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Learning Cross-cutting Systems of Categories

Patrick Shafto, Charles Kemp, Vikash Mansinghka, Matthew Gordon, & Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Abstract

Most natural domains can be represented in multiple
ways: animals may be thought of in terms of their tax-
onomic groupings or their ecological niches and foods
may be thought of in terms of their nutritional content
or social role. We present a computational framework
that discovers multiple systems of categories given infor-
mation about a domain of objects and their properties.
Each system of object categories accounts for a distinct
and coherent subset of the features. A first experiment
shows that our CrossCat model predicts human learn-
ing in an artificial category learning task. A second
experiment shows that the model discovers important
structure in two real-world domains. Traditional mod-
els of categorization usually search for a single system
of categories: we suggest that these models do not pre-
dict human performance in our task, and miss important
structure in our real world examples.

People explain different aspects of everyday objects in
different ways. For example, steak is high in iron because
it is a meat; however, it is often served with wine because
it is a dinner food. The different ways of thinking about
steak underscore different ways of thinking about the do-
main of foods: as a system of taxonomic categories like
meats and vegetables, or as a system of situational cate-
gories like breakfast foods and dinner foods. If you were
to plan meals for a family trip you would draw upon both
of these systems of categories, consulting the taxonomy
to insure that meals were nutritionally balanced and con-
sulting the situational system to insure that there were
foods that were appropriate for the different times of the
day. In any domain, objects have different kinds of prop-
erties, and more than one system of categories is needed
to explain the different relationships among objects in
the domain.

Psychologists have experimentally confirmed that
multiple systems of categories are needed to account for
human behavior. Ross and Murphy (1999) showed that
subjects draw on at least two different kinds of knowl-
edge to categorize and reason about foods: knowledge
about taxonomic categories and knowledge about foods
that tend to be eaten together. Similarly, studies have
shown that animals may be thought about in terms of
taxonomic categories such as mammals and reptiles, or
ecological categories such as predators and prey. For ex-
ample, reasoning about anatomical properties appears
to draw on taxonomic categories, but reasoning about
disease transmission may rely on ecological categories

(see Heit and Rubinstein, 1994; Shafto and Coley, 2003;
Shafto et al., 2005).

Most previous models of categorization have at-
tempted to discover a single system of categories within a
given domain (but see Martin and Billman, 1994). This
paper introduces CrossCat, a Bayesian framework for
discovering multiple systems of categories — for exam-
ple, discovering that foods can be organized into a sys-
tem of taxonomic categories and a system of situational
categories. A key feature of our approach is that we
need not specify the number of systems of categories in
advance, or the number of categories within each sys-
tem: our model automatically discovers a representation
of appropriate complexity.

To test our model, we studied human performance in
an unsupervised learning task, and analyzed the struc-
ture of two real-world datasets: foods and animals. Our
model provides a good account of human performance,
and captures intuitively compelling structures in both of
our datasets. Of the previous models that search for a
single system of categories, our approach is related most
closely to Anderson’s rational analysis of categorization
(Anderson, 1991). We compare our approach to this
model throughout, and argue that models that rely on a
single system of categories cannot provide an adequate
account of human learning and reasoning.

A generative model for learning systems

of categories

Assume we are provided with an array of objects and
features — for example, the matrix of foods shown in
Figure 1. Our goal is to organize the objects into one or
more systems of categories, and to discover the features
best explained by each system. A good solution for the
food matrix is shown in Figure 2. There are two systems
of categories: the first is a situational system partitioned
into breakfast foods and dinner foods, and the second is
a taxonomic system that includes starches, meats, and
diary foods. Intuitively, the solution is a good one be-
cause each feature respects the structure of its associated
category system; for example, “served with wine” dis-
criminates perfectly between the situational categories,
but is not as clean with respect to the taxonomic cate-
gories (half of the starches are served with wine and half
are not).

More formally, CrossCat takes as input a list of O ob-
jects, a list of F features, and an O by F data matrix
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Spaghetti
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Yogurt

Figure 1: The food matrix used in simulations. Grey and
white areas indicate true and false features, respectively.
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Figure 2: The food matrix sorted by the best solution un-
der CrossCat: two systems corresponding to situational and
taxonomic categorizations of the objects.

D, where the (o, f) entry is the value of feature f for
object o. The output is a partition of the features into
kinds, and for each kind, a categorization of the objects.
In Figure 2, the model has found two kinds, with two
and three categories of objects. The output is repre-
sented using a vector z, where zf is the kind for feature
f (here, kind 1 corresponds to situational features and
kind 2 corresponds to taxonomic features). Our model
also returns the categories associated with each feature
kind k in a vector wk. In the food example, eggs are a
breakfast food (category 2 for kind 1) and a dairy prod-
uct (category 3 for kind 2), so w1

1 = 2 and w2
1 = 3.

To specify our Bayesian model, we define a probabilis-
tic process that generates the feature kinds, the systems
of categories and the data matrix D. We then discover
systems of categories by searching for the feature kinds
z and categories wk that are most probable given the
data: in other words, that maximize

P (z, {wk}|D) ∝ P (z, {wk}, D) (1)

= P (z)

K
∏

k=1

P (Dk|wk)P (wk) (2)

where K is the number of feature kinds in z, and Dk

is the portion of the data matrix which system k must
explain. To complete the model, we must define three
components: P (z), a prior distribution on feature par-
titions, P (wk), a prior on partitions of the objects into

categories, and P (Dk|wk), a process by which the data
for each feature kind are generated. We consider each
component in turn.

Intuitively, the prior on feature partitions P (z) should
assign some probability to all possible partitions, includ-
ing the partition where all features belong to the same
kind, and the partition where each feature belongs to its
own kind. The prior, however, should favor the simpler
partitions — those that use only a small number of kinds.
We capture both intuitions by using a prior induced by
the Chinese restaurant process or CRP, a standard tool
from nonparametric Bayesian statistics and the basis for
category discovery in Anderson’s rational model. The
CRP provides a mathematically principled way of dis-
covering the right number of classes as well as their mem-
bership, and scales to arbitrarily large numbers of fea-
tures. It can be thought of in terms of a seating scheme
for a restaurant with an infinite number of tables. Each
table corresponds to a group in a partition (here, a fea-
ture kind), and each person to enter the restaurant corre-
sponds to an element to be partitioned (here, a feature).
People are seated sequentially according to the following
probabilities, where nk is the number of people previ-
ously seated at table k and α is the distribution’s single
parameter:

P (zi = k|z1, · · · , zi−1) =

{ nk

i−1+α
if nk > 0

α
i−1+α

k is a new class

Since the CRP is exchangeable, it induces a distribution
P (z) on complete class assignments that is invariant to
the ordering of the features.

If we knew z, the assignment of features to kinds,
our problem would reduce to a series of K traditional
categorization problems. For each feature kind k we
could search for the partition wk of the objects into cat-
egories that maximizes P (wk|Dk) ∝ P (Dk|wk)P (wk).
Even though z must be inferred by our model, the last
two terms in Equation 2 are identical to distributions
needed by one traditional model of categorization, An-
derson’s rational model (Anderson, 1991), also known as
the infinite mixture model (Rasmussen, 2002). Note that
CrossCat reduces to this model when all features are as-
signed to a single kind. Our technical innovation, then,
is to suggest that multiple mixture models, each on a
different set of features, are needed to capture everyday
knowledge about the structure of real-world domains.

Following the infinite mixture model, our prior on a
partition of the objects into categories, P (wk) is induced
by a CRP with hyperparameter β. The remaining term,
P (Dk|wk), is the standard likelihood for independent
binary features in a mixture model:

P (Dk|w
k) =

Fk
∏

f

C
∏

c

Beta(nf,c + δ, n̄f,c + δ)

Beta(δ, δ)
(3)

where Fk is the number of features in kind k, C is the
number of categories in wk, and nf,c and n̄f,c are the
number of true and false instances of feature f in cate-
gory c. Intuitively, the term P (Dk|wk) is largest when
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the feature values in kind k are well predicted by the
object categories chosen for kind k: that is, when all
members of the same object category tend to have the
same values for all features in kind k.

Now that the three terms in Equation 2 have been
specified, we can see that CrossCat captures a tradeoff
between two competing factors. The terms P (z) and
P (wk) specify a preference for simple solutions that use
a small number of feature kinds and a small number of
object categories within each kind. The term P (Dk|wk)
favors solutions that explain the data well, and tends to
prefer more complex solutions. By combining all three
terms, we arrive at a model that attempts to find the
simplest solution that adequately accounts for the data.

All results in this paper were generated using a
stochastic search algorithm with local proposals simi-
lar to those typical of a Gibbs sampler. Some proposals
move features from one kind to another (possibly cre-
ating new kinds and systems of categories) and others
move objects between categories (possibly creating new
categories within existing kinds). Hyperparameters (α,
β and δ) were set to 0.5 in all cases. Many algorithms
could potentially implement the the computational the-
ory we have described, and we make no claims about the
psychological plausibility of the particular implementa-
tion that we chose.

Experiments

We present two experiments contrasting the performance
of CrossCat and a conventional infinite mixture model.
Our first experiment tests model predictions against hu-
man results in an unsupervised learning task. Use of
artificial categories allows us to ask whether people can
discover multiple systems of categories, and to test model
predictions in a controlled setting. Our second experi-
ment contrasts CrossCat and the infinite mixture model
in two real-world domains. We compare the representa-
tions found by the two models to our intuitions about the
structure of these domains, paying particular attention
to the additional structure discovered by CrossCat. To
the degree that CrossCat predicts human performance
and our intuitions, we suggest that it provides a good
characterization of how people learn and represent sys-
tems of categories.

Modeling human category learning

Three artificial bug stimulus sets were created for this
experiment. An example of one of these sets is presented
in Figure 3. The stimulus sets were designed to support
different systems of categories over the objects, where
each system accounts for a subset of the features.
Method
Participants: Ten individuals from the MIT community
participated in this experiment. Participants were re-
cruited via a mailing list, and included both students
and non-students.
Materials: Three sets of artificial stimuli, which we refer
to as 3-3, 3-2, and 2, were created for the experiment.
Each set of stimuli included eight bugs that varied on six
binary features: number of legs, kinds of feet, body pat-

(1) (2)

(3) (4) (5)

(6) (7) (8)

Figure 3: Stimuli from the 3-3 condition. Note that three cat-
egories can be formed by either grouping the objects by row
or by column. Stimuli numbers correspond to the numbers
used in Figures 4 and 5.

terns, kinds of tails, kinds of antennae, and head shapes
(see Figure 3 for an example set of stimuli and Figure 4
for the matrices corresponding to the three conditions).
The 3-3 condition was designed to have two orthogo-
nal systems, each with three categories. For example,
the rows in Figure 3 represent categories defined by the
shape of their heads, kinds of tails, and body patterns,
while the columns represent an orthogonal set of cat-
egories based on the number of legs, kind of antennae,
and kind of feet. The 3-2 condition was designed to have
two systems of categories, one system with three cate-
gories and the second system with two categories. The
2 condition was designed to have a single system of two
categories.
Procedure: There were two phases to the experiment:
training and testing. In the training phase, participants
were told that we were interested in different ways of
categorizing a single set of objects, and different ways of
categorizing foods was given as an example. The exper-
imenter then explained the sequential sorting task with
two examples. In the first example, the experimenter
showed two ways of categorizing a set of cards with two
orthogonal feature dimensions. In the second example,
the experimenter showed the participant two prototype
categories using stimuli from Yamauchi and Markman
(2000). The experimenter explained that this was a good
set of categories because it captured most of the informa-
tion about the objects. Participants were told that they
would be given a set of cards and they would be asked to
sort them into categories. They would then be asked if
there was another way of sorting the objects that “cap-
tured new and different information” about the objects.
After each sort, they would be asked if there was another
way of sorting the objects until they refused. When they
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Figure 4: Matrices representing the structure of the different
stimulus sets. The matrices correspond to the stimuli for 3-3,
3-2, and 2 conditions, from the left to the right. Unsorted
matrices are presented on the top, and on the bottom are the
best solutions according to the CrossCat model.

refused to sort further, participants were asked to rate
the goodness of each system of categories (though we do
not present those results here). Each participant sorted
each set of stimuli, and the sets were presented in ran-
dom order.

Results
We tallied the number of times each categorization ap-
peared for each stimulus set across participants. On av-
erage, people sorted each stimulus set 2.3 times, with
an average of 2.5 categories per sort. Numbers varied
across the three conditions and trends were in the di-
rection predicted by the model, but we did not formally
analyze these results due to lack of statistical power.

We compared human performance to the predictions
of our model and the infinite mixture model. For each
model, the hyperparameters were set to 0.5. Predictions
for the infinite mixture model were derived by enumerat-
ing and ranking possible solutions by the probability of
the solution given the data and parameters. Predictions
for CrossCat were derived by enumerating and ranking
all solutions including one or two ways of categorizing
the objects. For the two-partition solutions, the proba-
bility of the whole solution contributed to the scores of
both partitions.

Model predictions and human results for the 3-3 con-
dition and the 3-2 condition are plotted in Figures 5 and
6 respectively. The best solution for the 3-3 condition ac-
cording to CrossCat contains two categories, which are
also the modal sorts made by people, as can be seen in
columns 1 and 2. The third column shows that the best
solutions according to the infinite mixture model were
not preferred by either people or CrossCat. Notably, the
best solution according to the infinite mixture model is
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Figure 5: Results from the 3-3 condition. In each column, the
results are sorted by a different standard: from left to right,
the results are sorted by CrossCat predictions, human results,
and the infinite mixture model’s predictions. Note that the y-
axis scale is the same across each row and the model solutions
are plotted according to their relative probability, while the
human data are plotted by frequency. On the x-axis is the
partition of the objects, with different categories separated
by dashes. For example, in the case at the far left, stimuli 1,
4, and 7 were in the same category, while stimuli 2, 5, and 8
were in another.

to put all objects in the same category, highlighting the
model’s inability to deal with orthogonal systems of cat-
egories.

In the 3-2 condition (see Figure 6), the best solution
according to CrossCat contained two categories, both of
which were the modal solutions found by people. The
second column shows model predictions ordered by the
most frequent sorts by people. The infinite mixture
model only predicts one of the two modal solutions ac-
cording to people, while CrossCat predicted both of the
two most frequent sorts by people. The human plot also
reveals that the third most frequent sorting made by
people was not particularly probable under either model.
The third column shows the best sorts according to the
infinite mixture model. The second and third best so-
lutions according to the infinite mixture model do not
predict human data, and are not particularly probable
according to CrossCat.

In the 2 condition, both models agreed on the best
solution, a single system with two categories, 1234 −
5678. This was also the most common sort by people,
appearing twice as often as the second most frequent
sort.

The results suggest that people’s sorts cannot be ex-
plained by the infinite mixture model or any model that
relies on a single system of mutually exclusive categories.
The infinite mixture model performs well when there is
only a single system of categories, but it is unable to
predict results when there are multiple categorizations
of the objects, as shown in the 3-3 and 3-2 conditions.
In the 3-3 case, the infinite mixture model is unable to
predict either of the modal sorts made by people. In
contrast, CrossCat predicts the modal sorts by people
in all three conditions, suggesting that the model cap-
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Figure 6: Results from the 3-2 condition. In each column,
the results are sorted by a different standard: from left to
right, the results are sorted by CrossCat predictions, human
results, and the infinite mixture model. Note that the y-axis
scale is the same across each row and the model solutions
are plotted according to their relative probability, while the
human data are plotted by frequency. On the x-axis is the
partition of the objects, with different categories separated
by dashes.

tures the logic of how people discover multiple systems
of categories when learning about a novel domain.

Discovering multiple representations for

real-world domains

For this experiment, object-feature matrices were devel-
oped for two domains: foods and animals. These results
include simulations for CrossCat and the infinite mixture
model, and we contrast the systems of categories found
by each model, paying particular attention to whether
additional structure found by CrossCat reflects our in-
tuitions about the structure of each domain.

The foods matrix contained 8 foods and 16 features
(see Figure 1). The foods used were a subset of those
in Ross and Murphy (1999), and the features were ob-
tained by asking 7 participants to list features for each of
the full set of objects in Ross and Murphy (1999). The
objects and features used in this simulation were a sub-
set chosen by the authors. The matrix was filled in by
an undergraduate assistant, and a grey patch at matrix
entry (i, j) indicates that feature j is true of object i.

The results (see Figure 2) are evocative of how the
model could account for the results in Ross and Murphy
(1999). In particular, these results show that CrossCat
finds two systems of categories corresponding to tax-
onomic and situational groupings of foods, similar to
those produced by people. Ross and Murphy (1999) also
showed that people’s inferences differed when reasoning
about different properties: inferences about novel nutri-
ents were guided by taxonomic knowledge and inferences
about novel uses were based on situational knowledge.
Our results suggest how these different kinds of infer-
ences could be accounted for; by inferring the feature
kind for a novel property and inferring unobserved val-
ues for the premises.

The second simulation addressed the domain of ani-
mals. The data matrix contained 22 animals and 106
features. This dataset is a subset of a larger matrix col-
lected for an unrelated project. All of the features from
the original data set were included in our simulation,
and the animals were chosen to be representative of the
original set.

The best solution found by CrossCat (Figure 7) iden-
tifies (a) a taxonomic system of categories, (b) a set of
uninformative features and (c) an ecological system of
categories. As a natural byproduct of Bayesian infer-
ence, our model computes the predictability of each fea-
ture given its associated system of categories. We ar-
range the features in order of decreasing predictability,
so that features on the left in each system are generally
the most diagnostic.

The taxonomic system is supported by appropri-
ate features — ‘has bones’, ‘is warm-blooded’, ‘lays
eggs’, etc. and divides the animals into birds, rep-
tiles/amphibians, mammals, and invertebrates. The eco-
logical system is best supported by features like ‘is dan-
gerous’, ‘is carnivorous’, etc, and more weakly supported
by features like ‘lives in water’ and ‘flies’. These features
are natural indicators of the animal categories it finds:
prey, land predators, sea predators and air predators.
Note that these categories nicely cross-cut the taxonomic
ones. The third system consists of features of two kinds:
those which were generally absent in the dataset (e.g.
‘is canine’, since no dogs were included) and those that
were noisy with respect to the taxonomic and ecologi-
cal systems. Interestingly, this system isolates one crea-
ture, ‘frog’, in its own category; this is because it is the
lone animal with several features that are uninformative
about all other animals in the set.

All three systems are intuitively appropriate and ex-
plain different important aspects of the domain. The in-
finite mixture model, when run on the same data, finds
only the taxonomic categorization and would generalize
the non-taxonomic features far more conservatively as it
is forced to explain them as noisy taxonomic features.

Discussion

We presented a model that discovers multiple systems of
categories in a single domain. Our model combines two
insights that may seem incompatible at first. The vast
majority of categorization models learn a single system
of non-overlapping categories (e.g. Anderson, 1991), and
one of the reasons for the popularity of this approach is
that many real-world categories are mutually exclusive.
There is no animal, for example, that is both a mammal
and a reptile, and no food that is both a meat and a veg-
etable. The second insight is that categories can overlap.
This approach also seems natural, since real-world cat-
egories do overlap: an animal can be a bird and a pet,
and bacon is both a meat and a breakfast food.

Our model resolves the apparent contradiction be-
tween these perspectives. To a rough approximation,
categories may often be organized into multiple systems
of mutually exclusive categories. The first perspective
recognizes the structure that is present within each of
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Figure 7: The best solution found by CrossCat for the animals data includes three systems of categories: (a) a taxonomic
system, (b) a set of uninformative features and (c) an ecological system. Objects are labeled for the taxonomic and ecological
systems. Features are presented in order of decreasing predictability. Due to space constraints, only every other feature is
labeled.

these systems, and the second perspective recognizes
that categories from different systems may overlap. Our
model therefore inherits much of the flexibility that over-
lapping categories provide without losing the insight that
the categories within any given system are often disjoint.

This knowledge is one structural constraint that can
guide induction. Everyday intuitive leaps may also draw
upon other structural constraints. The biological do-
main, for example, may be organized as a taxonomic
tree when reasoning about the distribution of anatomical
properties, but as a food web when reasoning about the
distribution of novel diseases (Shafto and Coley, 2003;
Shafto et al., 2005). Given a hypothesis space including
several different structures, an extended version of our
model should be able to group features into kinds and
discover the structures that best explain each collection
of features.

We have assumed that a given feature is related to only
one of the many possible representations of a domain. In
Figure 7, for example, some features are taxonomic, oth-
ers are related to the system of ecological categories, but
no feature is simultaneously taxonomic and ecological.
Real-world features, however, may depend upon several
systems of categories: whether an animal catches a dis-
ease may depend upon what it eats (i.e. its ecological
category) and upon the genetic susceptibility shared by
members of its taxonomic category. Extensions of our
model can allow features to depend on one or more sys-
tems of categories, and we intend to pursue this in our
future work.

Everyday human inference is remarkably flexible and
accurate. The success of human reasoning is relies on
our ability to acquire rich systems of categories, and

to draw upon the system that is most relevant to any
given task. Even state-of-the-art formal models fall far
short of matching these abilities, but we believe that
models with the ability to discover multiple systems of
categories represent a step in the right direction.
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