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Abstract 

The mental model theory of reasoning postulates that 
individuals establish the consistency of a set of assertions 
by constructing a mental model in which all the assertions 
hold. Mental models represent what is true but not what is 
false, and this principle of ‘truth’ predicts that certain 
assertions should yield systematic errors. We report an 
experiment in which participants evaluated the 
consistency of assertions based on quantifiers and 
sentential connectives, e.g., All of the artists are barbers 
or else all of the barbers are artists; Some of the artists 
are not barbers. The results showed that participants 
judged consistent assertions to be inconsistent, and vice 
versa, much more often for the predicted assertions than 
for control problems, which should be unaffected by the 
failure to represent what is false. These results provide a 
litmus test for mental models, because no current 
alternative theories of reasoning predict them.  

Keywords: deductive reasoning; mental models; consistency; 
illusions. 

Introduction 
Are humans inherently rational? Without any training, they 
are able to make valid deductions. Consider the following 
problem: 

 
Carol invested in capital securities or else she invested in 
municipal bonds. 
She did not invest in municipal bonds. 
Therefore, she invested in capital securities. 

 
You do not need to know anything about securities or bonds 
to tell that the inference is valid. The ability to make valid 
inferences is a cornerstone of rationality, and as such, many 
theories argue that humans make use of formal rules akin to 
those in logic (Braine & O’Brien, 1998; Rips, 1994). 
According to those theories, humans make mistakes because 
they misapply the rules. Likewise, theories based on a 
probabilistic calculus believe that humans are rational, and 
that cognitive scientists use the wrong criteria to assess 
rationality, because everyday reasoning is probabilistic 
(Oaksford & Chater, 1998, 2007). Our own alternative 
theory is that human reasoning is based on mental models, 
or iconic representations of possibilities (Johnson-Laird, 
2006; Johnson-Laird & Byrne, 1991). Mental models 
represent what is true and not what is false, and this 

constraint can lead to inaccurate models of assertions. Thus, 
human reasoning is fallible in practice, and individuals 
should succumb to systematic errors in judgment and 
inference. These errors are at present a unique prediction of 
the model theory, and so they serve as a litmus test for 
mental models. In the present paper we examine fallacious 
judgments of consistency for assertions combining 
quantifiers such as ‘all’ and connectives such as ‘or else’. 

Mental models and illusions 
A foundational assumption of the model theory is the 
principle of truth: the mental models of a set of assertions 
represent only those possibilities consistent with the truth of 
assertions. The principle applies to assertions as a whole as 
well as to clauses within them. For example, an exclusive 
disjunction A or else not B yields the following mental 
models, where each horizontal line represents a model of a 
possibility, and ‘¬’ is used to denote negation: 
 
 A 
 	
   ¬ B 
 
The models do not represent what is false according to the 
disjunction, such as the case in which A is false and B is 
true. And, for those possibilities that make the exclusive 
disjunction true, such as the case in which A is true, the 
falsity of the corresponding possibility, in this case the 
negation of ¬B, hence B, is not represented in the models. 
This means that a literal (a proposition such as ¬B that 
contains no sentential connective) is represented in a model 
only if it is true in a possibility. Thus, the first of the models 
above represents the possibility that A is true, but it does not 
represent the fact that the literal ¬B is false in the 
possibility. Mental models do not represent what is false, 
whether it is an affirmative or negative literal, but in certain 
cases, such as when an inferential task is easy, individuals 
can construct fully explicit models. They represent both what 
is true and what is false in each possibility and therefore 
yield the correct representation of the assertion. The fully 
explicit models of A or else not B are as follows: 
 
 A	
    B 
¬ A	
   ¬ B 
 
where the affirmative B in the first model represents the 
falsity of the negation, ¬B, and the negative ¬A in the 
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second model represents the falsity of affirmative, A. As 
these models show, the disjunction is equivalent to the 
biconditional: A if and only if B. However, very few people 
grasp the equivalence, because it is evident only to those 
who envisage what is false and construct fully explicit 
models. 

The principle of truth may seem like a useful compromise 
to reduce the load on working memory, but it has an 
unexpected consequence: it predicts illusions, i.e., 
judgments and inferences that are compelling but erroneous 
(Johnson-Laird & Savary, 1999). Illusions can occur when 
individuals assess conclusions, make inferences, or evaluate 
the consistency of a set of assertions. For example, consider 
this problem: 

 
There is a pin and/or a bolt on the table, or else a bolt and 
a nail on the table. 
There is a bolt and a nail on the table. 
Is it possible that both assertions could be true at the same 
time? 
 

Reasoners in one study overwhelmingly responded ‘yes’ 
(Johnson-Laird, Legrenzi, Girotto, & Legrenzi, 2000), but 
the response is a fallacy predicted by the principle of truth. 
It is a fallacy because ‘or else’ in the first premise is an 
exclusive disjunction, i.e., if one clause of the disjunction is 
true, the other must be false. Hence, the truth of the second 
premise, there is a bolt and a nail on the table, implies that 
both clauses in the first premise are true. And that 
contravenes the meaning of ‘or else’, which means that the 
two assertions cannot be true at the same time. However, 
reasoners do not grasp this inconsistency and instead 
incorrectly judge the two assertions to be consistent. 

Previous studies have corroborated the existence of 
illusory deductions from disjunctive and biconditional 
premises (Johnson-Laird & Savary, 1999).  They have also 
corroborated them in singly quantified premises (Yang & 
Johnson-Laird, 2000). But, no study has examined the 
interaction between connectives and quantifiers. Our aim 
was accordingly to test whether illusions also occurred in a 
new domain: the evaluation of the consistency of assertions 
that depend on both quantifiers and connectives (as in 
Problem 1 below).  

Illusions with quantified assertions 
Our experiment examined two sorts of assertions that should 
yield illusions: exclusive disjunctions of quantified 
assertions, such as All the A are B or else some of the B are 
A, and biconditionals of quantified assertions, such as All of 
the A are B if and only if All of the B are A. Half of the 
problems used in the study were those that the principle of 
truth predicts should yield illusory judgments of 
consistency, and the other half were those that the principle 
of truth predicts should yield correct responses. Here is an 
example of an illusory problem based on an exclusive 
disjunction: 

 

1. Illusion (disjunction) 
All of the artists are barbers or else some of the barbers 
are artists. 

    All of the barbers are artists. 
Is it possible for both statements to be true at the same 
time? 

 
The disjunction yields two mental models that represent the 
two clauses (All of the artists are barbers and Some of the 
barbers are artists). Each model contains a set of 
individuals, where each line represents an individual and 
denotes the individual’s properties. We lay out the two 
models as follows: 

           1.                                     2. 
[artist]   barber   barber    artist 
[artist]   barber   barber    artist 
    barber 
 

These models represent each set by a small but arbitrary 
number of individuals (two or three in the present models), 
and the square brackets denote that a set has been 
represented exhaustively (cf. the notion of ‘distribution’ in 
logic). One consequence of these exhaustively represented 
properties is that they cannot be added to new individuals in 
the model (see, e.g., Johnson-Laird, 2006). So, you cannot 
add instances of artists that are not barbers to the first 
model.  
Consider the first mental model, which represents the first 
clause of the disjunction, All of the artists are barbers. The 
second assertion in the problem, All of the barbers are 
artists, is true in this model. The model theory predicts that 
individuals judge a set of assertions to be consistent if all 
the assertions hold in at least one mental model. Hence, 
people should judge that the two assertions are consistent. 
However, this judgment is flawed. The principle of truth 
predicts that the mental models represent the truth of each 
clause in an exclusive disjunction, but not the concurrent 
falsity of the other clause. Suppose that the first clause in 
the disjunction, All of the artists are barbers, is true. Hence, 
the second clause must be false, i.e., none of the barbers is 
an artist. This case is inconsistent with the first clause of the 
disjunction, and so it is impossible. Now suppose that the 
second clause of the disjunction is true, i.e., some of the 
barbers are artists. In this case, it must be false that all of the 
artists are barbers, i.e., at least some of them are not barbers. 
So, we have the conjunction of at least some of the barbers 
are artists and at least some of the artists are not barbers. 
There is accordingly just one fully explicit model of the 
disjunction: 

 
artist    barber 
artist    barber 

   barber 
artist  ¬barber 

 
The second assertion in the problem, all the barbers are 
artists, is accordingly inconsistent with this model, and the 
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correct evaluation of the two assertions is that they are 
inconsistent. 

The same compound assertion used in (1) yields a control 
problem, as in (1’): 

 
1’. Control (disjunction) 

All of the artists are barbers or else some of the barbers 
are artists. 
None of the barbers is an artist. 
Is it possible for both statements to be true at the same 
time? 

 
The second assertion, none of the barbers is an artist, is 
inconsistent with the mental models above, and so the 
theory predicts that individuals should respond that the two 
assertions are inconsistent. In this case, they will be correct, 
because the second assertion is also inconsistent with the 
fully explicit model above.  

An example of an illusory problem based on a 
biconditional assertion is: 
 

2. Illusion (biconditional) 
All of the artists are barbers if and only if all of the 
barbers are artists. 
None of the artists is a barber. 
Is it possible for both statements to be true at the same 
time? 

 
Biconditional assertions are true whenever both of its 
clauses are true or else when they are both false. In the case 
of a biconditional, the principle of truth predicts that a 
mental model of a biconditional will represent the 
possibility in which both clauses are true, but not the 
possibility in which both clauses are false. Hence, the 
biconditional assertion yields the following mental model in 
which the two sets of individuals are co-extensive: 
 

[artist]  [barber] 
[artist]  [barber] 

 
According to the principle of truth, individuals should 
respond that the second assertion, None of the artists is a 
barber, is inconsistent with the first assertion, because the 
second assertion does not hold in the mental model above of 
the biconditional assertion. Mental models fail to represent 
the possibility in which both clauses of the biconditional are 
false, i.e., at least some of the artists are not barbers and at 
least some of the barbers are not artists. The fully explicit 
models would include both the model above and represent 
such a possibility, e.g.: 
 
     ¬artist [barber] 

  [artist] ¬barber 
   
This model is consistent with the second assertion in the 
problem, and so the correct response is that the two 
assertions are consistent. 

The same compound assertion can also yield a control 
problem:  
 

2’. Control (biconditional) 
All of the artists are barbers if and only if all of the 
barbers are artists. 
Some of the artists are barbers. 
Is it possible for both statements to be true at the same 
time? 

 
The second assertion is consistent with the mental model, 
which is a correct possibility, and so individuals should 
respond correctly that the two assertions are consistent. 

Method 
Participants and procedure. 28 participants were recruited 
through an online platform hosted by Amazon.com. None of 
the participants had received any training in logic. 
Participants were told to take as much time as they needed 
to answer the questions and were asked to answer as 
accurately as possible. 
Design and materials. Participants acted as their own 
controls and evaluated 18 sets of assertions (see Appendix), 
and each set contained one compound quantified assertion 
(e.g., All the artists are beekeepers if and only if some of the 
beekeepers are not artists) and one simple assertion. There 
were four sorts of problem: illusions of consistency (C/I), 
where ‘C’ denotes the predicted response of consistent, and 
‘I’ denotes the correct response of inconsistent, their 
controls (I/I), illusions of inconsistency (I/C), and their 
controls (C/C). 12 of the problems were based on 
disjunctions, and 6 of them were based on biconditionals, 
for which it is impossible to have illusions of inconsistency. 
For each set of assertions, participants pressed one of two 
buttons on the screen (labeled ‘yes’ and ‘no’) to respond to 
the question ‘Is it possible for both statements to be true at 
the same time?’ The contents of the assertions concerned 
occupations (e.g., artists, beekeepers, and chemists). Each 
participant received the problems in a different random 
order. The corresponding mental models and fully explicit 
models are given in the Appendix. 

Results 
Table 1 provides the overall percentages of correct 
responses for the six sorts of problem. The data strongly 
support the predictions of the model theory. 

 
 

Table 1: The percentages of correct responses for illusory 
and control problems in the different conditions 

 Illusions Controls 
Disjunctions   
        Consistent problems 36% 85% 

    Inconsistent problems 7% 75% 
Biconditionals   
        Consistent problems 43% 80% 
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Overall, the illusions (29% correct) were reliably harder 
than the control problems (80% correct; Wilcoxon test, z = 
4.49, p < 0.0001), and 24 out of the 28 participants did 
worse on illusions than controls (Binomial test, p < .00001).  
There was no reliable difference in performance between 
disjunctive and biconditional consistent problems 
(Wilcoxon test, z = 0.12, p > 0.9). And participants 
succumbed to illusory inferences in both disjunctive and 
biconditional assertions. As the Table shows, however, a 
reliable interaction occurred: the illusions of consistency 
were more compelling than the illusions of inconsistency 
(Wilcoxon test, z = 3.24, p < 0.002). The control problems 
demonstrated that participants interpreted the sentential 
connectives correctly. The illusions of inconsistency 
likewise rule out the possibility that individuals had 
alternative interpretations of the connectives. 

One might be tempted to argue that the results could be 
explained if individuals interpreted the exclusive 
disjunctions as inclusive ones. Yet this cannot be the case, 
because inclusive disjunctions merely add possibilities, and 
so they do not change the consistency of the assertions in 
the problems. We conclude that illusions of consistency in 
quantified assertions are a robust phenomenon. 

 

General Discussion 
Our results show that robust illusions of consistency, and 

of inconsistency, occur with compound assertions that 
consist of quantified clauses. Participants were more likely 
to succumb to illusions of consistency – they judged that 
assertions were consistent when in fact they were 
inconsistent. One contributory factor may have been that 
individuals need to show that no model exists in which the 
assertions hold in order to establish inconsistency. In 
contrast, to establish consistency, they only need to 
construct one model in which the assertions hold.  That is, 
inconsistency calls for a more exhaustive search than 
consistency. 

In general, illusions serve as a litmus test for mental 
models, because no other current alternative theory can 
predict or explain the results. The results of the present 
study support the principle of truth., They also show that 
judgments of inconsistency are more difficult than 
judgments of consistency (Johnson-Laird, Girotto, & 
Legrenzi, 2004). Theories based on formal rules of 
inference (Braine & O'Brien, 1998; Rips, 1994) cannot 
account for the illusions, because these theories rely on 
valid rules of inference. If such theories incorporated invalid 
rules to explain illusions, they would predict many 
inferences that individuals never make. Invalid inference 
rules are a recipe for irrationality, and could render theories 
of deduction unstable. Moreover, performance can be 
enhanced when reasoners are given remedial instructions 
(Khemlani & Johnson-Laird, 2009; Yang & Johnson-Laird, 
2000). 

Theories based on the probability calculus cannot readily 
account for performance in the task of evaluating 

consistency either. Chater and Oaksford (1999, 2007) assign 
probabilistic meanings to quantified clauses. For instance, 
All the A are B is interpreted as meaning p(B|A) = 1, and 
Some of the A are not B means that p(B|A) < 1. But, how 
does one assess consistency? If it is simply a matter of 
consistent conditional probabilities, then a problem based on 
these assertions: 

 All of the A are B or else all the B are A. 
Some of the A are not B. 

should be judged as consistent, because both assertions can 
have a probability > 0. But, the model theory predicts that 
these assertions should be evaluated (erroneously) as 
inconsistent, and indeed 61% of our participants 
corroborated this prediction. At the very least, the 
probabilistic theory needs to add some additional machinery 
to cope with inconsistency.  A conditional probability of the 
form: 

p(B & C & D | A) 
has the value of zero in case the conjunction of B, C, and D, 
is inconsistent, even if the individual conditional 
probabilities p(B | A), p (C | A), p(D | A) all have non-zero 
values.  

In sum, reasoners in our study made systematic errors in 
reasoning about the consistency of disjunctions and 
biconditionals of singly quantified assertions. They tended 
to err on problems that called for them to take into account 
possibilities that rendered the assertions false, and thus 
corroborated the model theory’s principle of truth. 
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Appendix 
The problems in the experiment in an abbreviated form, their mental models and their fully explicit models 

 
Forms of Premises and Questions Mental Models Fully Explicit Models % Correct 
1. All of the A are B or else some of 

the A are B 
[A]    B          A     B 
[A]    B          A 
                              B 

  A     B 
  A   ¬B 
¬A     B 

 

Some of the A are not B  Illusion of consistency 11 
None of the A is a B  Control “no” response 82 

2. All of the A are B or else some of 
the B are A. 

[A]    B          B     A  
[A]    B          B 
                              A 

  A     B 
  A   ¬B 
¬A     B 

 

All of the B are A  Illusion of consistency 0 
None of the A is a B  Control “no” response 71 

3. All of the A are B or else all of the 
B are A. 

[A]    B         [B]   A 
[A]    B         [B]   A 

 [A]    B        [B]     A 
 [A]    B        [B]     A 
¬A     B        ¬B      A 

 

Some of the A are not B  Illusion of inconsistency 39 
Some of the A are B  Control “yes” response 68 

4. Some A are not B or else some B 
are not A. 

A                   B 
(A)  [B]        (B)  [A] 
        [B]               [A] 

 [A]    B        [B]     A 
 [A]    B        [B]     A 
 ¬A    B         ¬B     A 

 

All of the B are A  Illusion of inconsistency 32 
Some of the A are B  Control “yes” response 96 

5. None of the A is a B or else some of 
the A are not B 

[A]                 A 
        [B]        (A) [B] 
                            [B] 

  A    [B] 
  A   ¬B 

 

None of the A is a B  Illusion of consistency 11 
All of the A are B  Control “no” response 71 
All of the B are A  Illusion of inconsistency 36 
Some of the B are A  Control “yes” response 89 

6. None of the A is a B if and only if 
some of the B are not A 

[A] 
        [B] 
  

  A    [B] 
  A 

 

All B are A  Illusion of inconsistency 39 
Some A are not B.  Control “yes” response 71 

7. All of the A are B if and only if all 
of the B are A 

[A]  [B] 
[A]  [B] 

[A] 
         [B] 

 

None of the A is a B  Illusion of inconsistency 50 
Some of the A are B  Control “yes” response 71 

8. Some A are not B if and only if 
some B are not A. 

  A  ¬B 
¬A    B    
  A     
         B 

[A]   [B]  

All of the A are B  Illusion of inconsistency 39 
Some of the A are B  Control “yes” response 96 
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