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The Emergence of Rule-Use: A Dynamic Neural Field Model of the DCCS 
 

 Aaron Buss (aaron-buss@uiowa.edu) and John P. Spencer (john-spencer@uiowa.edu)  
Department of Psychology, University of Iowa, 11 Seashore Hall East 

Iowa City, IA 52242 USA 
 

Abstract 
The Dimensional Change Card Sort (DCCS) task has been 
extensively used to study the development of executive 
functioning in 3- to 5-year olds.  Despite the interest in using 
the DCCS to study neural development and cognitive deficits 
in special populations, there has not been a formal neurally-
based theory of children’s behavior and development in this 
task.  Here, we present a dynamic neural field (DNF) model 
that captures children’s behavior, as well as development, in 
the standard DCCS task.  We also show simulations of two 
other variants of the standard task—the Negative Priming 
version and the Absolute Negative Priming version—that 
highlight the extensive coverage of our new theory.   

Keywords: neural network models; dynamic systems theory; 
DCCS; executive function; perseveration 

The DCCS and Neural Development 
The Dimensional Change Card Sort task (DCCS) and other 
rule-based card sorting tasks provide an index of executive 
functioning both in early development and disordered 
populations (Zelazo et al., 2003; Zelazo, 2006).  In the 
DCCS task, children sort cards either by the dimension of 
shape or color and are then instructed to switch and sort by 
the other dimension.  Target cards are displayed on the trays 
where children place their selections, and the test cards that 
are sorted match each target card along one dimension (see 
figure 1).  Typically, 3-year-olds perseverate and continue 
to use the first set of rules after they have been instructed to 
switch.  This task, then, measures aspects of cognitive 
flexibility, and children’s behavior has been described in 
terms of rule-representation (Zelazo et al., 2003), object re-
description (Kloo & Perner, 2005), inhibitory or dis-
inhibitory control (Zelazo et al., 2003), or attentional control 
(Kirkham, Cruess, & Diamond, 2003).    
 

 
Figure 1:  Example of cards used in the DCCS. 

 
More recently there has been a growing interest in using 

such tasks as an index of neural functioning. Specifically, 
these tasks have been linked to the development of the 
prefrontal cortex (Bunge & Zelazo, 2006; Crone et al., 
2006) and have been used to explore cognitive deficits in 
children with autism (Zelazo et al., 2002; Colver, Custance, 
& Swettenham, 2002) and ADHD (Mulas et al., 2006).  
Despite this interest in neural functioning and 

developmental process, there is no neurally-based theory 
that captures developmental changes in performance in this 
task.  The most comprehensive theory, the Cognitive 
Complexity and Control theory (CCC), describes children’s 
performance in terms of hierarchical rule-representation 
(Zelazo et al., 2003; Bunge & Zelazo, 2006); however, 
describing children’s behavior in terms of ‘rules’ raises 
some critical questions about the nature of the cognitive 
processes at work.  It is unclear, for instance, how a 
hierarchical rule structure could be implemented in real-time 
in a nervous system.  Similarly, ties to known changes in 
neural development have remained largely at the descriptive 
level.  Morton and Munakata (2001) have made attempts to 
move explanations of performance in the DCCS in a more 
neurally plausible direction with a recent PDP model.  This 
PDP model has generated novel predictions which have 
been empirically supported.  However, this model has only 
been used to capture a subset of the data and, therefore, does 
not achieve the same degree of coverage as CCC theory.   

In the present report, we describe a Dynamic Field Theory 
of children’s behavior in the DCCS and present simulations 
of core findings in this task that previously have only been 
captured heuristically by CCC theory. In contrast to the PDP 
model, we use a more neurally-grounded view of the 
processes that underlie the representations of shapes, colors, 
and space in this task using a generic two-layered neural 
architecture.  The proposed model provides an account of 
children’s behavior and development that is couched in a 
general framework originally proposed to capture the 
integration of ‘what’ (i.e., ventral stream) and ‘where’ (i.e., 
dorsal stream) visual pathways.      

Dynamic Field Theory 
The Dynamic Field Theory was initially applied to issues 

in behavioral development within the context of infants’ 
perseverative responses in the Piagetian A-not-B task 
(Thelen et al., 2001).  Next, this theory was extended to 
explain decision-making and spatially-grounded behavior in 
spatial working memory tasks (see Schutte, Spencer, & 
Schöner, 2003; Simmering, Schutte, & Spencer, 2007). 
More recently, this theory has been used to capture the 
representation of objects in a way that links features to a 
spatial frame of reference (Johnson, Spencer, & Schöner, in 
press).  Because the DCCS task requires children to make 
decisions about what features should go where in the task 
space, this theoretical framework provides a natural fit to 
this task.  Moreover, because the Dynamic Field Theory has 
been used to capture a variety of phenomena in early 
development, it provides a fertile foundation for probing the 
neural processes that underlie the development of ‘rule’-like 
behavior and perseveration in the DCCS task. 
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Model Architecture  
The basic architecture of the model and its mapping to 

cortical pathways is displayed in Figure 2. The Dynamic 
Neural Field (DNF) model proposed here utilizes a generic 
two-layered architecture initially explored by Amari (1977) 
and Amari and Arbib (1977) to capture the dynamics of 
neural activity in visual cortex.  This architecture consists of 
a layer of self-excitatory working memory neurons (WM) 
arranged by functional topography (e.g., neurons that code 
for nearby spatial locations are neighbors in the network).  
These neurons project activation (see green arrows in Fig 2) 
to a layer of inhibitory interneurons (Inhib) which project 
inhibition broadly back into WM (see red arrows).  This 
two-layered architecture achieves a form of locally 
excitatory and laterally inhibitory interactions within WM 
that can sustain “peaks” of activation in the absence of 
input. In addition to these layers, we add a third long-term 
memory (LTM) layer that is reciprocally coupled to the WM 
layer. The WM and LTM layers implement a form of 
Hebbian learning: peaks in WM leave traces of activity at 
associated sites in LTM which, in turn, influence the 
strength of activation in WM.      

 

 

 

 
Figure 2:  Model architecture and mapping to cortical 

pathways. 
 

Dorsal stream processes, primarily devoted to encoding 
spatial information, are captured in a 1-dimensional spatial 
working memory (SWM) field (see top box in Fig 2).  
Ventral stream processes are captured by 2D feature-space 
working memory (FWM) fields with continuous feature 
dimensions (e.g., color) along one dimension and space 
along the other dimension. Activation peaks with the FWM 
fields, therefore, capture both the presence of, for example, 

a red card in the task space as well as where that card is 
located.  Note that feed-forward input to the FWM fields are 
typically precise along the feature dimension but imprecise 
(broad) along the spatial dimension.  This reflects the tuning 
characteristics of neurons in many ventral stream areas 
which are precise in their representation of features but have 
broad spatial receptive fields. 

Given the broad spatial tuning of ventral stream neurons, 
how does our model solve the “binding” problem of vision?  
That is, how would the model know that a “red” peak in the 
color-space field should be matched with a “star” peak in a 
shape-space field?  The answer is through spatial coupling, 
that is, the SWM and FWM fields are coupled along the 
spatial dimension.  This achieves distributed but coupled 
peaks of activation across multiple cortical areas—our 
implementation of an “integrated” object (for related ideas, 
see Treisman & Gelade, 1980). 

The final aspect of the model architecture highlighted in 
Figure 2 is the contribution from frontal lobe areas.  As we 
discuss below, we hypothesize that dynamic neural 
processes in the frontal lobe can selectively modulate the 
resting level of populations of neurons in SWM and FWM 
(e.g., boosting the excitability of color neurons). This 
implements a neurally-plausible mechanism that might 
underlie ‘rule’-like behavior (Egner & Hirsch, 2005).   

The DNF Model and the Standard DCCS 
This framework provides useful machinery to capture the 
underlying dynamics of children’s decision-making in the 
DCCS task. Any combination of shape and color can be 
represented in the model and the formation of peaks is a 
means by which the model makes decisions, that is, forms 
stable representations of ‘what’ should go ‘where.’  

Empirical results have shown that 3-year-olds have little 
difficulty using a particular feature dimension to sort the test 
cards during the pre-switch trials. As traces of decisions 
accumulate across multiple pre-switch trials, however, 
children have trouble switching to different rules. 
Conceptually, there is conflict on the switch trial between 
children’s past behavior and the currently available 
perceptual cues. In the model, this conflict is reflected in 
competition between where LTM traces build up during the 
pre-switch trials and where the model is seeing the features 
on the target cards which mark the sorting bins. When faced 
with this competition, data suggest that LTM traces win the 
battle. 

By 4 years of age, however, this is no longer the case.  
What explains this developmental difference?  As we will 
see, our model suggests that a subtle boost in the excitability 
of neurons within a particular neural field (e.g., the shape-
space field) driven by the task instructions is sufficient to tip 
the balance in favor of sorting based on perceptual cues 
during the switch trial rather than using LTM. 

Inputs to the Model 
The full model is shown in Figure 4 (without the inhibitory 
fields for simplicity).  The top panel of this figure shows the 
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model at the moment when the test card is shown in the 
context of the two sorting bins and their associated target 
cards.  The bottom panel of this figure shows the model 
generating a decision to place the card (the blue star) in the 
right bin (i.e., sorting by color). 

There are six simulation figures within each panel: (1) 
activation in SWM with (2) its associated LTM layer (left 
column of the fields); (3) activation in a color-space FWM 
field and (4) its associated LTM layer (middle column); and, 
finally, (5) activation in a shape-space FWM field and (6) 
its associated LTM layer (right column).  Note that the 
spatial dimension is shown along the x-axis in these figures.  
The y-axis for the spatial fields shows the strength of 
activation at each site in SWM and its LTM. Because the 
FWM fields are 2-dimensional, however, we indicate the 
degree of activation using the color scheme shown to the 
right, where red indicates strong activation. 

There are two different kinds of input to the model. The 
target input (see Fig 3) goes into both the SWM and FWM 
fields. This sub-threshold input captures the spatial locations 
of the sorting trays (input to SWM), as well as the features 
located at each spatial position (input into the FWM fields).  
In Figure 3 (see also, Fig 1 and 4) the target inputs are a red 
star on the left and a blue circle on the right.  Test inputs 
(see Fig 4 at Time-1) capture the feature information on the 
test cards presented to the model and only enter into the 
FWM fields.  In Figure 4, the model is presented with a blue 
star test card. The test inputs are spread along the spatial 
dimension to reflect the nature of the task—the model (i.e., 
the child) must decide where the test card should be placed 
(i.e., where a peak of activation should be localized along 
the spatial dimension).  Because the working memory fields 
are coupled along space and test inputs only come into 
FWM, the SWM field can be seen as an output layer, 
indicating where the model has decided to put the test input.  
For instance, in the lower panel of Figure 4, there is a strong 
peak of activation at a right location in the SWM field.  
Thus, the simulation has decided to place the test card in the 
right bin (i.e., the bin marked by the blue circle). 

 

 
Figure 3:  Target input to SWM and FWM for a red star on 

the left and blue circle on the right. 

Pre-Switch Trials 
The simulation shown in Figure 4 began with the 
presentation of target cards.  This input pre-activated the 
two circular “hot-spots” in the color and shape FWM fields 
(see also Fig 3). In addition, we gave a slight boost to the 
resting level within the task-relevant field (e.g., neurons in 
the color field had a slightly higher resting level when the 
model played the “color” game). This implementation is 

consistent with neurological evidence which suggest that the 
brain resolves perceptual conflict by boosting activity for 
the task relevant stimulus (Egner & Hirsch, 2005).  One 
suggested hypothesis for how this is accomplished is by 
boosting the baseline level of activity in areas of the brain 
that processes task relevant information. 
 

 
Figure 4:  The full model (shown without the inhibitory 

fields) sorting a blue star by color. 
 

After boosting the color field by 0.03 units, we presented 
a target card to the model to sort (see Time-1 in Fig 4). The 
presentation of the target card created “ridges” of activation 
at the specified feature values (blue, star) that spanned the 
spatial dimension. Next, activation peaks start to grow due 
to the locally excitatory/laterally inhibitory interactions in 
the FWM fields at the locations where the test inputs 
overlap with the target inputs. Because the color field 
received a slight boost, activation grows more quickly in 
this field. Once a self-stabilized peak in the color field 
becomes sufficiently strong, it begins to send activation to 
the SWM and shape FWM fields at the associated spatial 
location of the color peak (i.e., the right location, see Fig 4 
at Time-2). This tips the balance in the shape FWM field 
such that activation begins to grow for that shape value at 
the right location (even though the target input for that 
feature is at the left location). The combination of the test 
input and spatial input from the color FWM field conspire 
with local interactions to build a peak in the shape field (see 
shape-space field in the lower panel of Fig 4). 

At the same time, activation takes hold in the SWM field 
(which is now receiving robust spatial input at the right 
location from the peaks in the two FWM fields). A peak, 
then, grows at the right location in SWM and the model is 
said to have placed the card in the right sorting bin.  This 
concludes the first trial. The same sequence of events plays 
out as the model is given the other test input (a red circle) 
which the model sorts in the left bin. Note that when the 
WM peaks form during each trial, they leave traces in their 
associated LTM layers (see Fig 4, lower panel). Such traces 
play a critical role during the switch trials.   
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Post-Switch Standard Trials 
Figure 5a shows the state of the color and shape FWM 
fields going into the switch trials. Since the model 
consistently sorted the cards by color during the pre-switch 
trials, the LTM traces in color FWM are overlapping with 
the target input (i.e., the red card was always placed in the 
left bin; the blue card was always placed in the right bin).  
The story is quite different in the shape FWM field, 
however, because LTM traces in this field were always 
formed at the opposite locations of the target input for each 
feature. This sets up competition between LTM and the 
target input within the shape field at the start of the switch 
trials. It is this competition that ultimately will lead to 
perseveration when the model switches and plays the 
“shape” game. 

The results of the full sequence of pre- and post-switch 
trials for the 3- and 4-year-old models are shown in Figure 
5b and 5c (the test cards are displayed at the bottom of the 
figure at the time when they were presented to the model).  
The maximum values in the SWM field at the left and right 
target inputs are plotted over time. An above-threshold (>0) 
peak of the red line indicates a decision to sort to the right 
location, while a blue peak indicates a decision to sort to the 
left location.              

 

 
Figure 5:  Simulation results for the standard version of the 

DCCS 
 

Going into the post-switch phase, the model is ‘told’ to 
play the shape game.  For the 3-year-old model, the resting 
level of the shape field is boosted by 0.03 (the same amount 
that the color FWM was boosted in the pre-switch). As 
inputs come in for the post-switch test cards, peaks try to 
form at two sites for the shape feature—at the target input 
and at the site activated by input from LTM.  Because two 
peaks are trying to form in the shape field, they grow more 
slowly due to laterally inhibitory interactions. 

Critically, at the same time two peaks are trying to form 
in the shape FWM field, a single peak is emerging in the 
color FWM field at sites that match the target input.  Just as 
in the pre-switch phase, the local interactions in the color 
field build a peak which sends spatial information to the 

shape FWM field.  This, in turn, helps activation grow at the 
location of LTM activation. Once the shape peak forms, 
peaks in both FWM fields drive up activation in SWM and 
the model makes its decision.  The model was given the test 
cards in the same order for the post-switch as in the pre-
switch.  As Figure 5b shows, the 3-year-old model 
perseverates (as do 3-year-old children): it produces the 
same spatial responses for the pre- and post-switch phases. 

 
Development in the Standard DCCS Task Correct rule-
switching in the model is achieved through stronger 
modulation of the resting level of the shape FWM field 
during the post-switch.  When the 4-year-old model is ‘told’ 
to sort by shape going into the post-switch, the shape FWM 
field is boosted by 0.6 (as opposed to 0.03).  Now, as the 
inputs come in during the post-switch, the shape field has 
enough excitatory energy to resolve the conflict created by 
sorting decisions made during the pre-switch phase.  Once a 
peak builds where the test input overlaps with the target 
input, spatial information is sent to the color FWM field as 
well as SWM. As figure 5c shows, the 4-year-old model 
produced opposite spatial responses in the post-switch, 
indicating that the model switched its rule-use.      

The Negative Priming Version 
Interestingly, 3-year-olds still perseverate in a Negative 
Priming (NP) version of this task (Müller et al., 2006; 
Zelazo et al., 2003).  For this version, the features for the 
dimension that was relevant for the pre-switch are changed 
for the post-switch sort.  For example, if children sorted red 
and blue stars and circles by color in the pre-switch, they 
would then be asked to sort green and yellow stars and 
circles by shape in the post-switch.   

Pre- and Post-Switch NP Trials 
For the NP version, the pre-switch portion of the task is 
exactly the same as the simulations of the standard task.  
Figure 6a shows the color and shape FWM fields at the start 
of the post-switch phase. The color field now has target 
inputs at new feature values: thus the target input and LTM 
activation no longer overlap in color FWM.  Importantly, 
though, there is still competition in the shape FWM field for 
each feature value. With competition still present in the 
shape field and only a 0.03 boost during the post-switch (for 
the 3-year-old model), this field continues to be delayed in 
forming a peak and still allows the color field to build a 
peak more quickly at the site where the test input overlaps 
with the target input.  Figure 6b shows the spatial responses 
for the 3-year-old model.  Again, the model perseverates 
and the same pattern of spatial responses is produced for 
both the pre- and post-switch phases. Even though the 
localized activation in the color field is weaker now because 
target input and LTM no longer overlap, the competition in 
the shape field slows down peak formation sufficiently to 
allow the color FWM field to form a stable peak first and 
drive a perseverative response as in the simulations of the 
standard task.          
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Development in the NP Version Correct rule-switching, 
again, comes from stronger modulation of the resting level 
for the post-switch sort.  For this version, though, the resting 
level of the shape FWM field only needed to be boosted by 
0.3 (as opposed to 0.6 for the standard task). There is less of 
a boost required because of the lack of overlap in the color 
FWM field.  This means there is weaker spatially localized 
activation in this field and, thus, it takes longer to form a 
peak.  In this sense, the shape FWM needs less of a head-
start in order to localize a decision based on its target inputs.  
  

 
Figure 6:  Simulation results for the NP version of the 

DCCS. 

The Absolute Negative Priming Version 
Zelazo et al. (2003) and Müller et al. (2006) further 
explored the NP variant of the task by testing an Absolute 
Negative Priming version (ANP). They showed that 
perceptual competition during the pre-switch was required 
in order for 3-year-olds to perseverate in the NP version.  In 
the ANP version, there is no perceptual competition during 
the pre-switch phase because children sort test cards that 
match the target cards along both dimensions. Now when 
the features of the previously relevant dimension are 
changed in the post-switch, 3-year-olds have little trouble 
switching their rule-use. 

Pre- and Post-Switch ANP Trials 
The pre-switch phase for the ANP version is slightly 
different from that of previous simulations. Now, there is no 
competition established in any of the fields. Since the test 
cards match the target cards along both dimensions, the 
LTM activation overlaps with the pre-switch target input for 
both FWM fields.  Figure 7a shows the FWM fields at the 
start of the post-switch phase.  As in the NP version, the 
feature values for the color field are changed.  Going into 
the post-switch phase, the shape field is only boosted by 
0.03.  With only this small boost and no competition for 
spatial locations within the feature values, the shape FWM 
field is now able to form peaks where the test input overlaps 
with target input.  It shares its spatial information with the 

color FWM field, drives a peak where the color feature 
value overlaps with the spatial information, and these FWM 
peaks, in turn, drive a spatial response based on shape.  
Figure 7b shows results of the simulation of a 3-year-old 
model, which switches rules, of the ANP version. 
    

 
Figure 7:  Simulation results for the ANP version. 

Conclusions and Future Directions 
The model provided here demonstrates that the neural 
mechanisms that underlie dorsal and ventral stream visual 
pathways—when combined with a simple mechanism that 
modulates the resting level of neural populations—can give 
rise to emergent rule use. This provides the first formally 
grounded theory of perseveration and development in the 
DCCS task that is closely tied to known neural properties. 
Ultimately, perseveration is captured as the competition 
between the target input and the LTM memory traces that 
are formed during the pre-switch. With two sites of 
activation for the features that are relevant for the post-
switch, extra inhibition is built-up, it takes longer for that 
field to form a peak, and the other feature field forms a peak 
sooner and drives a perseverative response.   

Correct switching occurs through stronger boosting of the 
post-switch feature field.  This modulation of the resting 
levels of the feature fields is thought to occur through frontal 
lobe processes.  Gaining an understanding of these processes 
is the next step to providing a full account of perseveration 
and task-switching.  Ultimately, the boosting of the relevant 
dimension should be mediated by the level of conflict 
detected in the task environment and the trial-to-trial and 
developmental history of the system. Over development, what 
exactly is changing to allow correct switching?  It is possible 
that the conflict detection areas become better tuned to detect 
perceptual conflict and thus improve on how it processes its 
inputs.  Perhaps the area of the frontal lobe responsible for 
boosting the relevant feature field becomes stronger or more 
efficient, thus allowing for differential modulation in the face 
of varying levels of conflict.  Further modeling will need to 
determine how this modulation can be formally implemented 
by capturing neural activity in areas of the prefrontal cortex, 
such as the ventrolateral or rostrolateral prefrontal cortex, and 
other frontal lobe regions that have been implicated in task-
switching. 

The DNF model reported here is the first account of the 
DCCS task that has implicated a role of the spatial layout of 
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the target cards in children’s perseveration. In this task, 
children are not just sorting shapes and colors, but are tying 
those features to space. Since the formal model uses space 
as a critical binding dimension, it makes specific predictions 
about the role space should play in children’s performance. 
For example, switching the location of the target cards in the 
post-switch of the NP version should elicit correct switching 
in 3-year-olds (e.g., instead of the star on the left and circle 
on the right, the star would be moved to the right with the 
circle on the left).  This would create overlap between the 
target inputs and the LTM traces in the posts-switch, task-
relevant feature field. Thus, peaks would form in the shape 
FWM field without competition.  Similarly, 3-year-olds 
should perseverate if the target cards switched locations in 
the post-switch of the ANP version.  The post-switch feature 
field would then have competition between the target inputs 
and LTM traces as is the case for the normal NP version.  
We are currently testing these predictions.  

Rule-use and executive function has long been thought to 
require an intelligent director, a ‘central-executive’ that 
coordinates behaviors or schemas, sets goals, and assesses 
success/failure; however, with little further 
implementations, the basic model developed to handle a 
wide array of spatial and cognitive tasks can display rule-
like behavior, perseveration, and development without a 
central executive.  In this framework, ‘rule’-like behavior is 
emergent from dynamic interactions of fields of neurons 
that are based in known neural properties.      

Acknowledgements 
Research funded by NSF HSD0527698 awarded to JPS. 

References 
Amari, S. (1977).  Dynamics of pattern formation in lateral-

inhibition type neural fields.  Biological Cybernetics, 27, 
77-87. 

Amari, S., & Arbib, M. A. (1977).  Competition and 
cooperation in neural nets.  In J. Metzler (Ed.), Systems 
Neuroscience.  New York: Academic Press. 

Bunge, S. A., & Zelazo, P. D. (2006).  A brain-based 
account of the development of rule use in childhood.  
Current Directions in Psychological Science, 15(3), 118-
121. 

Colvert, E., Custance, D., & Swettenham, J. (2002).  Rule-
based reasoning and theory of mind in autism:  a 
commentary on the work of Zelzo, Jacques, Burack, and 
Frye.  Infant and Child Development, 11, 197-200.     

Crone, E. A., Donohue, S. E., Honomichl, R., Wendelken, 
C., and Bunge, S. A. (2006).  Brain regions mediating 
flexible rule use during development.  The Journal of 
Neuroscience, 26(43), 11239-11247. 

Egner, T., & Hirsch, J. (2005).  Cognitive control 
mechanisms resolve conflict through cortical 
amplification of task-relevant information.  Nature 
Neuroscience, 8(12), 1784-1790. 

Johnson, J.S., Spencer J.P., and Schöner, G. (in press). 
Moving to higher ground: the Dynamic Field Theory and 

the dynamics of visual cognition. In F. Garzòn, A. 
Laakso, T. Gomila (Eds.). Dynamics and Psychology 
[special issue]. New Ideas in Psychology.  

Kirkham, N. Z., Cruess, L., & Diamond, A. (2003).  
Helping children apply their knowledge to their behavior 
on a dimension-switching task.  Developmental Science, 
6(5), 449-476. 

Kloo, D., & Perner, J. (2005).  Disentangling dimensions in 
the dimensional change card sort.  Developmental 
Science, 8(1), 44-56. 

Morton, J. B., & Munakata, Y. (2001).  Active versus latent 
representations:  a neural network model of perseveration, 
dissociation, and decalage.  Developmental 
Psychobiology, 40, 255-265. 

Mulas, F., Capilla, A., Fernández, S., Etchepareborda, M. 
C., Campo, P., Maestú, F., Fernández, A., Castellanos, F. 
X., & Ortiz, T. (2006).  Shifting-related brain magnetic 
activity in attention-deficit/hyperactivity disorder.  
Biological Psychiatry, 59, 373-379. 

Müller, U., Dick, A. S., Gela, K., Overton, W. F., & Zelazo, 
P. D. (2006).  The role of negative priming in 
preschoolers’ flexible rule use on the Dimensional 
Change Card Sort.  Child Development, 77(2), 395-412. 

Schutte, A. R., Spencer, J. P., & Schöner, G. (2003).  
Testing the dynamic field theory: working memory for 
locations becomes more spatially precise over 
development.  Child Development, 74(5), 1393-1417.  

Simmering, V. A., Schutte, A. R., & Spencer, J. P. (2007).  
Generalizing the dynamic field theory of spatial cognition 
across real and developmental time scales.  In S. Becker 
(Ed.), Computational Cognitive Neuroscience [special 
issue]. Brain Research. 
doi:1031016/j.brainres.2007.06.081. 

Thelen, E., Schöner, G., Scheier, C., & Smith, L. (2001).  
The dynamics of embodiment: A field theory of infant 
perseverative reaching.  Behavioral and Brain Sciences, 
24, 1-86. 

Treisman, A. M., & Gelade, G. (1980).  A feature-
integration theory of attention.  Cognitive Psychology, 12, 
97-136. 

Zelazo, P. D. (2006).  The Dimensional Change Card Sort 
(DCCS):  a method of assessing executive function in 
children.  Nature Protocols, 1(1), 297-301.  

Zelazo, P. D. (2004).  The development of conscious control 
in childhood.  Trends in Cognitive Sciences, 8(1), 12-17. 

Zelazo, P. D., Frye, D., & Rapus, T. (1996).  An age-related 
dissociation between knowing rules and using them.  
Cognitive Development, 11, 37-63. 

Zelazo, P. D., Jacques, S., Burack, J. A., & Frye, D. (2002).  
The relation between theory of mind and rule use:  
evidence from persons with autism-spectrum disorders.  
Infant and Child Development, 11, 171-195. 

Zelazo, P. D., Müller, U.,  Frye, D., & Marcovitch, S. 
(2003).  The development of executive function.  
Monographs of the Society for Research in Child 
Development, 68(3).   

468




