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A Model of Perceptual Change by Domain Integration

Gert Westermann (gert@csl.sony.fr)
Sony Computer Science Laboratory

6 rue Amyot
75005 Paris, France

Abstract

A neural network model is presented that shows how the
perception of stimuli can be changed due to their integra-
tion between different domains. The model develops rep-
resentations based on the correlational structure between
the stimuli of the domains. It shows how prototypicality,
categorical perception, and interference effects between
the domains can arise without the explicit labeling of cat-
egories. The model is extended to learn the sensori-motor
integration between articulatory parameters and speech
sounds and it is shown how it can, in accordance with
the ideomotor principle, imitate sounds based on the de-
veloped mappings in a “babbling phase”.

Introduction
The ability to categorize is one of the most fundamental
cognitive processes. Nevertheless, uncovering the mech-
anisms that underlie this ability has challenged experi-
menters and modelers alike. The reason for this diffi-
culty might be that categories can be formed in many
different ways: in some cases, perhaps mainly in experi-
mental situations, explicit information about the category
of a stimulus is given. In other cases, no feedback might
be available about the categorization choice, and in even
others, no explicit categorization choice might be made
at all.

At the same time, recent research has suggested that
categorization itself can exert an influence on perception
(Goldstone, 1995; Schyns et al., 1998). While these ef-
fects have mainly been studied in a supervised paradigm,
perceptual changes also occur prominently in categoriza-
tion without supervision and without explicit labeling,
for example, in being exposed to the phonemes of one’s
native language (Kuhl et al., 1992).

Finally, there is clear evidence that in categorizing the
world, we make use of all available information and inte-
grate the information from different modalities, making
categorization more robust and easier. For example, vi-
sual and auditory information are integrated in speech
perception, leading to enhanced activity in the cortical
areas responsible for both domains (e.g. Calvert et al.,
1999).

In this paper a neural network model is described
that aims to integrate several aspects of categorization,
namely, the combination of modalities and the percep-
tual changes that go hand in hand with categorization.

The model suggests that some of the phenomena that are
usually explained as the consequence of explicit catego-
rization, e.g., prototype formation and categorical per-
ception, can arise without such explicit categorization
based on the correlational structure of the stimuli from
different modalities, and that they can facilitate subse-
quent explicit categorization when it occurs.

The integration between modalities has previously
been modeled by de Sa and Ballard (1998). Their neural
network model consisted of one layer for each modal-
ity, and each layer made an explicit category decision.
In a process of self-supervised learning both modalities
learned to agree on their decision. While the model per-
formed comparably to supervised models, it was neces-
sary to determine the number of categories a priori, and
due to absolute category boundaries in each modality,
perceptual phenomena such as gradedness and varying
sensitivities to differences between stimuli could not be
modeled. The present model aims to give an account of
how such perceptual phenomena that are usually linked
with explicit categorization can occur without an explicit
category decision and without labeling, and how such a
model can be extended to also account for sensori-motor
integration. The model is loosely inspired by neurobio-
logical considerations.

The rest of the paper is organized as follows: first,
the model is described in detail. Then, experiments with
a simple data set are described that lead to perceptual
change as the result of the integration between modal-
ities. Finally, the application of the model to sensori-
motor integration and the imitation of sounds is de-
scribed.

The Domain-Integration Model
The model described here integrates the stimuli from two
domains (modalities) into a unified percept. The archi-
tecture of the model is shown in fig. 1. Each domain
is represented by a neural map, and Hebbian connec-
tions between the maps allow for the coordination be-
tween them. Usually, an input pair (one input per map)
is presented to the maps simultaneously, and in the fol-
lowing the activation and weight update mechanisms are
described.

Each neural map consists of a number n of units that
are randomly positioned in the input space (in this paper,
the input spaces for both domains are two-dimensional
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Figure 1: The architecture of the model.

to facilitate visualization). In the current model, the po-
sitions of these units remain fixed throughout learning.
Each unit acts as a receptive field with a Gaussian activa-
tion function of a fixed width. Such receptive fields exist
in many areas of the cortex. When an external input x is
presented to the map, the Gaussian activation of the units
is computed as

actiext = e
posi−x

σ2 (1)

where posi is the position of unit i, x is the input sig-
nal, and σ is the standard deviation (width) of the Gaus-
sian. Each unit is connected with unidirectional Heb-
bian weights to all units on the map for the other domain.
The Hebbian activation of a unit is the dot product of the
weight value vector and the activation vector of the units
on the other map:

actihebb = ∑
k

actkwik (2)

where the units on the other map are designated by the
index k and wik is the weight from a unit k on the other
map to the current unit i on this map.

The total activation of a unit is computed by summing
the activations from the external stimulus and those from
the Hebbian connections with the other map:

acti = γeactiext γhactihebb (3)

where γe and γh are weighting parameters to control
how much each partial activation contributes to the total
activation of the unit.

The activation update after presentation of a pattern is
synchronous for all units, and the activation values are
scaled to a maximum of 1.0.

One input to a map will typically activate several units,
and the response ri to an input x, that is, how the neu-
ral map “perceives” that input, is computed by a popu-
lation code: the response is the vector sum of all units i,
weighted by their activation values:

rx = ∑i actiposi

∑i acti
(4)

Such population codes have been found to play a
role for example in the encoding of motor commands
in the monkey cortex (Georgopoulos et al., 1988) where

the direction of arm reaching is predicted accurately by
adding the direction vectors of direction sensitive neu-
rons, weighted by their firing rate. In computational
models, population codes have been successfully used
to show the emergence of a perceptual magnet effect for
phonemes (Guenther and Gjaja, 1996).

The Hebbian connections between the maps are up-
dated with the covariance learning rule (Sejnowski,
1977):

∆wik = α(acti − ¯acti)(actk − ¯actk) (5)

where ¯acti and ¯actk are the average activation values
of units i and k over a certain time interval. This rule
strengthens the connections between units when their ac-
tivation values are positively correlated, weakens them
when the activations are negatively correlated, and does
not change the weights when the activations are decorre-
lated.

This correlation-based weight update has the conse-
quence that units that respond to stimuli that consistently
co-vary across the domains develop higher activations
due to the growing Hebbian weights: co-varying inputs
in the two domains result in the same units on both maps
to have co-varying activation values, and thus to develop
strong Hebbian connections. This results in such units
not only receiving external, but also strong Hebbian acti-
vation and becoming more active than other units that
do not reliably co-vary with units from the other do-
main map. Given that the population code response is
weighted by unit activations, this means that such units
“pull” the response towards them and induce a percep-
tual change (fig. 2). Therefore, an input-pair with nor-
mal (previously observed) correlational structure will be-
come more prototypical so that other, nearby inputs will
be displaced towards it.

(a) (b)

activation
Added Hebbian

Response
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Unit Unit Unit

Unit

Unit

Unit

Response

Figure 2: The response to an input is influenced by exter-
nal Hebbian activation. (a): Without Hebbian activation,
the response lies in the middle between four equally ac-
tivated units. (b): When one unit is activated more due
to Hebbian activation, the response is displaced towards
that unit.

In the following section, experiments with this model
are described that investigate the nature of the induced
perceptual changes based on the integration between the
two input domains.



Experiments
The domain-integration model was tested with a simple
data set (fig. 3) to investigate the nature of the developed
perceptual changes and the role of correlations between
data from the two domains in this process.

Domain 2Domain 1

0.50.5

1 1

1 0 10 0.5 0.5

Figure 3: The data used to evaluate the model. The corre-
lational structure between data items splits each domain
into two classes, denoted by x and +, respectively.

Domain 1 consists of 400 evenly distributed two-
dimensional data in the range from 0 to 1. Domain 2 con-
sists of two clusters of 200 data each with Gaussian dis-
tributions around the centers (0.25,0.5) and (0.75,0.5).
In training, the “left half” of the data in domain 1 (i.e.,
between 0.0 and 0.5) co-occurred with data from the
“right” cluster of domain 2, and the “right half” in do-
main 1 (0.5 to 1.0) with data from the “left” cluster in
domain 2.

Although this data set is artificial, it could be inter-
preted as, for example, a continuous variation of width
and height of an object (domain 1) and associated sounds
at certain frequencies and volumes (domain 2) in a
modality-integration experiment.

The neural maps for each domain consisted of 200
randomly placed units. All data pairs were presented to
the model a single time in randomized order. The Heb-
bian connections between the maps had initial values of
0 and were updated after presentation of each data pair.
The parameter settings were α = 0.01, and for each map,
σ = 0.05, γe = 1.0, and γh = 0.02.

Development of Prototypes
Fig. 4 shows the initial and final responses to the data
set. Each data input creates a response on its neural map
(eq. (4)). Fig. 4A shows the initial response of the neural
maps to the data from each domain. With all Hebbian
connections being zero, the response is only determined
by the actual input signal to the map and gives a rather
faithful representation of the original data set in fig. 3.
Due to the random location of units the original data is
slightly distorted in the response.

During the training of the model, the Hebbian con-
nections between units responding to co-varying data in
both domains are strengthened and those responding to
non-co-varying data are weakened or remain unchanged
(eq. (5)). This process results in strong connections be-
tween units that respond to the centers of their categories
because they will be active for both central and more
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Figure 4: The initial (A.) and final (B.) response of the
model to the data set in fig. 3.

peripheral inputs from a certain category. As a conse-
quence, such central units will become more active than
others when correlated inputs are presented. Their acti-
vation is a sum of the external activation caused by the
inputs themselves, together with the activation mediated
through the strengthened Hebbian weights from the other
map (eq. (3)). Therefore, the response to peripheral stim-
uli will be pulled towards the center of each category.
Fig. 4B shows the responses of the maps to the data after
presentation of each data item and corresponding updat-
ing of the Hebbian connections. The continuous data in
domain 1 has split into two clusters that correspond to
the co-variance relations with the clusters in domain 2.
Each cluster is based around a prototype determined by
the central data item of each set. Similarly, the clusters in
domain 2 have become very dense around their respec-
tive centers. Prototypes thus develop simultaneously in
both domains, based on the interactions between the do-
main maps.

Categorical Perception
Categorical Perception (CP) is a phenomenon that occurs
both innately and in learned categorization (see Harnad,
1987, for an overview): different stimuli within one cat-
egory are perceived as more similar than stimuli with the
same “distance” that straddle category boundaries. One
example for innate CP is the perception of color, e.g. in a
rainbow: although the light frequency changes continu-
ously, we perceive separate bands of color. For example,
within the red band we do not perceive differences be-
tween changing light frequencies, but an equally small
change at the border of that band leads to the abrupt per-
ception of orange.

It has been shown that CP also develops in learned
categories such as phonemes of one’s native language



(e.g. Kuhl et al., 1992). More recently, CP has also been
shown to arise for visual stimuli in categorization task
experiments (Goldstone et al., 1996). In these experi-
ments, subjects had to group a set of continuously varied
shapes into categories in a supervised learning task. Af-
ter having learned the categories, they were better able
to distinguish between two stimuli that were near a cate-
gory boundary than between those that were within a cat-
egory. Therefore, CP can be said to constitute a warping
of similarity space in which the sensitivity to differences
of (relevant) stimuli is enhanced near category bound-
aries and is decreased within categories.

Guenther and Gjaja (1996) modeled categorical per-
ception for phonemes in an unsupervised model. They
argued that the firing preferences of neurons in the au-
ditory map reflect the distribution of sounds in the lan-
guage, and due to the non-uniform distribution of these
sounds CP arose in the model in a self-organizing pro-
cess. While this model accounts well for CP in phoneme
perception, it relies on a non-uniform distribution of the
data. CP that arises for uniform stimuli as a result of
explicit categorization has been modeled in supervised
radial basis (Goldstone et al., 1996) or backpropagation
(Tijsseling and S.Harnad, 1997) networks. It therefore
seems that CP can arise from different causes (data dis-
tribution or explicit teaching), and in the model presented
here a third route is taken: it is studied how CP can arise
in a homogeneously distributed data set that is correlated
with non-uniform data in another domain, without the
explicit teaching of category labels. Instead, categories
form in an unsupervised way based on the correlational
structures between the two domains.

In the present experiments, the x-coordinate of the
data is the relevant dimension for determining category
membership (with the categories defined by the correla-
tions across domains). To establish whether CP did occur
in the model, after training the map of domain 1 was pre-
sented with a sequence of data points from (0.0, 0.5) to
(1.0, 0.5) in steps of 0.01, i.e., a walk from the left to
the right side of the map. The difference between the re-
sponses of the model to every pair of adjacent data points
is shown in fig. 5. There is a marked peak of sensitivity
at the category boundary (0.5) where a difference of 0.01
in the input data is perceived as a difference of 0.08 in
the responses. By contrast, at a distance from the cate-
gory boundary, the sensitivity of the model to differences
between stimuli is decreased.

This result models the basic characteristics of CP:
an increased sensitivity to differences at the category
boundary, and a diminished sensitivity within the cate-
gories.

Domain Integration: The McGurk Effect
Many experiments have shown that visual information
can enhance the understanding of speech, suggesting an
integration of the visual with the auditory signal in this
task (see Massaro, 1998, for an overview). Striking evi-
dence for the strength of this integration comes from the
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Figure 5: CP in the model: sensitivity to differences is
increased around the category boundary.

McGurk effect (McGurk and MacDonald, 1976): when
subjects are presented with conflicting visual and audi-
tory data, their perception of what is said can be differ-
ent from both the visual and the auditory signal. For ex-
ample, when a face articulating /ga/ is dubbed with the
auditory /da/, subjects perceive /ba/. This effect is highly
pervasive and not subject to volitional control. It is not
restricted to vision and auditory integration, but has also
been found for touch and audition (Fowler and Dekle,
1991).

0.50.5
�
�
�
�

��
��
��
��
������

1 0 10

1

0.5 0.5

Domain 2Domain 1

Inconsistent inputs:
Domain 1: class A, Domain 2: class B

Responses in each domain  displaced to
intermediate value between classes A and B

Figure 6: Exemplary response of the model to a data
pair that does not correspond to the learned correlational
structure. The previously learned responses are denoted
by x and +, the data pair that does not correspond to the
learned correlational structure by grey circles, and the re-
sponse of the model to this data pair by black circles.

To test whether the model displayed a response simi-
lar to the McGurk effect in humans, data pairs were pre-
sented that did not correspond to the previously learned
correlation structure. While during training the “left”
half of the data set for domain 1 co-occurred with the
“right” cluster in domain 2, now data from the “left” half
in domain 1 was presented together with that from the
“left” cluster of domain 2. Conceptually this corresponds
to presenting e.g., an auditory /da/ together with a visual
/ga/. The model integrated these conflicting inputs to a
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Figure 7: The model for sensori-motor integration and the imitation of sounds. Solid arrows indicate the “babbling
phase” where the mapping from motor to sensory parameters is learned. The dashed arrows show the pathway for the
subsequent imitation of sounds.

response that was a blend between the responses to each
individual input (fig. 6).

While the McGurk effect has been studied in great de-
tail and has revealed many results that are much more
subtle than a simple blend between the auditory and vi-
sual information, the present model can give a principled
account of how the domain integration that lies at the ba-
sis of this effect can arise. The details of the McGurk
effect cannot be modeled with the artificial data set used
here to investigate the general functionality of the model,
but experiments are planned to use a more realistic set of
auditory and visual signals that will give more detailed
results.

In summary, the domain integration model displays,
without the explicit teaching and labeling of categories,
several of the effects that are generally supposed to rely
on such labeling, namely, the formation of prototypes as
attractors in the stimulus space, categorical perception in
an evenly distributed set of stimuli, and an integration of
stimuli from different domains to form a unified percept
that forms a “compromise” when conflicting data is pre-
sented in the domains simultaneously.

The Model in Sensori-Motor Integration
In the previous sections it was described how the do-
main integration model integrates between two sensory
domains, leading to psychologically observed phenom-
ena such as prototype formation, categorical perception,
and the McGurk effect. In this section, an extension to
this model is proposed to account for sensori-motor in-
tegration (fig. 7). This extension works by presenting
in one domain a representation of an action (e.g., mo-
tor parameters), and in the other, a representation of the
sensory consequences of that action. The model then
learns the associations between the motor commands and
their sensory consequences, developing simultaneously
in both domains prototypes of actions and consequences
of these actions, based on a reliable correlation between
them.

The sensori-motor variant of the model was tested on
sound production. For this purpose, a physical model of
a speech synthesizer (Boersma and Weenink, 1996) was
used. In initial experiments, two parameters, jaw open-
ing and the position of the styloglossus muscle (a mus-
cle that controls the position of the back of the tongue)
were varied continuously at 18 steps each, and the result-
ing sounds were analyzed with respect to their firsts two
formant values. The model was trained on the resulting
two-domain data set with 324 items. Fig. 8 shows the
initial and final responses of the model. While the motor
parameters are evenly distributed prior to training, after
training prototypical parameter-sound pairs have formed
in both domains due to their correlational structure.

The sensori-motor integration model corresponds to
the ideomotor principle which postulates a tight coupling
between perception and action. As such it can give an
account of the imitation of sounds (fig. 7, fig. 8B): an
external sound that is presented to the model evokes a re-
sponse on the auditory map. This response is propagated
through the developed Hebbian connections to the mo-
tor map where a motor response is evoked which can be
used to articulate, i.e., imitate, the corresponding sound.
However, the imitation of the heard sound is displaced
towards a prototype that the model has developed during
training (indicated by an arrow in the auditory map in
fig. 8B). In this way, imitation is not merely a reproduc-
tion of an external stimulus, but a re-interpretation of that
stimulus based on the developed structure of the model.

Discussion
The model described in this paper presents an algorithm
to integrate sensory information between two domains
to form a unified percept, thereby displaying phenomena
also observed in human categorization. The model can
be extended to also account for sensori-motor integration
and the imitation of low level percepts. While the simple
data sets used in this paper were used to demonstrate the
principled functionality of the model, more realistic and
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Figure 8: A. Initial and B. final responses of the sensori-
motor integration model.

extensive experiments are necessary to establish whether
it can account for more detailed results in these domains.
We have now started to use higher-dimensional data for
the learning of the articulation–perception mapping in
sound production and imitation, and preliminary results
look promising.

An important property of the model is that it shows a
unified account of sensori-sensor and sensori-motor inte-
gration in a neurobiologically inspired framework.

An alternative view of this model could be as a variant
of supervised category learning: when one map receives
the inputs (i.e., object representations) and the other the
targets (i.e., category labels), the model learns the map-
ping from the category members to their labels if there
is a sufficient number of different categories. The do-
main integration model, however, adds an important as-
pect that is often neglected in supervised category learn-
ing models: not only category members, but also the con-
cept of “category” has a topology and is changed by its
members. For example, the “concepts” of the dog and cat
categories will move closer together on the target map if
their members share properties. In this way it becomes
possible to measure the similarity between concepts by
investigating the developed topology on the target map.

In its present form the model is simple, though it al-
lows insights into how perception can change due to cate-
gorization. However, more realistic training data, as well
as an extension of the model to be able to handle sequen-
tial and more complex data, are necessary. These will be
the next steps in the described research.
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