,goalt) includes the cost of
taking a and the reward if a achieves goalt .

Action prediction can be further broken down by connect-
ing signals to actions via the mind. First, signals change the
IW mind, making some goals more likely than others. Sec-
ond, using the ToM likelihood function for action planning,
we can calculate which actions are rational conditional on a
given joint mind. We assume actions are conditionally inde-
pendent from signals given the mind, captured by the intuition
that signals can only influence actions through the mind:
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P(a|signal) = ∑
goalwe

P(goalwe|signal)P(a|goalwe) (6)

Traditional ToM planning yields P(a|goalwe) and Bayesian
inference allows us to measure how observing a signal will
change the distribution of inferred goals. For the likelihood
function we use a measure of consistency (Is this message
truthful given the goal?), similar the literal speaker from
RSA:

P(goalwe|signal) ∝ P(signal|goalwe)P(goalwe) (7)

The IW is a shared agency account of modeling language
that is able to integrate different types of relevance – language
pragmatics and intuitive utilities – to communicate rationally
under different sources of ambiguity.

Simulations

Task

We test the IW in an gridworld task to demonstrate its abil-
ity to communicate successfully in a visual setting. This task
combines feature overloading, which demands the language
pragmatics studied by Frank & Goodman (2012), but is en-
riched by a spatial scene that requires joint planning similar
to the ambiguous helping from Grosse et al. (2010).

In this task, a signaler and a receiver cooperate to reach
a target item in a nearly-fully observable gridworld environ-
ment. The key is the only bit of asymmetry of information
between agents: only the signaler knows which item is the
target. If either agent reaches the target, both receive a re-
ward (+8); however, each step incurs a shared cost (-1). We
calibrate the reward so that the expected utility of a signaler
acting when it is better to ask for help is around zero. In
play, the signaler acts first – she may walk to and select an
item (incurring the appropriate action cost), send a signal to
her partner (free), or quit the trial (earning a utility of zero).
Each item has two features: shape (circle, triangle, square)
and color (red, green, purple). Signaling is costless but lim-
ited to conveying a single feature, adding ambiguity and in-
creasing the chance it will refer to more than one item in the
environment. If the first agent sends a signal (or walks to an
incorrect item), the receiver then gets a turn. The trial ends af-
ter the receiver’s turn or the target item is reached, whichever
comes first. Traveling to the wrong goal results in a negative
utility equal to the number of steps taken to reach that item.

In each trial, the set of shapes in the environment is ran-
domly sampled and located; one is uniformly sampled to be
the target, varying the optimal action and actor (see Figure 2).
In addition, trials contain a physical barrier near the receiver
which agents must go around to highlight the importance of
joint planning.

Figure 2: Example trial setup with a barrier near the receiver.

Baseline Models
We compare the IW model to two baselines and the central
control optimal solution (CC). The optimal solution from the
joint perspective is calculated with value iteration over the
concatenation of the individual agents’ action spaces. CC re-
flects how the two agents would rationally coordinate with
perfect information: the ceiling of achievable utility.

The first baseline is a direct adaptation of RSA which we
call acting RSA (aRSA). In its original formulation, RSA is
intended to be a language only model; however, the current
task involves reasoning about the cost of actions in the physi-
cal world. For this reason, the RSA signaler has the additional
choice of whether they would like to perform an action, walk-
ing to an item instead of sending a signal. To make a fair com-
parison between these alternatives, the original signal utility
(from Equation 3) is augmented with the action utilities asso-
ciated with particular inferences:

E[U(signal,goalt)] = ∑
x∈items

ppl(x|signal)U(ar = x,goalt)

(8)
Assuming a rational receiver, the signaler evaluates the

utility of the receiver traveling to an item (ar = x) via value
iteration and whether x yields a reward (i.e. x = goalt ). The
pragmatic speaker takes the soft-max of the utilities of all sig-
nals, actions ending in an item, and quit option. The RSA re-
ceiver remains the same as before. This is different from the
IW’s formulation of utility as it still lacks “jointness” – that
is, action utility helps a signaler decide whether to commu-
nicate or act, but once a signal is sent, the receiver uses only
pragmatic reasoning to decide what that signal means.

The second baseline model removes the pragmatic com-
ponent of RSA to focus on joint utilities. Joint Utility (JU)
agents use a joint utility calculation to apportion responsi-
bility over items then uniformly send and interpret truthful
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signals in terms of the items they have deemed they are re-
sponsible for. The JU speaker takes the soft-max of the rel-
ative utilities of walking to the goal (do), partner walking to
the goal (signal), and quitting. Similarly, a JU receiver, upon
hearing a signal, constrains herself to consistent interpreta-
tions, weighing those interpretations according to their joint
utilities.

Regardless of the model, a signaler will not communicate if
it is more rational walk to the goal. To highlight each model’s
use and understanding of communication, all simulation anal-
ysis is restricted to the trials where communication is optimal
(i.e. the receiver goes to the target under the CC model and
the achievable utility is greater than zero).

Simulation 1: Amount of Ambiguity
We demonstrate the IW’s success in this cooperative commu-
nication task, even when signals are overloaded. The level
of ambiguity is manipulated by increasing the number of po-
tential target items in the environment (2-9 items). At six or
more items, the target is guaranteed to be overloaded; that is,
no matter what signal is chosen, it will be consistent with at
least two items. We compare the utilities achieved by each
model when faced with the exact same scenario.

Results
We look at the utilities achieved by each model, measured as
a percent from the maximum possible as ambiguity increases
(see Fig. 3). When compared to always doing it for yourself
(Do For Self Signaler), communication almost always leads
to substantial gains in utility. This advantage disappears at
high levels of ambiguity for the aRSA and JU models, but
not for the IW. Across any number of items in the environ-
ment, the IW outperforms other baselines and only begins to
deviate from the CC model when the uncertainty is very high.
At the highest level of ambiguity (9 items) the IW achieves
71.5% (CI: 64.6–78.4%) of the optimal utility on average,
while aRSA achieves 3.7% (CI: 0.5–6.8%) and JU achieves
19.4% (CI: 4.4–34.4%). This demonstrates how communi-
cation understanding is significantly enhanced by the integra-
tion of both cooperative pragmatics and joint utility reasoning
in this task.

We make a more fine-grained comparison between mod-
els to understand what contributes to differences in achieved
utilities by breaking down model behaviors. As ambiguity
increases, model behaviors diverge hugely (Fig. 4). The JU
model always communicates (because analysis focuses on
cases where communication is necessary to achieving the op-
timal utility). However, as ambiguity increases, this commu-
nication breaks down, and the receiver is increasingly less
likely to correctly interpret the signal. In aRSA, the trend is
dramatically different. Instead of unsuccessful communica-
tion, the signaler decides the uncertainty from the receiver’s
interpretation is too large, leading to an unfavorable expected
signaling utility. By nine items, the aRSA signaler is not able
to successfully communicate at all. The IW is able to com-
bine these reasoning strategies to perform well across all lev-

Figure 3: Achieved utility (with 95% CI) measured as the
percent from optimal for each model under varying degrees
of ambiguity. N=2000 trials per model. β = 4 for all models.

els of ambiguity; there is a much smaller decline in successful
communication when the uncertainty is large. We see neither
the breakdown of communication nor the huge increases in
quitting behavior exhibited by the other models.

Figure 4: Breakdown of agent behavior (as a proportion) for
each model under varying levels of ambiguity. The behav-
iors are (1) Successful communication: the signaler commu-
nicates and the receiver goes to the correct goal (2) Unsuc-
cessful communication: the signaler communicates and the
receiver fails to choose the correct goal (3) Signaler does: the
signaler forgoes communication and walks to the target (4)
Quit: the signaler deems the trial too hard and skips the trial.

Simulation 2: Level of Recursion
One strength of the IW is that integrating the additional con-
straints from cooperative joint planning can often quickly re-
solve ambiguity, lessening reliance on deep recursion. This
may provide a novel answer to why everyday pragmatic lan-
guage is often quick and easy. Here we demonstrate this by
looking at how performance changes as a function of deeper
reasoning for the IW and aRSA at different levels.
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RSA pragmatics involves recursion, which is increasingly
expensive at each additional layer. A speaker starts with a
literal model (level 0), which is used by a listener, which is
then used by a pragmatic speaker (level 1). We can continue
to build additional layers, each being more complex than the
last. The IW can also handle this type of recursion; however,
agents reason recursively about the joint IW mind, not each
other. We compare the utilities achieved by different reason-
ing levels of speaker and receiver playing this task.

In the IW, a joint utility calculation determines the por-
tion of the environment where each agent is responsible for
achieving the target. In addition to recursion levels, we test
two different environmental configurations which change the
joint utility dynamics: barrier near the receiver shown in
Fig. 2 (RB) and barrier near the signaler – the same barrier
moved three grid spaces down (SB). By moving the barrier
closer to the signaler, a larger portion of the environment be-
comes the receiver’s responsibility. This increases the diffi-
culty by making the constraints from joint utility less likely
to be useful for understanding a signal.

Results
In general, deeper recursive reasoning leads to an increase
in performance. For both models, the most complex sig-
naler/receiver pair (level-2 signaler, level-2 receiver) per-
forms best regardless of the environment. When compar-
ing the most complex pair to the simplest (level-1 signaler,
level-0 receiver), the IW achieves an average of 19.3% and
25.4% boost in performance from recursion in the RB and
SB conditions respectively; aRSA sees a 20.9% and 15.6%
bump in performance. Within a signaler level, as the receiver
does deeper reasoning the achieved utility tends to increase
(see Fig. 5). This indicates that having an intelligent receiver
is important to performing well on the task. Notably, for
both models and environments, the worst performing pair is
a level-2 signaler with a level-0 receiver. This could indicate
that when the speaker expects their receiver to be reasoning
more deeply than they actually are, this mismatch in expecta-
tions can be highly detrimental.

At the same level of recursion, the IW always outperforms
aRSA (see Fig. 6), achieving up to twice the utility. In fact,
the most complex reasoning under aRSA does worse than the
simplest IW communicator pair. For IW the simplest reason-
ing achieves 77.7% (CI: 73.1-82.3%) and 64.0% (CI: 58.8-
69.3%) of the optimal achievable utility in the RB and SB
conditions respectively. In contrast, the most complex com-
municator pair under aRSA only reaches 50.0% (CI: 44.7-
55.3%) and 44.5% (CI: 39.3-49.7%). This large performance
difference indicates that the benefits of recursion are out-
weighed by the benefits of joint utility reasoning. Here much
of the complex inferential burden of language can be pushed
to a much simpler utility calculus. If these results align with
future empirical behavioral data, it would provide evidence
that everyday language does not need deep recursion to be
sparse and successful.

Finally we can examine the effect of moving the barrier

Figure 5: Mean achieved utility (blue represents higher per-
formance) for signaler and receiver pairs with different levels
of reasoning. Shown are N = 500 cases where communica-
tion is optimal per modeling level pair. Number of items is
fixed at 6, β = 4.

on performance. From a joint utility perspective, moving the
barrier toward the receiver makes it harder to constrain the
meaning of a signal using joint utility. We find that perfor-
mance for a communicator pair is better in the RB condition
than in the SB condition in the IW (adjusted p < .001 for all
communicator pairs) but not in aRSA (adjusted p > .05 for
all communicator pairs), demonstrating the gains from joint
utility reasoning.

Figure 6: Comparison of IW and aRSA mean achieved utili-
ties with 95% CIs.

Conclusion
The IW serves as a general framework of indirect and am-
biguous signal production and understanding under multi-
ple types of uncertainty. Our proposed modeling approach
emphasizes a shared agency perspective that relies on exist-
ing computational infrastructure which has already success-
fully modeled cooperative coordination. Cooperative logic,
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pragmatic language reasoning, and affordable actions under
a joint utility calculus constrain a signal’s interpretation. In-
tegrating these sources of context allow for fast, flexible sig-
naling which helps remove the inferential burden from deep
recursion. We demonstrate the strength of this modeling per-
spective by manipulating the amount of ambiguity in the en-
vironment as well as the depth of reasoning between inter-
locutors. By comparing performance of the IW to a set of
baseline models, we demonstrate that the IW representation
is more robust under uncertainty and does not require deep re-
cursion to perform well – allowing joint utility to do much of
the heavy lifting in language understanding. These findings
support an account of communication that is able to integrate
and process multiple types of relevance for rich understand-
ing despite sparse, indirect signaling.
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