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Statistical Learning Within and Across Modalities:
Abstract versus Stimulus-Specific Representations

Christopher M. Conway (cmc82@cornell.edu)              Morten H. Christiansen (mhc27@cornell.edu)
Department of Psychology, Uris Hall, Cornell University

Ithaca, NY 14853 USA

Abstract

When learners encode sequential patterns and generalize their
knowledge to novel instances, are they relying on abstract or
stimulus-specific representations? Artificial grammar learning
(AGL) experiments showing transfer of learning from one
stimulus set to another has encouraged the view that learning
is mediated by abstract representations that are independent of
the sense modality or perceptual features of the stimuli. Using
a novel modification of the standard AGL paradigm, we
present data to the contrary. These experiments pit abstract,
domain-general processing against stimulus-specific learning.
The results show that learning in an AGL task is mediated to a
greater extent by stimulus-specific, rather than abstract,
representations. They furthermore show that learning can
proceed separately and independently (i.e., in parallel) for
multiple input streams that occur along separate perceptual
dimensions or modalities. We conclude that learning
probabilistic structure and generalizing to novel stimuli
inherently involves learning mechanisms that are closely tied
to perceptual features.

Keywords: statistical learning; artificial grammar learning;
modality-specificity; crossmodal; intramodal

Introduction
The world is temporally bounded. The events that we

observe, as well as the behaviors we produce, occur
sequentially over time. It is therefore important for
organisms to have the ability to process sequential
information. One way of encoding sequential structure is by
learning the statistical relationships between sequence
elements occurring in an input stream. Statistical learning of
sequential structure is involved in many aspects of human
and primate cognition, including skill learning, perceptual
learning, and language processing (Conway & Christiansen,
2001).

Statistical learning has been demonstrated in many
domains, using auditory (Saffran, Johnson, Aslin, &
Newport, 1999; Saffran, Newport, & Aslin, 1996), visual
(Baker, Olson, & Behrmann, 2004; Fiser & Aslin, 2002),
tactile (Conway & Christiansen, 2005), and visuomotor
stimuli (Cleeremans & McClelland, 1991; Nissen &
Bullemer, 1987). However, several questions remain
unanswered. For instance, it is not entirely clear to what
extent learning is specific to the input modality in which it
is learned.  This has been a hotly debated issue in cognitive
science (e.g., Christiansen & Curtin, 1999; Marcus, Vijayan,
Rao, & Vishton, 1999; McClelland & Plaut, 1999;
Seidenberg & Elman, 1999). Is statistical learning stimulus-
specific or is it abstract and amodal? The traditional

“abstractive” view posits that learning consists of extracting
the abstract, amodal rules of the underlying input structure
(e.g., Marcus et al., 1999; Reber, 1993). Alternatively,
instead of abstract knowledge, participants may be learning
the statistical structure of the input sequences in a modality-
or feature-specific manner (e.g., Chang & Knowlton, 2004;
Conway & Christiansen, 2005).

Another unanswered question is: can people learn
different sets of statistical regularities simultaneously across
and within modalities? The answer to this question will help
reveal the nature of the underlying cognitive/neural
mechanisms of statistical learning. If people can learn
multiple concurrent streams of statistical information
independently of one another, it may suggest the existence
of multiple, modality-specific mechanisms rather than a
single amodal one.

A Modified Artificial Grammar Design
One way to explore these issues is by using the artificial
grammar learning (AGL) task. In a standard AGL
experiment (Reber, 1967), an artificial grammar is used to
generate stimuli that conform to certain rules governing the
order that elements can occur within a sequence. After being
exposed to a subset of structured sequences under incidental
learning conditions, it is participants’ task to classify novel
stimuli in terms of whether they conform to the rules of the
grammar. Participants typically achieve a moderate degree
of success despite being unable to verbally express the
nature of the rules, leading to the assumption that learning is
“implicit”. Furthermore, because the task presumably
requires learners to extract the probabilistic structure of the
sequences, such as element co-occurrences, learning can be
regarded as one of computing and encoding statistically-
based patterns.

We introduce a novel modification of the AGL paradigm
to examine the nature of statistical learning within and
across modalities. We used two different finite-state
grammars in a cross-over design such that the grammatical
test sequences of one grammar were used as the
ungrammatical test sequences for the other grammar. In the
training phase, each grammar was instantiated in a different
sense modality (auditory tones versus color sequences,
Experiment 1) or within the same modality along different
perceptual “dimensions” (colors versus shapes, Experiment
2A; tones versus nonwords, Experiment 2B) or within the
same perceptual dimension (two different shape sets,
Experiment 3A; or two different nonword sets, Experiment
3B). At test, all sequences were instantiated in just one of
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the vocabularies they were trained on (e.g., colors or tones
for Experiment 1).

For example, in Experiment 1, participants were exposed
to visual sequences of one grammar and auditory sequences
from the other grammar. In the test phase, they observed
new grammatical sequences from both grammars, half
generated from one grammar and half from the other.
However, for each participant, all test items were
instantiated only visually or only aurally.

This cross-over design allows us to make the following
prediction. If participants learn the abstract underlying rules
of both grammars, they ought to classify all sequences as
equally grammatical (scoring 50%). However, if they learn
statistical regularities specific to the sense modality in
which they were instantiated, participants ought to classify a
sequence as grammatical only if the sense modality and
grammar are matched appropriately, in which case the
participants should score above chance levels. We also
incorporated single-grammar conditions to provide a
baseline level for comparison to dual-grammar learning.

Experiment 1: Crossmodal Learning
Experiment 1 assesses crossmodal learning by presenting
participants with auditory tone sequences generated from
one grammar and visual color sequences generated from a
second grammar. We then test participants using novel
grammatical stimuli from each grammar that are instantiated
in one of the vocabularies only (tones or colors), cross-
balanced across participants. If participants learn the
underlying statistical regularities of the grammars specific to
the sense modality in which they were presented, they ought
to classify the novel sequences appropriately. On the other
hand, if instead participants are learning the abstract,
amodal structure of the sequences, all test sequences will
appear equally grammatical, and this should be reflected in
their classification performance.

Method
Subjects For Experiment 1, 40 participants (10 in each
condition) were recruited for extra credit from Cornell
University undergraduate psychology classes.

Materials Two different finite-state grammars, Grammar A
and Grammar B (shown in Figure 1), were used to generate
two sets of non-overlapping stimuli. Each grammar had 9
grammatical sequences used for the training phase and 10
grammatical sequences used for the test phase, all sequences
containing between three and nine elements. As Figure 1
shows, the sequence elements were the letters X, T, M, R,
and V. For Experiment 1, each letter was in turn instantiated
either as one of five differently colored squares or one of
five auditory tones. The five colored squares ranged along a
continuum from light blue to green, chosen such that each
was perceptually distinct yet similar enough to make a
verbal coding strategy difficult. The five tones had
frequencies of 210, 245, 286, 333, and 389 Hz. These
frequencies were chosen because they neither conform to
standard musical notes nor contain standard musical

intervals between them (see Conway & Christiansen, 2005).
As an example, for one participant, the Grammar A
sequence “V-V-M” might be instantiated as two light green
stimuli followed by a light blue stimulus, whereas for
another participant, this same sequence might be
instantiated as two 389 Hz tones followed by a 286 Hz tone.

Figure 1: Grammar A (top) and Grammar B (bottom)
used in all three experiments. The letters from each
grammar were instantiated as colors or tones (Experiment
1), colors or shapes (Experiment 2A), tones or nonwords
(Experiment 2B), two different shape sets (Experiment 3A),
or two different nonword sets (Experiment 3B).

All visual stimuli were presented in a sequential format in
the center of a computer screen. Auditory stimuli were
presented via headphones. Each element (color or tone) of a
particular sequence was presented for 500ms with 100ms
occurring between elements. Each sequence was separated
by 1700ms blank screen.

Procedure Participants were randomly assigned to one of
two experimental conditions or one of two baseline control
conditions. Participants in the experimental conditions were
trained on color sequences from one grammar and tone
sequences from the other grammar. Modality-grammar
assignments were cross-balanced across participants.
Additionally, the particular assignment of letters to visual or
auditory elements was randomized for each participant.
Participants were told that they would hear and/or see
sequences of auditory and visual stimuli. Importantly, they
were not explicitly told of the existence of the grammars,
underlying rules, or regularities of any kind. However, they
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were told that it was important to pay attention to the stimuli
because they would be tested on what they observed. The 18
training sequences (9 from each grammar) were presented
randomly, one at a time, in six blocks, for a total of 108
sequences. Note that because the order of presentation was
entirely random, the visual and auditory sequences were
completely intermixed with one another.

In the test phase, participants were instructed that the
stimuli they had observed were generated according to a
complex set of rules that determined the order of the
stimulus elements within each sequence. Participants were
told they would now be exposed to new color or tone
sequences that they had not yet observed. Some of these
sequences would conform to the same set of rules as before,
while the others would be different. Their task was to judge
which of the sequences followed the same rules as before
and which did not. For the test phase, 20 sequences were
used, 10 that were grammatical with respect to one grammar
and 10 that were grammatical with respect to the other. For
half of the participants, these test sequences were
instantiated using the color vocabulary (Visual-
Experimental condition), while for the other half, the test
sequences were instantiated using the tone vocabulary
(Auditory-Experimental condition). A classification
judgment was scored as correct if the sequence was
correctly classified in relation to the sense modality in
question.

Participants in the baseline control conditions followed a
similar procedure except that they received training
sequences from only one of the grammars, instantiated in
just one of the sense modalities, cross-balanced across
participants. The nine training sequences were presented
randomly in blocks of six for a total of 54 presentations. The
baseline participants were tested using the same test set,
instantiated with the same vocabulary with which they were
trained on. Thus, the baseline condition assesses visual and
auditory learning with one grammar alone (Visual-Baseline
and Auditory-Baseline conditions).

Results and Discussion
We report mean correct classification scores (out of 20) and
t-tests compared to chance levels for each group: 12.7
(63.5%), t(9)=2.76, p<.05 for the Visual-Experimental
condition; 14.1 (70.5%), t(9)=4.38, p<.01 for the Auditory-
Experimental condition; 12.4 (62.0%), t(9)=2.54, p<.05 for
the Visual-Baseline condition; and 13.1 (65.5%), t(9)=3.44,
p<.01 for the Auditory-Baseline condition. Thus, each
group’s overall performance was better than what would be
expected by chance. Furthermore, we compared each
experimental group to its respective baseline group and
found no statistical differences: Visual-Experimental versus
Visual-Baseline, t(9)=.22; p=.83; Auditory-Experimental
versus Auditory-Baseline, t(9)=1.1; p=.30.

These results clearly show that participants can
simultaneously learn statistical regularities from input
generated by two separate artificial grammars, each

instantiated in a different sense modality1. Perhaps
surprisingly, the levels of performance in the dual-grammar
experimental conditions are no worse than those resulting
from exposure to stimuli from just one of the grammars
alone. This lack of a learning decrement suggests that
learning of visual and auditory statistical structure occurs in
parallel and independently. Furthermore, these results stand
in contrast to previous reports showing transfer of learning
in AGL between two different modalities (e.g., Altmann,
Dienes, & Goode, 1995). Our data essentially show a lack of
transfer. If our participants had exhibited transfer between
the two sense modalities, then all test sequences would have
appeared grammatical to them, driving their performance to
chance levels. Thus, our data suggests that the knowledge of
the statistical patterns, instead of being amodal or abstract,
was stimulus-specific. We next ask whether learners can
similarly learn from two different statistical input streams
that are within the same sense modality. In order to provide
the most optimal conditions for learning, we chose the two
input streams so that they are as perceptually dissimilar as
possible: colors versus shapes and tones versus nonwords.

Experiment 2: Intramodal Learning Along
Different Perceptual Dimensions

The purpose of Experiment 2 is to test whether learners can
learn two sets of statistical regularities when they are
presented within the same sense modality but instantiated
along two different perceptual “dimensions”. Experiment
2A examines intramodal learning in the visual modality
while Experiment 2B examines auditory learning. For
Experiment 2A, one grammar is instantiated with colors and
the other with shapes. For Experiment 2B, one grammar is
instantiated with tones and the other with nonwords.

Method
Subjects For Experiment 2, 60 additional participants (10 in
each condition) were recruited in the same manner as in
Experiment 1.

Materials  Experiment 2 incorporated the same two
grammars, training and test sequences that were used in
Experiment 1. The visual sequences were instantiated using
two sets of vocabularies. The first visual vocabulary was the
same set of colors as Experiment 1. The second visual
vocabulary consisted of five abstract, geometric shapes.
These shapes were chosen as to be perceptually distinct yet
not amenable to a verbal coding strategy. The auditory
sequences also were instantiated using two sets of
vocabularies. The first auditory vocabulary consisted of the
same set of tones as in Experiment 1. The second auditory
vocabulary consisted of five different nonwords, recorded as
individual sound files spoken by a human speaker (taken
from Gomez, 2002): “vot”, “pel”, “dak”, “jic”, and “rud”.

                                                            
1 We regard the learning as “statistical” because encoding
something akin to “n-gram” chunks or transitional probabilities
among sequence elements will result in above-chance test
performance.
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Procedure  Participants were randomly assigned to one of
six conditions, two for Experiment 2A, two for Experiment
2B, and two new baseline control conditions. The general
procedure was the same as in Experiment 1 with the
following differences. In Experiment 2A, participants were
trained on both grammars, one instantiated with the color
vocabulary and the other as the shape vocabulary. As in
Experiment 1, participants were tested on their ability to
classify novel sequences; for half of the participants, these
test sequences were instantiated all as colors while for the
other half they were instantiated all as shapes. Likewise, in
Experiment 2B, participants were trained on both grammars,
one instantiated as the tone vocabulary and the other
instantiated as the nonword vocabulary. For half of these
participants, the test sequences were instantiated all as tones
and for the other half they were instantiated all as nonwords.

The two new baseline conditions provided data for single-
grammar performance for the new shape and nonword
vocabularies (note that we used the color and tone
vocabulary baseline data from Experiment 1). In all other
respects, the procedure for Experiment 2 was the same as in
Experiment 1.

Results and Discussion

Mean scores and t-tests compared to chance levels are
provided for each condition: 11.9 (59.5%), t(9)=2.97, p<.05
for the Colors-Experimental condition; 11.9 (59.5%),
t(9)=2.31, p<.05 for the Shapes-Experimental condition;
13.7 (68.5%), t(9)=4.25, p<.01 for the Tones-Experimental
condition; 12.0 (60.0%), t(9)=2.58, p<.05 for the Nonwords-
Experimental condition; 13.2 (66.0%), t(9)=6.25, p<.001 for
the Shapes-Baseline condition; and 12.2 (61.0%), t(9)=2.34,
p<.05 for the Nonwords-Baseline condition. Thus, each
group’s overall performance was better than what would be
expected by chance. Furthermore, there was no statistical
difference between the respective experimental and baseline
groups: Colors-Experimental versus Colors-Baseline, t(9)=-
.42, p=.68; Shapes-Experimental versus Shapes-Baseline,
t(9)=-1.15, p=.28; Tones-Experimental versus Tones-
Baseline, t(9)=.439, p=.67; Nonwords-Experimental versus
Nonwords-Baseline, t(9)=-.178, p=.86.

The results for Experiments 2A and 2B are similar to
Experiment 1. Participants were adept at learning two
different sets of statistical regularities simultaneously within
the same sense modality, for shape and color sequences
(Experiment 2A) and tone and nonword sequences
(Experiment 2B). Performance levels in these dual-grammar
conditions were no worse than learning levels with one
grammar only. These results thus suggest that participants’
learning was not mediated by abstract information.
Additionally, learners can acquire statistical regularities
from two streams of information within the same sense
modality, at least when the two streams differ along a major
perceptual dimension (colors versus shapes and tones versus
nonwords). We next explore whether such learning abilities
continue even when the two streams of information lie along

the same perceptual dimension (two different sets of shapes
and two different sets of nonwords).

Experiment 3: Intramodal Learning Within
the Same Perceptual Dimension

The purpose of Experiment 3 is to test whether learners can
learn two sets of statistical regularities when they are
presented within the same sense modality but exist along the
same perceptual “dimension”. Experiment 3A incorporates
two different sets of visual shapes and Experiment 3B
incorporates two different sets of auditory nonwords.

Method
Subjects For Experiment 3, 60 additional participants (10 in
each condition) were recruited.

Materials  Experiment 3 incorporated the same two
grammars, training and test sequences that were used in
Experiments 1 and 2. Like the previous experiments, the
experimental conditions employed learning under dual-
grammar conditions. Experiment 3A employed two visual
vocabularies: shape sets 1 and 2. Shape set 1 was the same
set of shapes used in Experiment 2A; shape set 2 was a new
set of shapes similar in overall appearance but perceptually
distinct from set 1. Experiment 3B employed the nonword
vocabulary used in Experiment 2B as well as a new
nonword set consisting of “tood”, “jeen”, “gens”, “tam”,
and “leb”.

Procedure  Participants were randomly assigned to one of
six conditions, two for Experiment 3A, two for Experiment
3B, and two new baseline control conditions. The general
procedure was identical to Experiment 2 except that
different vocabularies were used. In Experiment 3A, one
grammar was instantiated with shape set 1 and the other
grammar was instantiated as shape set 2. At test, half of the
participants were given the test sequences instantiated as
shape set 1 and for the other half they were instantiated as
shape set 2. Similarly, participants in Experiment 3B were
also trained on both grammars, with one grammar being
instantiated as nonword set 1 and the other instantiated as
nonword set 2. Half of these participants were tested on the
first nonword set and the other half were tested on the
second nonword set.

The two new baseline conditions provided data for single-
grammar performance for the new shape set 2 and nonword
set 2 vocabularies (note that we used the shape set 1 and
nonword set 1 baseline data from Experiment 2). In all other
respects, the procedure for Experiment 3 was the same as in
Experiment 2.

Results and Discussion

Mean scores and t-tests compared to chance levels are
provided for each condition: 12.0 (60.0%), t(9)=2.58, p<.05
for the Shapes1-Experimental condition; 11.2 (56.0%),
t(9)=1.65, p=.13 for the Shapes2-Experimental condition;
10.9 (54.5%), t(9)=1.49, p=.17 for the Nonwords1-
Experimental condition; 12.4 (62.0%), t(9)=6.47, p<.001 for
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the Nonwords2-Experimental condition; 11.6 (58.0%),
t(9)=2.95, p<.05 for the Shapes2-Baseline condition; and
13.3 (66.5%), t(9)=3.79, p<.01 for the Nonwords2-Baseline
condition. We also compared each experimental group to its
respective baseline performance: Shapes1-Experimental
versus Shapes1-Baseline, t(9)=-1.68, p=.13; Shapes2-
Experimental versus Shapes2-Baseline, t(9)=-.89, p=.40;
Nonwords1-Experimental versus Nonwords1-Baseline,
t(9)=-.99, p=.35; Nonwords2-Experimental versus
Nonwords2-Baseline t(9)=-.96, p=.36.

Experiment 3 shows a decrement in performance of
statistical learning when the two grammars are composed of
vocabularies within the same perceptual dimension. When
exposed to two different statistically-governed streams of
visual input, each with a distinct vocabulary of shapes,
learners on average are only able to learn the structure for
one of the streams. This same result was also found when
learners were exposed to two different nonword auditory
streams. This data thus suggests that learning of multiple
sources of statistical information is hindered when the input
elements of the two vocabularies are perceptually similar2.
Traditional, abstractive theories of AGL cannot account for
such low-level, perceptual effects.

Overal Analyses To better quantify the differences in
learning across the three experiments, we submitted all data
to a 4 X 2 X 2 ANOVA that constrasted condition
(crossmodal, intramodal-different dimension, intramodal-
same dimension, or baseline), modality (visual versus
auditory), and grammar (Grammar A versus Grammar B).
There was a main effect of condition, F(3,144)=2.66;
p=.050. There was a marginally significant main effect of
modality, F(1,144)=2.97; p=.087. There was no main effect
of grammar, F(1,144)=1.26; p=.264, nor were there any
significant interactions (p’s >.05). The marginal effect of
modality is consistent with previous research showing that
auditory statistical learning of sequential input is generally
superior to visual or tactile learning (Conway &
Christiansen, 2005).

For ease of presentation, Figure 2 shows the overall data
collapsed across grammar and modality. Post-hoc
comparisons reveal that the mean performance for the
intramodal, same-dimension condition is significantly less
than performance on both the crossmodal (p<.01) and
baseline (p<.05) conditions. Thus, the ANOVA confirms
that there was a learning decrement in Experiment 3, for
intramodal, same-dimension learning.

General Discussion
Experiment 1 showed that learners can learn statistical
regularities from two artificial grammars presented via two
different input streams when they occur in different sense
modalities, one visually and the other aurally. Furthermore,

                                                            
2 Another interpretation of these results is that learning in
Experiment 3 was based on abstract information, leading to near-
chance performance; however, it is unclear why learning would be
abstract here but not so in Experiments 1 and 2.

test performance under such dual-grammar conditions was
identical to baseline, single-grammar performance.
Experiments 2 and 3 extended these results, showing that
learners can also learn regularities from two input streams
simultaneously within the same sense modality–as long as
the respective vocabularies differ along a major perceptual
dimension. Learning suffered when the vocabularies for
each grammar existed along the same perceptual dimension:
participants could only extract statistical relationships from
just one of the two input streams, not both.

Figure 2: Mean test performance (out of 20) for all three
experiments: Crossmodal (Experiment 1), Intramodal,
different-dimension (Experiment 2), Intramodal, same-
dimension (Experiment 3), and Baseline, single-grammar
conditions (Experiments 1, 2, 3).

These studies were motivated by two questions. First, is
statistical learning stimulus-specific or is it abstract and
amodal? The data showed that learning was tied to the
specific sense modality and perceptual dimension of the
input. This stands in contrast to other arguments that
learning may consist of modality-independent
representations (Altmann et al., 1995) or abstract “rules”
(Marcus et al., 1999; Reber, 1993)3.

Second, can participants learn multiple, independent
statistical regularities simultaneously? Quite remarkably,
Experiments 1 and 2 showed that indeed they can, at least
under crossmodal and intramodal (different-dimension)
conditions. This ability makes sense when one considers
that humans often process multiple, concurrent perceptual
inputs at the same time, especially across different sensory
modalities. For example, driving a car involves performing
certain motor sequences as well as attending to multiple
visual, auditory, and haptic input patterns. It is likely that
there is an adaptive advantage for organisms to be able to
encode statistical regularities from multiple environmental
input streams simultaneously.

It could be that the advantage that our learners displayed
for crossmodal learning may be due to attentional

                                                            
3 As two anonymous reviewers pointed out, an alternative
possibility is that human cognition is an adaptive process relying
on stimulus-specific representations in some situations and abstract
learning in others.
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constraints. It is known that people can better attend to
rapidly-presented sequential stimuli when one stream is
auditory and the other is visual, compared to when both are
in the same modality (Duncan, Martens, & Ward, 1997).
Thus, although it is generally assumed that implicit
statistical learning does not require attention, our results
indicate that attention may play an important role (also see
Baker et al., 2004).

Our results also may provide insight into the underlying
cognitive and neural mechanisms of statistical learning. One
possibility is that statistical learning is a single mechanism
that operates over all types of input (e.g., Kirkham,
Slemmer, & Johnson, 2002). However, such an account has
difficulty explaining the presence of learning-related
modality differences (Conway & Christiansen, 2005).
Furthermore, it is not clear how a single mechanism can
afford simultaneous learning of multiple statistical
regularities and keep the stimulus-specific representations
independent of one another, as our current data show.

It may be more likely that statistical learning consists of
multiple subsystems that are closely tied to specific
modality-specific neural regions (Conway & Christiansen,
2005). For instance, the mismatch negativity brain response,
which is elicited when a deviant sound occurs in a complex
sound sequence, is generated within auditory cortex (Alho,
et al., 1993). Additionally, primary and secondary visual
association areas (BA 17-19) show decreased activity when
participants learn complex visual patterns implicitly (Reber
et al., 1998), perhaps reflecting a kind of perceptual fluency
effect.

Something akin to perceptual fluency may very likely
underlie statistical learning, where items that are similar in
structure are processed more efficiently by networks of
neurons in modality-specific brain regions (see also Chang
& Knowlton, 2004). Such a view of statistical learning, and
implicit learning more generally, resonates with theories of
implicit memory (Schacter, Chiu, & Ochsner, 1993) and
procedural learning (Goschke, 1998; Keele, Ivry, Mayr,
Hazeltine, & Heuer, 2003), which also stress the
involvement of multiple, modality-specific subsystems.

Conclusion
These experiments suggest that statistical learning is
mediated by stimulus-specific representations. Furthermore,
we’ve shown that learners can simultaneously encode
statistical structure from two grammars originating from two
different input streams and keep the knowledge
representations independent of one another, as long as each
is presented in a different sensory modality or along
different perceptual dimensions. This suggests that the
knowledge underlying statistical learning is closely tied to
the perceptual features of the material itself, perhaps
indicating the involvement of multiple learning subsystems.
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