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Abstract21

Geographically weighted Poisson regression (GWPR) is widely used for spatial regression analysis22

of count data. However, it tends to be unstable because of a fundamental drawback of Poisson23

regression. To overcome the drawback, we introduce a log-linear approximation to estimate GWPR24

without relying on Poisson regression framework. The proposed approach approximates GWPR25

using the basic GWR modeling with transformed explained variables. Monte Carlo experiments26

show that the proposed GWPR outperforms the conventional GWPR in terms of both estimation27

accuracy and computationally efficiency. Finally, the proposed GWPR is applied to an analysis of28

coronavirus disease 2019 (COVID-19).29

Acknowledgements This research was supported by JST-Mirai Program Grant Number JPMJMI20B2,34

Japan, and the Joint Support Center for Data Science Research at Research Organization of Inform-35

ation and Systems (ROIS-DS-JOINT) under Grant 003RP2020.36

1 Introduction37

Number of crimes, infected people, cars, and other counts have been monitored and opened to38

the public recently. Geographically weighted Poisson regression (GWPR) is a popular spatial39

regression approach to investigate spatially varying influencing factors on count outcome.40

For example, [7] applied GWPR to estimate spatially varying influence of the proportion of41

professional and technical workers, unemployment rate, and other covariates on working-age42

mortality counts. [5] used GWPR to analyze the number of vehicle collisions.43
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Still, as we will illustrate later, GWPR tends to be unstable. This is attributable to the44

following reasons. First, Poisson regression is identifiable only weakly or even unidentifiable45

depending on the data configuration [8]. For example, Poisson regression does not have the46

maximum likelihood solution if covariates are perfectly collinear for the sub-samples with47

positive observations. Second, the GWPR model, which is a local model, becomes unstable if48

there are many zeros nearby the regression point; if most observations nearby a site take zero49

values, the GWPR model at the site will be difficult to estimate. Because of these problems,50

it is not reasonable to rely on Poisson regression even if we want to estimate GWPR.51

The objective of this study is to propose a stable version of GWPR. To achieve it, we52

apply a log-linear approximation of [6] estimating the conventional Poisson regression without53

annoying the identifiable problem, to GWPR.54

2 Model55

We approximate the following over-dispersed GWPR model:56

yi ∼ oPoisson(µi, σ
2), µi = ziexp

(
K∑

k=1
xi,kβi,k

)
(1)57

where yi is the explained count variable at i-th zone, zi is the offset variable, xi,k is the58

k-th covariable, and βi,k is the spatially varying coefficient. oPoisson(µi, σ
2) is the over-59

dispersed Poisson distribution with mean µi and overdispersion parameter σ2. The count60

data {y1, . . . yN} is equi-dispersed if σ2 = 1, which the usual GWPR assumes, over-dispered61

if σ2 > 1, and under-dispersed if σ2 < 1.62

To stably estimate the model, we replace the Poisson model estimation with a log-linear63

model estimation proposed by [6]. They showed that over-dispersed Poisson regression can64

be approximated by a log-linear regression model with explained variable y?
i = log( yi+0.5

zi
)−65

1+0.5r
yi+0.5 and the weight for i-th sample wi = yi + 0.5 where r is the ratio of zero counts. The66

log-linear model is estimated by the usual ordinary least squares fit. Thus, it is free from the67

identification problem in conventional Poisson model estimation. Despite the simplicity, the68

coefficient estimation accuracy is compatible to the usual (over-dispersed) Poisson regression69

for moderate to large samples while better for small samples owing to the stability.70

This study applies their approach to GWPR. The resulting approximate GWPR model71

yields72

y?
i =

K∑
k=1

xi,kβi,k + εi, εi ∼ N
(

0, σ
2

wi

)
(2)73

Because the model is identical to the basic GWR model, the model is easily estimated,74

inferred, and extended in the same manner as the usual GWR model. It implies that the75

proposed model estimation is much faster than the conventional GWPR model estimation76

which iterates re-weighting samples and estimating the GWR model (i.e., iteratively re-77

weighted least squares estimation). If Eq. (2) acheives a reasonable estimation accuracy, it78

will be valuable as a simpler and faster alternative of the usual GWPR.79

3 Monte Carlo experiment80

3.1 Outline81

This section examines the estimation accuracy of the approximate GWPR with fixed kernel82

(Propose 1), the same with ridge regularization (Propose 2; see [9]), which imposes an ridge83

2            Stable geographically weighted Poisson regression



prior, with the usual Poisson regression (GLM), GWPR with fixed kernel (GWPR), and84

GWPR with adaptive kernel (GWPRa). While geographically weighted models estimate85

spatially varying coefficients by locally weighting samples using a distance-decaying kernel,86

the fixed kernel means that the bandwidth, which is estimated from data, is the same across87

the study area. The adaptive bandwidth determines the the band to include a certain number88

of samples within the bandwidth distance (see, [2]).These bandwidths are optimized by89

leave-one-out cross-validation. The Gaussian kernel is used. These models are fitted to the90

synthetic count data generated from91

yi ∼ oPoisson(µi, σ
2), µi = exp (βi,0 + xi,1βi,1 + xi,2βi,2) , xi,k ∼ N(0, 1). (3)92

GW(P)R does not assume any process for the coefficients; for the simulation, we assume93

the coefficients to obey a moving average process βi,k = bk +
∑N

j=1 ci,juj , uj ∼ N(0, 1), with94

sample size N = 200. bk represents the mean of the k-th SVC. We assume b1 = 2.0 and95

b2 = −0.5. The spatial weight ci,j is given by the (i, j)-th element of a spatial proximity96

matrix whose (i, j)-th element equals exp(−(di,j)2) where di,j is the Euclidean distance97

between the sample sites i and j. Following many data in regional science whose samples are98

concentrated in central urban areas while sparse in suburban areas, spatial coordinates for99

the samples are generated from two independent standard normal distributions. Estimation100

accuracy is compared in two scenarios (see Figure 1). The first assumes {b0, σ
2} = {0, 1}101

whose samples are equi-dispersed and have a moderate number of zeros. The conventional102

GWPR is likely to work in this scenario. The second assumes {b0, σ
2} = {−2, 10} whose103

samples are over-dispersed and have many zeros. See Figure 1 for examples of samples in104

these scenarios.105

In the simulation, each model is estimated 200 times and the root mean squared error106

(RMSE) and the bias for the SVCs {βi,0, βi,1, βi,2} are evaluated. Note that, in the conference,107

we will also perform simulations assuming spatially dependent covariates.108

3.2 Result109

Figures 2 and 3 display the boxplots for the RMSE and bias for the estimated spatially varying110

coefficients under the two scenarios. The results in the two scenarios are similar. GLM,111

GWPR, and GWPRa tend to have large RMSE and bias values. The standard GLM-based112

approach including GWPR is found to be unstable. By contrast, our proposed models have113

considerably smaller RMSE and bias values than GLM, GWPR, and GWPRa across cases.114

For example, in case 1, the mean RMSEs for βi,1 are 2.215 (GLM), 0.925 (Proposal 1), 0.958115

Scenario 1: 𝑏!, 𝜎" = {0, 1}
(36.0% of samples are zeros)

Scenario 2: 𝑏!, 𝜎" = {−2, 10}
(86.0% of samples are zeros)

Figure 1 Examples of spatial plots for the count data generated under the scenarios A and B.
Black dots represent zero values while lighter dots represent larger count values.
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GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa

GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa

(174.2)                     (177.5) (180.1)               (23.6)   (8.0)             (71.3) (69.7)                   (23.6)  (23.0)  (22.5)

RMSE (β!,#) RMSE (β!,#) RMSE (β!,$)

Bias (β!,#) Bias (β!,#) Bias (β!,$)

Figure 2 Boxplots of the RMSE and biases for the coefficients under the scenario A (σ2 = 1, b0 = 0).
Pr.1 and Pr.2 represent Proposal 1 and Proposal 2. If the maximum RMSE value exceeds the
displayed boundary in each panel, the maximum value is described above the panel.

(Proposal 2), 2.126 (GWPR), and 2.133 (GWPRa). The result suggests that our approximate116

GWPR is more stable and accurate than the usual GLM-based approaches.117

We also confirmed the computational efficiency of the proposed models. For example,118

for 2000 samples, GWPR took 620 seconds on average of five trials while Proposal 1 and 2119

took only 9 and 72 seconds, respectively. While the accuracy of GWPR has been considered120

good enough, our study showed that GWPR can be unstable and it is better to employ the121

proposed approximation to stabilize it.122

4 Application to COVID-19 data123

This section applies the proposed approach (Proposal 1) and GWPR to an analysis of124

coronavirus disease 2019 in the Tokyo metropolis, Japan. The explained variable is the125

number of reported cases by municipality during January 2021 (see Figure 5). The covariates126

are nighttime population density (PopDen) and day-night population ratio (DNrat) (source:127

National census 2015). For offset variable, we use nighttime population. Thus, we estimate128

spatially varying influence of PopDen and DNrat on the number cases standardized by the129

population.130

The optimized bandwidth values are 88.4 km for GWPR and 55.3 km for Propose 1.131

The estimated coefficients are plotted in Figure 6. This figure suggests that the proposed132

and usual GWPR estimates often have considerably different map patterns. Based on the133

simulation result, ours is more reliable. The intercept estimated from Proposal 1 suggests134

higher infection risk in the eastern part of the study area including the center of Tokyo. The135

estimated coefficients on PopDen increases in the residential area in the center of this figure.136

These results are intuitively reasonable. The estimated coefficient on DNrat demonstrates137
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GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa

GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa GLM  Pr.1  Pr.2  GWPR GWPRa

RMSE (β!,#)

(155.8)                   (156.4) (157.9)               (67.0)                        (70.2)  (70.9)                  (43.2) (43.9)  (21.7)

RMSE (β!,#) RMSE (β!,$)

Bias (β!,#) Bias (β!,#) Bias (β!,$)

Figure 3 Boxplots of the RMSE and biases for the coefficients under the scenario B (σ2 =
10, β0 = −2). Pr.1 and Pr.2 mean Proposal 1 and Proposal 2. If the maximum RMSE value exceeds
the displayed boundary in each panel, the maximum value is described above the panel.

0 30 km

Figure 4 Number of cases by municipality in January 2021.
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Intercept PopDen DNratio

Poisson Poisson Poisson

Propose 1 Propose 1 Propose 1

0 30 km

0 30 km

0 30 km

0 30 km

0 30 km

0 30 km

Figure 5 Estimated spatially varying coefficients (Top: GWPR; Bottom: Propose 1)

that, in the western suburban area, infection risk tends to increases in municipalities with138

population concentration during daytime. These findings will be useful to consider measures139

against COVID-19.140

5 Summary141

We demonstrate that GWPR can be estimated accurately and computationally efficiently142

through the basic GWR procedure if only a simple transformation is applied to the explained143

variables. The proposed approach will enable us applying multiscale GWR ([4]), geographic-144

ally and temporally weighted regression ([3]), and other extended GWR, which was developed145

for Gaussian data, to count data. Based on studies in geostatistics for non-Gaussian data146

(e.g., [1]), it is also important to consider residual spatial dependence.147
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