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Abstract

A significant part of everyday learning occurs incidentally —
a process typically described as implicit learning. A central
issue in this and germane domains such as language
acquisition is the extent to which performance depends on the
acquisition and deployment of abstract rules. In an attempt to
address this question, we show that the apparent use of such
rules in a simple categorisation task of artificial grammar
strings, as reported by Shanks, Johnstone, and Staggs (1997),
can be simulated by means of a simple recurrent network, and
may thus turn out not be incompatible with the acquisition of
statistical regularities rooted in the processing of exemplars of
the presented material.

Introduction
Over development and learning, we acquire a considerable
amount of information incidentally. Natural language offers
perhaps the most striking example of such incidental
learning: Infants do not need to be explained grammar rules
in order to be able to communicate effectively and are
presumably unaware of the fact that they are learning
something at all. Adult speakers likewise “know” whether
expressions of their native language are grammatically
correct but can seldom explain why.

Implicit Learning
The notion of "implicit learning" (IL) usually designates
cases in which a person learns about the structure of a fairly
complex stimulus environment, without necessarily
intending to do so, and in such a way that the resulting
knowledge is difficult to express (Berry and Dienes, 1993).
In short, IL is the ability to learn without awareness
(Cleeremans, Destrebecqz, and Boyer, 1998), as opposed to
explicit learning, which is strategy- and/or hypothesis-
driven, and of which one tends to be consciously aware.

IL can produce implicit knowledge. According to
Cleeremans (1997), "at a given time, knowledge is implicit
when it can influence processing without possessing in and
of itself the properties that would enable it to be an object of
representation, and implicit learning is the process by which
we acquire such knowledge." (p.199) As for the notion of
"representation", we agree with Perruchet and Vinter
(submitted), who state that a representation has to represent
an entity in the real world and has to be in and of itself
manipulable as that entity (Perruchet and Vinter talk about

its "function within a causal system"). Therefore, an entity
that is an object of representation has to exist independently
from the "hardware" of the system by which it is
represented, making it available for information-processing
operations in a variety of contexts (Cleeremans, 1997) —
such as a rule that is applicable to different instances of a
certain problem.

Inherent to this issue is the question of whether the
mechanisms through which implicit and explicit knowledge
are acquired are best viewed as being subtended by separate
processing systems. This is exactly what has been suggested
by Shanks and colleagues (Shanks and St John, 1994;
Shanks, Johnstone, and Staggs, 1997; St John and Shanks,
1997), who proposed to abandon the distinction between
Implicit and Explicit Learning in terms of conscious
awareness being present or not, and instead suggested that
the  distinction is one of rule-based versus memory-based
learning processes. Before going any deeper into this matter,
let us consider two different ways of looking at learning in
general, to illustrate how they can possibly account for
Implicit Learning.

Computational Modelling of IL
Two views come forth when considering the mind in
general, and implicit learning in particular: the symbolic and
the connectionist approach. Each has its own view on how
knowledge is represented and how it might be manipulated.
The symbolic metaphor is usually associated with rule-
based learning, while the connectionist metaphor is
associated with memory-based learning based on the
statistical characteristics of the stimuli.

The Symbolic Metaphor. Cleeremans & Jiménez
(submitted) point out that a symbol system leaves no room
for a concept like IL. In a symbol system, expressions that
are formed are static representations of (real-world) entities
or relations, stored in the system's memory. These symbols,
be it of objects or of rules, have to be interpreted by
something — a processor — when they are to be used by
the system to augment its knowledge base (memory), that is,
to learn. From this perspective, IL can only exist if one
assumes the existence of a cognitive unconscious, i.e. a
subset of the mind that can basically process all the
information that the conscious system can process, only
minus consciousness. Consequently, consciousness is purely



epiphenomenal in this framework. It is exactly the fact that
all symbols have in and of themselves the property of being
an accessible representation, independent of the processor,
which makes them unsuitable as a metaphor for implicit
knowledge. For it is impossible to conceive of any
knowledge that could influence processing while remaining
unavailable to outside inspection. Importantly, this
perspective also makes it possible to assume the existence of
abstract knowledge that remains inaccessible to conscious
inspection.

The Connectionist Metaphor. By constrast, in a
connectionist network, there is no external processor
engaged in learning, that is, learning does not consist of
augmenting a distinct knowledge base. Instead, learning in a
connectionist network is the result of changes that occur in
the network (weight-change between units). These changes
are themselves caused by information processing, i.e. the
coupling of a certain input with a desired output Thus, this
processing also changes the process of learning (through for
example back-propagation of the error between the actual
and the desired output). Furthermore, as transient
knowledge in a connectionist network consists of activation
patterns, instead of symbols, a piece of knowledge does not
have to be "interpreted" by the central processor before it
can influence processing. These properties make it possible
for a connectionist network to possess knowledge that can
influence behaviour despite failing to be represented as
such. It makes it possible to consider implicitness as
something more than simply a property of the database or a
property of the processor.

From the connectionist point of view, subjects are said to
base their judgements on the basis of exemplar information,
without explicitly extracting abstract generalities, or rules –
the abstract processing is performed online during the test,
when necessary. The episodic account provides a refined
version of mere instance-based processing (e.g. Neal &
Hesketh, 1997). One of the most popular instances of
traiditional connectionist networks is the Simple Recurrent
Network (SRN), as proposed by Elman (1990). Here,
judgements are no longer based on instances, but on
instances within their context . Learning is nothing more than
a byproduct of the processing itself (weight-change), while
retrieval results from the overlap between processes
operating during study- and test-phases. Several variations
on this basic principle have been proposed, but the main
point remains as stated: no abstract rules in implicit
learning. Instead, more fragmentary knowledge is used to
gradually and dynamically build up representations op the
stimulus environment. This leaves room for implicitness,
not in the way of equating the existence of representations
with accesibility to consciousness (as do for example
Perruchet and Vinter, submitted; O'Brien and Opie, 1999),
but in virtue of the dynamical aspects of representation
building. For example, it might be possible to conceive of
conscious representations as being structured differently
than unconscious ones, or as being of lower quality.

Experimental Research on IL
Recently, some of the processes involved in word
segmentation have been described as rooted in the same
mechanisms as implicit learning and frequency estimation.
For instance, Saffran et al. (1997) conducted an experiment
on word segmentation in artificial speech. They exposed
children (6-7 years old) and adult subjects to a continuous
speech flow such as bupadapatubitutibudutabapidabu.
Subjects were told that the experiment was about the
influence of auditory stimuli on creativity (to make sure
learning was incidental and not intentional). The only cues
to word boundaries were the transitional probabilities
between pairs of syllables (e.g., bu-pa), which were higher
within words than between words. Afterwards, subjects
heard two sets of sounds, each consisting of three syllable
pairs, and were told to decide which one sounded more like
the tape they had heard. Both adult and child subjects
managed to perform well above chance, suggesting that
learning might proceed in the absence of attention and the
intention to do so, even despite the brevity of the exposure
(one ore two times a 21' tape). The fact that children did as
well as adults suggests a robust phenomenon that might play
a role in natural language acquisition.

In another interesting artificial language experiment,
Marcus et al. (1999) claim to have showed that 7-month-old
infants can "represent, extract, and generalise abstract
algebraic rules." In short, the infants were exposed to
artificial "sentences" during a training phase, and
subsequently were presented with a few test items, some of
them belonging to the same language, while others
introduced some structural novelty. For example, when an
infant had been habituated to gatiti or linana (both having
an ABB structure), it was subsequently presented with test
sentences such as wofefe or wofewo (the last one being of
ABA structure). The basic set-up is similar to the Saffran et
al. (1997) experiment, with the important difference that
there where the Saffran et al. test items were composed of
the same material as the training items, Marcus et al.
introduced a change in the sensory content of the material.
That is, prior to hearing the above illustrated test items, the
infants had never heard /wo/, or /fe/. Still, infants tended to
listen more to the sentences containing a structural novelty.
As a result, since this task could not be performed on the
basis of mere transitional probabilities, Marcus et al.
concluded that infants had the capacity to represent
algebraic rules. However, Marcus et al.'s claim that an SRN
could not model the observed effect was disputed by Elman
(Seidenberg & Elman, 1999; Elman, 1999) and McClelland
and Plaut (1999), basically on the account that an overlap
need not be present in the "raw input" itself. Instead "the
relevant overlap of representations required for
generalisation […] can arise over internal representations
that are subject to learning." (McClelland & Plaut, 1999,
p.2) Transfer and generalization remain precarious issues,
however, when it comes to computational modelling in a
connectionist network. An experiment by Shanks et al.
(1997) clearly illustrates this point.



Biconditional AGL: Shanks et al. (1997)

As mentioned before, Shanks and St John (1994) proposed
to abandon the idea of the conscious/unconscious dichotomy
in favour of a rule-based/instance-based dichotomy. The
basic idea is that humans possess two learning systems
capable of creating distinct forms of mental representation,
one system consisting of symbolic rule-abstraction
mechanisms and the other involving subsymbolic, memory-
based, connectionist mechanisms (see Shanks, 1998, for a
discussion). In this context, Shanks et al. considered transfer
in AGL tasks to be at least to some extent mediated by
abstract (rule-) knowledge and claimed that people
systematically become aware of the relevant regularities in
AGL tasks where only rule learning is possible. To
demonstrate, Shanks et al. exposed subjects to artificial
grammar strings generated by a biconditional grammar (see
also Mathews et al., 1989). Biconditional grammars involve
cross-dependency recursion (see Christiansen & Chater,
1999) such that letters that appear at each position before
and after a central dot depend on each other. An example is
given in Figure 1, where letter D is paired with F, G with L,
and so on.

Figure 1. A biconditional grammar string as used by Shanks et al.
(1997). Possible letters in each position before the dot are linked
biconditionally with the letters that may appear after the dot.

Shanks et al. constructed biconditional grammar training
strings as well as a set of grammatical and nongrammatical
and test strings, in such a way that grammatical and
nongrammatical test items could not be distinguished on the
basis of their overlap with the training strings in terms of
bigrams or trigrams (or any other n-gram). During training,
two groups of subjects were shown strings one a time on a
computer screen and had to perform one of two tasks on
each trial. One group (the match group) had been told that
the task was about memory, and had to select the correct
string among five strings presented on screen. The other
group (the edit group) was told that the strings had been
constructed according to rules and that their task was to find
them. On each trial, edit subjects had to indicate which
letters they thought violated or confirmed to the rules, and
were subsequently given feedback. All subjects then
performed a classification test in which they were asked to
decide which strings were grammatical or not. Shanks et al.
showed a dissociation between the two groups: While the
edit group performed well and most subjects extracted the
rules, the match group performed at a chance level, thus
suggesting that "instance-memorisation and hypothesis-
testing instructions recruit partially separate learning
processes." (Shanks et al., 1997, p.243)

The basic claim is thus that, in order to perform the
biconditional grammar task, it is necessary to conceive of
some abstract (symbolic) rule-like knowledge of the

grammatical structure, and that, subsequently, the
distinction made between grammatical and nongrammatical
strings cannot be simulated by a connectionist network
making use of simple frequency statistics. The goal of this
paper is to demonstrate that in fact no such abstract rules are
necessary and that, at least under some conditions,
biconditional grammar learning can be accomplished by a
network developing representations based on frequency
statistics.

A Simulation of Shanks et al.

Simulation Parameters and Procedure
The Simple Recurrent Network (SRN) is a connectionist
network especially designed to predict the next step in a
sequence. Its design allows it to "keep in memory" the
earlier steps in that sequence, by using what preceded as a
context. This context is a copy of the learning-state at time t-
1, which is fed back into the network at time t, together with
the new input. In this way, the network is able to integrate
the new input with what it has already learned in earlier
stages, and will predict on this basis the sequence step at
t+1. A typical example of an SRN is given in Figure 2.

Figure 2. The Simple Recurrent Network as conceptualised by
Elman (1990).

Importantly, on each time step the context units contain a
copy of the patterns of activation  that existed over the
hidden units at t-1. As described in Servan-Schreiber,
Cleeremans and McClelland (1988, 1989; see Cleeremans,
1993), learning progresses in a continuous fashion through
three stages, during which more and more temporal
contingency information is incorporated in the context, and
hence in the hidden unit representations. The statistical
regularities the SRN uses to predict the next letter are thus
gradually "stored" in the hidden unit representations of the
network. As a consequence, the network becomes able to
behave in a rule-like manner and to predict the next element
in the sequence as if it knew the grammar rules.

Network Architecture and Parameters. The SRN had 9
input and output units, necessary for representing the
information that was available to the subjects in the Shanks
et al. experiment. (The six letters of which the strings were
composed, D, F, G, L, K and X, as well as the beginning
and end of each string, together with the dot in between the
first and the last four letters of a string.) The number of
hidden units (and hence context units) was 100, which made
use of logistic adjustment. The learning algorithm was error
backpropagation, with a learning rate of .15 and the context
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being reset to zero after each complete string presentation.
Weight adjustment was not applied on the connections from
context to hidden units (1 on 1 relation). Momentum was set
at .9.

Training Material. The basic training material consisted of
a set of 18 strings as designed by Shanks et al. (List 1).
Based on these strings, they created 18 grammatical and 18
nongrammatical strings.

The items were to meet four objectives: (1) Grammatical
strings had to conform to the biconditional grammar: Letter
position 1 is linked to 5, 2 to 6 and so on, with the linked
letters being D–F, G–L, and K–X. (2) The use of the 6
letters was balanced, so that each letter appeared 3 times in
each of the 8 letter locations. (3) Each training string
differed from all other training strings by at least 4 letter
locations. (4) Each training item had a grammatical similar
item and an ungrammatical similar item that each differed
from the training item by only 2 letter positions. Each
training item was different from all other test items by at
least 3 letter locations. The basic simulation was carried out
on exactly these strings. A training epoch consisted of all 18
strings being presented once to the network, in a random
fashion.

Measurement of Accuracy. Different measurements of
accuracy exist, of which we used the Luce ratio (Luce,
1969) — a simple measure of relative strength in which the
activation of the target output unit is divided by the sum of
the activations of all output units. To assess network
performance, we considered the average Luce ratios for all
strings. In addition, we also considered the Luce ratio on a
letter-by-letter basis for more detailed analyses.

Simulation Results

Learning. In order to assess learning, the network was
tested before and during training on seven occasions. On
each test, the network was tested  on the 18 grammatical
training strings, the 18 new grammaticals, and 18
nongrammaticals. Results were obtained over 9 simulations
and averaged. As described before, the Luce ratio of the
output was computed for each element of each string.
Subsequently, the ratios were compared over the two
conditions of interest (grammatical test/nongrammatical
test) by means of an ANOVA, for each learning step.

As can be seen in Figure 3, the SRN was indeed able to
discriminate between grammatical and nongrammatical
strings. Original training strings were learned almost
perfectly from 100 epochs onwards. Further, the network
clearly discriminates between novel grammatical and
nongrammatical strings (i.e., better predictions for
grammatical strings), even before it is completely successful
in mastering the training strings. ANOVA measures are, at
50 epochs, F(1,161)=24.1, p<.001; at 100 epochs,
F(1,161)=36.3, p<.001; at 300 epochs, F(1,161)=33.5,
p<.001. From 1000 epochs onwards, the network gets a little
'overtrained' on the original strings, causing it to do
somewhat less well on the unseen strings; at 1000 epochs
F(1,161)=13.3, p<.001; at 3000 epochs F(1,161)=8.34,

p<.005. The figure also makes it clear that the main effect is
not due to some initial biasing since initial performance is
identical for the three types of strings (prior to training,
F(1,161)=1.13, ns; at 10 epochs, F(1,161)=.048, ns).

Figure  3. Network learning, measured with the Luce ratio. Error
bars are shown for novel G and nonG strings.

Based on these findings we can therefore conclude that
contrary to what Shanks et al. claimed, the SRN can in fact
distinguish between grammatical and nongrammatical
strings generated by a biconditional grammar without
making use of explicit rules. In order to rule out the
possibility of the SRN merely having learned to predict the
dot and/or the end of a string, we computed the mean Luce
ratios on a letter-by-letter basis, as presented below in Table
1. Shown are the important ratios, belonging to the letters
after the dot (ratios for training strings had value 1). When
the difference exceeds .05, the highest ratio is in bold.

Table 1 clearly shows the mean Luce ratios on a letter-by-
letter basis to be higher in grammatical than in
nongrammatical strings. This indicates that the network has
learned something other than merely the dot or the end of
the string.

Table 1. Mean Luce ratios on a letter-by-letter basis, in each
position, after 3000 epochs, for grammatical and nongrammatical
test strings (included is the frequency of occurrence of the letter in
each position).
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GRAM
5th # 6th # 7th # 8th #

D .25 (2) .89 (2) .01 (4) .69 (4)
F .70 (4) .50 (4) .55 (1) .18 (3)
G .71 (2) .49 (2) .26 (5) .38 (3)
K .41 (2) .72 (5) .09 (3) .99 (2)
L .58 (4) .99 (3) .11 (3) .68 (3)
X .43 (4) .56 (2) .33 (2) .01 (3)

NGRAM
5th # 6th # 7th # 8th #

D .19 (2) .70 (2) .72 (4) .13 (4)
F .39 (4) .87 (4) .20 (1) .75 (3)
G .37 (2) .37 (2) .17 (5) .01 (3)
K .46 (2) .32 (5) .19 (3) .33 (2)
L .74 (4) 1.00 (3) .00 (3) .50 (3)
X .50 (4) .38 (2) .50 (2) .00 (3)

When the network fails to learn. In order to illustrate
exactly when a network can learn, we include a simulation
of a situation in which it fails to learn. We created two
(grammatical) strings with a high degree of similarity,
FGGG.DLLL and KGGG.XLLL, and presented them to the
network in the same way as was done in the main
simulation. Figure 4 shows the activation values of the 9
output nodes for one string (the other showed the same
evolution in activation values), as well as the evolution of
the Luce ratios.

Figure 4. Left Panel: Evolution of output unit activations after
presentation of the dot in the FGGG.DLLL string. Right Panel:
Evolution of the Luce ratio after presentation of the dot for the two
strings FGGG.DLLL / KGGG.XLLL.

Here , the network fails to reach a decision: it gets stuck at a
"post-dot" activation value of 0.5 for both D and X (exactly
the same plot is produced for the other string). The reason
why learning fails in this case is addressed in the discussion.

Discussion
What had to be shown was shown, namely that a
connectionist network, more precisely a Simple Recurrent
Network, is able to make a distinction between grammatical
and nongrammatical letter strings, generated from a
biconditional grammar as used by Shanks et al. (1997).
These strings were designed so that, according to them,
subjects had to make use of abstract rules in order to

accomplish the categorisation task. This paper clearly
demonstrates that this is not the case, and that judgements of
grammaticality using biconditional grammars can be made
by extracting statistical features out of the material.

One of the major challenges in working with
connectionist networks is how to probe the hidden units in
order to "unfold" the complex representation of the stimulus
material. Cluster analysis or principal component analysis
performed on the hidden unit activations are standard ways
of doing so, but may not always provide insight into how
the representations enable the network to solve the task. The
fact that cluster analysis does not reveal a clear structure
does not necessarily imply that there is no structure. It may
simply mean that the representational aspect needed to
accomplish the most important aspect of the task, is not the
most important aspect. Thus, clustering will not be carried
out on that aspect — which, importantly, does not
necessarily entail that the network is unable to use the
relevant information successfully (see Cleeremans, 1993).

Biconditional grammars are difficult to master because
they require maintaining information accross intervening
irrelevant items. Servan-Schreiber et al. (1991) explored the
conditions under which the network can carry information
about distant sequential contingencies (e.g. 1–5) across
intervening elements, to distant, to-be-predicted elements. It
appeared that this information is retained as long as it is in
some way relevant to predicting each intervening item (the
prediction-relevance criterion). When it is not, the relevant
information tends to be lost as training progresses, as a
consequence of the way of the way in which representations
of the temporal context are only gradually built up. Indeed,
for different predictions to be achieved at any point in a
sequence, the network needs to have developed different
internal representations of the sequence so far. When two
sequences are identical for a number of time steps so that
the relevant information for making different predictions has
to be retained over these intervening elements, each training
trial actually induces the development of increasingly
similar internal representations of the two sequences
(because they require similar predictions)— exactly the
opposite of what would be required for the network to
master the material. Hence, the network fails to predict the
fifth letter in the example above because the first letter of
each string fails to be prediction-relevant when processing
the intermediate Gs and ends up, as a result, with internal
representations that fail to be sufficiently distinctive of each
string to enable it to make different predictions about the
fifth letter when presented with the dot.

Shanks et al. however, could not present the extremely
simple (and for the network, extremely difficult) material to
their subjects, for everyone would have discovered the rule
in that case. Importantly however, the way in which their
material is constructed results, for instance, in all the
training strings to be determined by their first two elements
— something that enables the network to learn the
construction paths of each training string very quickly. In
addition, in most cases, sequential information was in fact
prediction-relevant on each step, which makes it easy for the
network to distinguish between grammatical and
nongrammatical strings. These findings suggest that the
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Shanks et al. material was in fact inadequate to test for the
rule based versus memory based distinction. As mentioned
before however, it is clearly impossible to conceive of easy
strings like KGGG.XLLL for which the rules are not
discovered by subjects.

Insofar as simulations are concerned, while the SRN fails
on such degenerate cases (unlike human subjects), the issue
of whether this failure reflects a principled limitation of
connectionist networks in general remains an open issue.
Servan–Schreiber et al. showed that even very slight
adjustments to the statistical structure of otherwise identical
sequences could greatly enhance the prediction accuracy of
the SRN. Thus, embedded information, as in recursive
structures, need only be prediction-relevant in terms of the
statistical distribution of the embedded elements for such
structures to be successfully mastered by an SRN. There is
also accumulating evidence that the pattern of failures
observed with models like the SRN closely mimic that
observed with human subjects (e.g., Christiansen & Chater,
1999) in the domain of natural language learning.

Empirically, we would like to suggest that experiments be
carried out on a slightly different basis than used in Shanks
et al., since their 'match' group showed no sign at all of
having learned the material. One possibility would consist
of changing the instructions of the match group so that
attention is not drawn away from certain properties that
might allow subjects to become sensitive to the structural
properties of the material.

To conclude, we have demonstrated that a simple
connectionist network can in fact master material previously
considered to require the acquisition of rule-based
knowledge for mastery of novel instances to occur. This
outcome does not entail that rule-based learning never
occurs (as it obviously does for some subjects in Shanks et
al.'s experiments), but simply that biconditional grammars
might not address all the issues involved in efforts to
dissociate rule-based vs. memory-based learning processes
in the implicit learning literature. Further simulation work
will attempt to explore these issues in greather depth.
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