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Abstract 

Studies suggest that visual attention, guided in part by 
features’ visual salience, is necessary for change detection.  
An image processing algorithm was used for measuring the 
visual salience of the features of scenes, and participants’ 
ability to detect changes made to high and low salience 
features was measured with a flicker paradigm while their eye 
movements were recorded.  Changes to high salience features 
were fixated sooner, for shorter durations, and were detected 
faster and with higher accuracy than those made to low 
salience features.  The implications of these results for visual 
attention and change detection research are discussed.   

Keywords: change detection; visual salience; eye tracking 

Introduction 
Attention is the process of allocating perceptual and 
cognitive resources to select which information in the 
environment will enter consciousness.  Finding a person in a 
crowd, locating one’s car in a parking garage, identifying 
features that distinguish predator from prey, or finding a red 
circle amongst red and blue squares in a laboratory 
experiment all require control of visual attention (Kahneman 
& Henik, 1981; Triesman & Gelade, 1980; Wolfe, 2003).  
Attention contributes to an ability to make sense of our rich 
visual world and learn from experience.  

The degree to which attention is guided by the features 
of the viewed stimulus versus the viewer’s goals, 
expectations, and subjective evaluations are of paramount 
importance to researchers who study visual attention (Egeth 
& Yantis, 1997; Torralba, Oliva, Castelhano, & Henderson, 
2006; Treue, 2003).  Recently, computational saliency 
models have been developed to analyze visual scenes in 
terms of their stimulus properties (Itti, Koch, & Niebur, 
1998; Koch & Ullman, 1985; Parkhurst, Law, & Niebur, 
2002).  These models have been used to predict viewers’ 
fixation patterns as they view images, providing support for 
the suggestion that bottom-up visual saliency contributes to 
the guidance of visual attention (Itti & Koch, 2001; 
Foulsham & Underwood, 2008). 

Other research shows that in the absence of visual 
attention we are particularly poor at detecting changes made 
to the features of scenes, a phenomenon known as change 
blindness (Hollingworth, 2006; Rensink, 2000a; 2000b; 
Rensink, O’Regan, & Clark, 1997; Simons & Levin, 1997).  
Changes that occur during saccades, eye-blinks, interleaved 
frames, cuts, and pans largely escape perceptual awareness. 

In experimental change detection tasks, visual salience is 
one factor guiding the direction of attention to features in 
the scene, and thus it is conjectured that salience contributes 
to whether and how quickly the changing feature will be 
detected (Kelley, Chun, & Chua, 2003; Simons & 
Ambinder, 2005).  This is suggested under the assumption 
that viewers must direct visual attention to the feature that is 
changing, and are unlikely to do so if it is less salient than 
other features competing for visual attention.   

Yet, contrary to this prediction, two recent studies, Stirk 
and Underwood (2007) and Wright (2005), report that the 
visual salience of stimulus image features, determined with 
formal salience algorithms, does not predict response times 
in a change detection task.  By contrast, both of these 
studies found that the higher level semantic characteristics 
of changing features influenced their detection speeds (i.e., 
the changing feature’s congruence with the theme of the 
scene, or whether it had been subjectively rated as high or 
low salience by independent viewers).  Neither of these 
studies directly measured visual attention (i.e., eye 
movements), however, so it is uncertain how salience may 
have affected visual attention.  As such, why these previous 
studies failed to find a relation between salience and change 
detection in requires closer scrutiny.   

In the current research, eye movements are used to 
systematically assess the distribution of attention across 
each change detection trial.  The primary goals of the 
current study are to examine: 1) whether stimulus feature   
salience predicts visual attention in a change detection 
paradigm, and 2) whether change detection requires overt 
visual attention, or whether covert attention suffices.  

Computational saliency maps were used to identify the 
visual salience of the features within a set of images (Itti et 
al., 1998).  Changes were applied to features identified as 
either high or low salience, and participants viewed these 
modified images interleaved with the originals in a flicker 
paradigm (Rensink et al., 1997).  Visual attention was 
measured with a remote eye-tracking system that enabled 
examination of the fixation sequences that index overt 
visual attention, as well as the fixation durations that index 
the amount of cognitive processing of features during the 
search process.  In Experiment 1 participants viewed scenes 
until they executed a manual response indicating change 
detection.  Since the amount of time they had to view the 
scenes was open-ended, this experiment is limited in its 
ability to determine whether overt attention is necessary or 
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(2005) examined whether visual saliency predicts 
performance on a change detection task using a formal 
approach similar to that of the current study.  They found, 
however, that visual salience failed to predict change 
detection response times.  These null effects are inconsistent 
with our findings.  There were, however, a number of 
differences between studies.  Most notably, Stirk and 
Underwood (2007) manipulated the semantic role of the 
changed object in the scene, revealing that participants were 
faster to detect changes made to scene incongruent than 
congruent features.  Similarly, Wright (2005) found that, 
although formally defined visual salience failed to predict 
response times, independent participants’ subjective 
evaluations of feature salience predicted change detection.   

Relatedly, some theorists caution against over-
emphasizing the role of salience at the expense of higher-
level subjective processes that affect visual guidance 
(Neider & Zelinsky, 2006; Oliva & Torralba, 2007; Torralba 
et al., 2006).   We do not disagree with this assertion, and 
indeed our data showed that visual salience was by no 
means a perfect predictor of eye movements or response 
times.  We assume that the viewers’ interpretation of the 
scenes and the features that changed varied across images, 
but that these effects were randomly distributed across 
conditions.  As such, in the very least, our results indicate 
that feature salience plays a role in the guidance of visual 
attention in change detection.  Perhaps more importantly, 
our analysis of eye movements suggests that low-level 
visual saliency plays dual roles in change detection tasks, 
affecting both the rapidity of directing visual attention to the 
changing features and the amount of overt visual attention 
necessary before confidence is sufficient for response.  

In conclusion, the current study showed that stimulus 
salience contributes to the detection of changes in visual 
scenes.  Participant’s eye movements revealed that feature 
salience influenced visual attention, which in turn affected 
change detection.  The results of Experiment 2 provide 
additional support that low-level visual salience guided 
visual attention and participants’ ability to accurately 
identify changes, even with an impoverished time limit on 
the presentation of the stimulus.  These results thus suggest 
that change detection typically involves pre-attentive as well 
as attentional processes that are systematically related to 
stimulus salience.    
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