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Abstract

Naturalistic observations of infant/caregiver social attention
have yielded rich information about human social develop-
ment. However, observational data are expensive, laborious,
and reliant on fallible human coders. We model interactions
between caregivers and infants using a three dimensional sim-
ulation environment in order to gain greater insight into the
development of infant attention sharing, specifically gaze fol-
lowing. Most models of infant cognition have been only ab-
stractly linked to the detail of a real life environment and to
the perception-and-action physicality of human infants. Our
simulation uses human data from videotaped infant/caregiver
interactions and a rich 3D environment to model the develop-
ment of gaze following. Initial tests suggest that infant gaze
following can be learned in our simulation using parameters
derived from behavioral data.
Keywords: embodiment; infancy; joint attention; simulation;
social learning.

Human communication is a dauntingly complex system to
model. Consider a seemingly simple system like an infant
and caregiver playing together: even with language pared
away, infant/caregiver social interactions feature a wide range
of behaviors. These take place across many time scales in a
complex environment. Moreover, the infant is a moving tar-
get; its brain and behavior change rapidly, and this requires
caregivers to adapt to the infant’s changing skills. Thus it is
difficult to generate a powerful model of infant social behav-
ior and learning.

Developing such a model is important because there is am-
ple evidence that early social development has long term ef-
fects on (and likely serves as a foundation for) later social
cognition, language, and even cognitive style and exploratory
behavior [1]. In this paper we describe a modeling approach
that is unique in two key areas, extending the approach intro-
duced in [2]. First, we model both the learning agent (in this
case the infant) and the agent’s environment. Many models
of infant learning use an abstract symbolic environment with
little relation to the dynamic world infants experience. Ide-
ally, simulations are comprised of both a biologically plau-
sible learning model, and a physically and socially realistic
environment [3]. The latter requirement is problematic be-
cause detailed data on the structure of infants’ learning envi-
ronment only exist in bits and pieces. Our second innovation
is to directly tie behavioral data collected by our lab into our

simulation environment, creating rich and realistic stimuli for
our learning agent.

In the following subsections we will review the theoretical
issues relevant to this work.

Embodied Modeling The goal of developmental model-
ing is to test theories of learning processes as they take place
within organisms undergoing gross changes. Valid tests of
these theories require additional theories as to the information
patterns found in realistically structured environments [3].
Currently, however, we do not possess the computational re-
sources to model human perceptual and neural systems, and
our technological ability to simulate real, multi-modal envi-
ronments is still primitive. The key, then, is to gradually con-
verge on a set of biological traits that capture key properties
of learning, as well as some key ecological patterns that can
be simulated at a level of detail that is appropriate for the
theoretical question at hand. This typically requires consider-
ation of the physicality of the organism and the environment.
That is, to test our theories with greater validity we must in-
corporate the embodiment of our models [4]. To the degree
that we can embody simulations, we improve our tests of the
motivating theory of development and learning.

Robotic studies are one way to achieve embodied sim-
ulations, and there are a growing number of good exam-
ples [5, 6, 7]. Robots can be placed in the same environments
as infants and presented with identical stimuli. Unfortunately
robotic studies are expensive, and they introduce tangential
methodological issues—they require solving mechanical and
computational problems simply to begin testing learning the-
ories. Solving these problems is certainly important for some
theoretical questions, but it is not currently necessary to ad-
dress basic questions about infant social development. Addi-
tionally, robotic models cannot be run faster than real time,
and they require active supervision. In many cases, current
theories can realize faster progress by using simulations that
retain elements of embodiment while greatly simplifying im-
plementation and reducing cost.

Gaze Following We have been investigating the develop-
ment of attention sharing behaviors in human infants. Atten-
tion sharing is a behavioral cornerstone of all social learning.
In general it means one or more agents changing their fo-
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cus of attention because they have observed another individ-
ual attending to some stimulus or area. A common example
is following the line-of-gaze of another person. There is an
extensive literature on the development of infants’ attention
sharing skills. This literature has focused on the development
of gaze following, which is defined as reorienting one’s di-
rection of gaze to intersect with that of another person, based
on encoding the other’s head pose and/or eye direction.

Infants begin following other people’s gaze between 6 and
12 months of age, and their ability to follow more and more
subtle cues, to a wider range of their environment, increases
significantly between 9 and 18 months of age [8, 9]. It is
unknown by what mechanism infants develop more powerful
gaze-following skills.

We have hypothesized [10] that infants’ gaze following
skills might emerge as the byproduct of a “basic set” of per-
ceptual, learning, and affective traits that are in place within
the first 2 to 3 months of age, well before fully developed
gaze following can be observed. The basic set theory states
that the following elements are sufficient (though not neces-
sary) for joint attention:

• A set of motivational biases, in particular a preference for
social stimuli such as human faces.

• Habituation as a basic reward attenuation mechanism.

• A learning mechanism such as temporal difference learn-
ing [11], to learn the temporal structure of predictable, con-
tingent interactions between infant and caregiver.

• Early emerging perceptual traits such as attention shift-
ing, face processing and sensitivity to motion, contrast, and
color.

• A structured environment providing strong correlation be-
tween where caregivers look and where interesting things
are.

This basic set of infant traits might be sufficient to gener-
ate new attention sharing skills. However, this requires that
the infant learn on a regular regimen of well structured social
input, as provided by an organized caregiver [10]. Our mod-
eling efforts are meant to prove the plausibility of this theory.
If they are unsuccessful, then perhaps additional mechanisms,
such as special-purpose modules, are necessary for an agent
to learn gaze following skills during the first 6-9 months of
human social experience. The question, then, is how to gen-
erate valid simulations of this social learning process. We
must imbue the simulated infant with biologically plausible
perceptual, learning, and motivational traits, and we must im-
bue its environment with a reasonable facsimile of a natural
social environment.

Naturalistic Social Coding The fine-grained structure of
infant social environments is difficult to quantify. Although
it is possible to derive gross patterns from previous obser-
vational and ethnographic behavioral studies, these tend to
be sparse in details, and coded at such a low sampling rate

that there is no information about caregivers’ meaningful
moment-by-moment action patterns. In most experimental
studies of infant social responses, the social input from the
adult is controlled and extremely artificial (e.g. [9]). Al-
though these experimental studies are critical for establishing
developmental “benchmarks” that a simulated infant should
replicate, they do not provide information about real infant
learning environments, which can be abstracted for simula-
tion.

Our approach to solving this problems starts by generating
a dense, rich video dataset of minimally directed interactions
between infants and caregivers. Figure 1 shows one frame of
these interactions from two separate viewpoints. By coding
these interactions at 30fps in the manner described below, we
generate a temporally detailed dataset that opens a new win-
dow into infant/caregiver interaction in a natural setting.

In the following sections we will explain our methodolog-
ical workflow, describe the machine learning and computer
vision techniques driving our simulated infant, present results
from the simulation environment, and finally discuss the im-
pact this work has on the modeling of infant social interac-
tion.

Workflow
Our lab takes an end-to-end approach to infant social model-
ing (see Figure 2)—we start in the lab and in the homes of
our subjects by collecting hours of audiovisual data from in-
fant/caregiver interactions. These data consist of both semi-
naturalistic free play sessions and scripted lab sessions. In
the free play sessions caregivers are instructed to play with
their infants using a supplied set of toys while the infant is
seated in a tray chair. In lab sessions an experimenter per-
forms a series of gaze and point maneuvers to salient ob-
jects in the room while holding the infant’s attention. In both
cases the interactions are recorded with audio from multi-
ple camera angles. The lab has amassed many terabytes of
this audiovisual data, which is passed off to a team of under-
graduate research assistants who perform a detailed frame by
frame coding of relevant events (e.g. gaze shifts, manual ac-
tions, environmental and toy-generated noise). These codes
are stored in a database in order to facilitate an automated
analysis of infant/caregiver behavior using custom software
written in C# and Python. The automated analysis derives
information from the coding such as the probability of the in-
fant or caregiver to transition from one state to another (e.g.
from looking at a toy to looking at a social partner), the du-
ration of their actions, and extended events where the infant
and caregiver move through a specified series of states within
a restricted time window [12].

Our simulation environment can operate in two modes. In
the first, it simply replicates caregiver behavior from a partic-
ular experimental session using the codes in the database. If
the real-life caregiver started off looking at the infant and then
switched to looking at a toy after 2.3 seconds, the simulated
caregiver will do the same. In the second mode, the care-
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Figure 1: Still picture from naturalistic study, from which the simulated caregiver behavior is derived.

giver behaves probabilistically based on the transition proba-
bilities and timings derived from the automated analysis. In
this way, the caregiver behaves realistically without replicat-
ing the steps of any particular subject; the simulation can run
indefinitely. For example, if our data indicate that caregivers
transition from holding an object to holding and moving an
object 20% of the time that they change what they are doing,
then our simulation likewise will make that transition 20% of
the time. In addition, this mode allows our caregiver to (in
principle) respond contingently to previous actions of the in-
fant. Our simulation environment is implemented in C++ and
we use hardware-accelerated OpenGL for the 3D rendering.
Unfortunately, to our knowledge there is no open software
for human simulation, so we use Boston Dynamics’ DI-Guy
platform for rendering and animating our caregiver and props.
Finally, at the end of the chain, our infant learning agent pro-
cesses rendered frames of the simulation using the OpenCV
computer vision library [13]. At each time step of the simu-
lation the only information the infant agent receives about its
environment are these rendered frames—it extracts a reward
signal and high level information about the environment using
the computer vision techniques described in the next section.

Methods
There are three primary components to our simulation, the
caregiver and environment, the infant agent’s visual process-
ing system, and its learning system. In this section we will
detail the three components, starting with the caregiver and
environment.

Caregiver and Environment Our simulation environment
is set in the interior of a room containing a table and a chair.
The caregiver is seated at the chair and interacts with toys
placed on the table (see Figure 3, top). The caregiver is capa-
ble of interacting with more than one toy, but for our initial
simulations we used just one toy, a red bus, for simplicity.
The simulated caregiver occupies several different attention

Figure 2: A flow chart depiction of the data collection, anal-
ysis and modeling work in our lab, annotated with relevant
technologies.

and action states. It can be: waving or not waving its arm,
looking at the infant or the toy, and holding the toy or not.
These states correspond to codes for caregiver motion, care-
giver gaze target, and caregiver held object status in our em-
pirical data. Because our caregiver is simulated as an actual
body, these discrete behavior states manifest to the infant as
a wide range of visual stimuli. For example while waving
an object the caregiver’s arm can be in many positions. Sim-
ilarly, when looking to an object the caregiver’s head pose
varies over time as the motion is undertaken and the final head
pose is based on the actual position of the object in the room.

From these data we also estimate the probability of tran-
sitioning between any of the states, and the simulated care-
giver chooses its actions probabilistically based on these es-
timates (the caregiver is operating in the second mode de-
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scribed above, not off a script). The caregiver uses two tran-
sition matrices: the first governs behavior with respect to the
toy (holding and waving) and the second governs looking tar-
get. The interval between state transitions is based on the ob-
served interval between separate caregiver behaviors (every
2.18 seconds) plus some uniform noise (+/- 1 second).

The infant also has a body in the environment (unseen
from its perspective), with its head at about high-chair height.
Changes in infant gaze target are accomplished by tying the
position and orientation of a camera to the position and ori-
entation of this body’s head.

The objects in the environment are part of the DI-Guy
package, which has a nice variety of (mostly military themed)
props. A text configuration file specifies the props to load at
the start of the simulation as well as their location, orienta-
tion and scale. Similarly, the text file specifies the initial lo-
cation, orientation and appearance of human agents. In this
way we can quickly modify the appearance of the simulation,
add agents, and rearrange props.

Visual Processing In order for the infant agent to learn
from its raw visual input , it needs to extract high level in-
formation about its environmental state as well as determine
the reward value of the state that it is in. Since we are inter-
ested in gaze following, we extract the caregiver head posi-
tion from the raw image, estimate head pose and use the dis-
cretized pose state as the infant agent’s environmental state.
To do this we first localize the caregiver’s head by calculating
the probability that each pixel in the raw image came from
the known distribution of pixel properties in caregiver head
pixels, running a Gaussian blur over that probability map,
and then centering a head position rectangle over the maxi-
mum probability point on the blurred map. Technically, this
is an application of cvCalcBackProject (to calculate the
back projection of our face color histogram), cvSmooth (the
Gaussian blur) and cvMinMaxLoc (to find the location of
maximum probability in the image) from the OpenCV library.
Pragmatically, we’re only assuming the infant knows broadly
what its caregiver’s face looks like.

To calculate the head pose, we break the detected head
region up into a left and a right segment then perform a
color histogram comparison between the observed segments
and model segments of left and right facing heads (using
cvCompareHist). From the histogram distances we can
calculate the probability that the caregiver is looking left or
right by seeing how close the observed segments are to the
models. If the segments are distant from both models we can
infer that the caregiver’s head pose is center. Again, the only
assumption is that the infant knows generally what left and
right facing heads look like. Finally we discretize the head
pose probability into three states: left, center, and right. A
visualization of this head position and pose detection can be
seen in Figure 3, middle. The box represents the head posi-
tion and the handles represent the pose probability.

To compute the reward for the current frame of input, we
first calculate a salience map over the entire frame. The

Figure 3: From top to bottom: the raw visual input to
the infant agent, head detection and pose estimation output,
salience and reward visualization.

salience map has three components: motion, contrast, and
saturation, and it is similar to salience-based visual pro-
cessing approaches such as the one in [6]. The compo-
nents are summed to represent overall saliency. Motion
is calculated by comparison with the previous input frame
(cvAbsDiff), contrast is derived from an edge detection
routine (cvSobel), and saturation is extracted naturally
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from the color values of the pixels. Reward is then calculated
by averaging the saliency values within the agent’s center of
vision (see Figure 3, bottom—the reward area is inside the
rectangle). Since the agent only chooses looking direction on
the horizontal axis, the center of vision is defined to be taller
than it is wide.

Learning The agent uses a reinforcement learning [11]
paradigm to choose its actions and learn from the conse-
quences. Its state-action space is a cross of the discretized
caregiver head poses and a set of five looking directions: left,
near left, center, near right, and right. Every time the agent
shifts gaze position, it updates its expected reward for the pre-
vious state-action pair using the following formula

er(i, j)new = er(i, j)old − η(er(i, j)old − ar)

where er(i, j) is the expected reward given caregiver head
pose i and gaze action j, η is a learning rate parameter (set
to 0.1 in our simulation) and ar is the average reward ob-
tained since the last action j in state i. The agent changes
gaze pose after a period of time derived from observed infant
behavior (every 2.43 seconds) plus some uniform noise (+/- 1
second—a more complex but more realistic approach would
be to draw fixation duration from an estimate of the fixation
duration probability density function from actual infants).

It would be straightforward to increase the number of states
and actions (e.g. by giving caregiver and infant looking direc-
tion a vertical degree of freedom) and add bells and whistles
to the reward estimation process, but the purpose of this work
is not to showcase machine learning techniques. Rather, we
are investigating whether gaze following can be learned given
a simple learning mechanism, data-driven caregiver behavior,
and a complex simulated environment. The results of this en-
deavor are summarized and discussed in the next section.

Results
We ran our simulation for approximately 500 seconds
(enough time for the infant to shift gaze about 200 times) with
the infant agent watching a simulated caregiver interact with
a single toy. The agent’s expected reward over its state-action
space is detailed in the table below. Looking at a location in
the room with background (i.e. smallest) saliency results in
a reward around 6.0, so that quantity is subtracted from the
below numbers.

Looking Direction
CG Pose left near left center near right right

left 1.30 1.54 3.58 2.62 1.79
center 1.09 2.62 8.50 3.20 1.97

right 1.56 1.72 1.71 1.43 0.76

Table 1: The final state/action reward space of the infant
learning agent.

The course of learning over time is shown in Figure 4. The
agent quickly learns that congruent gaze shifts result in higher

reward and the advantage in expected reward generally in-
creases over time.

Discussion
After a fairly short period of training, the agent expects more
reward when its looking direction is congruent with the care-
giver’s head pose than when its looking direction is incongru-
ent. For example, if the caregiver is looking to its left, then
if the infant looks to the right it expects more reward (the in-
fant and caregiver are facing each other and thus their looking
directions to the same location are opposite). Both the near
and far looking directions show this effect. Looking right in
general is privileged because the caregiver is left handed (it
only picks up objects with its left hand), and thus during time
periods where the caregiver is holding the toy it is more likely
to be near or far right than near or far left (from the infant’s
perspective).

Looking center is always very rewarding since the care-
giver is at center. When the caregiver holds an object it will
often be at center, and when it moves the object it generally
is at center or near right. Motion is highly rewarding, and
the caregiver is normally looking at center during motion, so
the center/center expected reward is quite high. The caregiver
also has a naturally higher contrast than other parts of the en-
vironment.

This general pattern of results fits other recent findings. It
seems that infants in everyday setting are highly attentive to
caregivers’ manual actions [12], and this might bootstrap in-
fants’ learning of caregivers’ head pose (because adults often
look at what they are manipulating). It is also known that
infants are attracted to faces, and the simulation results are
consistent with that. Since the head pose and position estima-
tion are not used in calculating reward, the infant agent learns
that looking center (where the caregiver’s head is) is valuable
independent of the general knowledge about head appearance
that it has.

These first results show that with a limited set of assump-
tions, a simple learning model, and a complex data-driven en-
vironment, gaze following can be learned. More importantly,
this work sets the stage for even more detailed simulation
of infant/caregiver interaction—such as interaction between
more than two agents (a sibling agent, perhaps), reaching and
grasping capability for the infants, and realistic audio cues.
Further, since the infant agent no longer receives knowledge
about its environmental state other than through visual pro-
cessing, its input will degrade meaningfully and realistically.
For example, if the infant picks up an object that occludes the
caregiver, its head position and pose estimates will degrade
realistically.

In the greater context of understanding infant social de-
velopment, from modeling to robotics to experimental work,
we see this as occupying a productive niche between disem-
bodied and discretized 2D models and robotic agents. We
open computer simulations up to state and action space com-
plexities that mirror those in the real world, but our learning
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Figure 4: The sum reward expected from highly congruent gaze shifts (red, top right and bottom left of Table 1) and incongruent
gaze shifts (blue, top left and bottom right) over the training period.

simulations are more convenient and we can have complete
control over the agent and environment. Moreover, our sim-
ulations do not require the expensive and complicated hard-
ware of robotic simulations; nor do they force us to address
interesting but difficult and peripheral questions about motor
control.
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