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Abstract 

We investigated the way in which working memory (WM) 

constrains the learning of relational concepts – categories de-

fined by the way objects are assigned to roles in the structure 

of an underlying relation, and not by objects’ intrinsic featu-

res. By applying to a large sample a novel test of concept le-

arning as well as the battery of WM tasks, we found that WM 

is a strong predictor of the scores on the test, but the WM-

learning correlation decreases as the relational complexity of 

the to-be-learned concepts increases. Such results support 

those theoretical models of relational learning, which assume 

that learning of relational concepts (and relations, in general) 

consumes more WM resources than just the processing of 

relations which have already been learned. 

Introduction 

The issue of relational thinking – the humankind’s ability to 
acquire, process, and effectively use mental representations 
of relations – has huge importance in cognitive science 
(Gentner & Kurtz, 2005; Halford, Wilson, & Phillips, 1998; 
Hummel & Holyoak, 2003). A relation can be described as 
an ordered list (a structure, a predicate) of well-defined roles 
and objects that fulfill them. The key aspect of relations 
consists of the fact that understanding of them as well as 
inferring from them depends primarily on the way objects 
are assigned to roles in the relation’s structure, and not 
necessarily on objects’ intrinsic features. Relational repre-
sentations constitute the core of human complex cognition, 
including abstraction, reasoning, analogy making, creativity, 
and language (Halford, Wilson, & Phillips, 2010). 

The extension of an n-ary relation (where n is a number of 
roles in a relation; its arity) is a subset of Cartesian product 
of n sets, which includes all lists of objects (n-tuples) that 
can fulfill roles in that relation (i.e., an object from the first 
set in a tuple fulfills the first role, etc.; Halford et al., 1998). 
So, each relation can be treated as a relational category/ 
concept (Gentner & Kurtz, 2005). Unlike so-called entity 
categories, that is, categories formed by objects due to their 
perceptual or/and internal (e.g., genetic) similarity (e.g., 
natural kinds), relational concepts in the first place organize 
entity categories (or lower level relational categories), and 
so their exemplars may drastically vary featurally. For 
example, the instances of the relational concept of barrier 
will include: a wall, a river, a person, but also an insult, and 
loss of support (ibidem). Relational concepts constitute the 
main part of culture, science, and technology. 

 A key goal of cognitive science is to understand what re-
lational concepts are, how they are acquired in childhood 
and adulthood, and how they are used in relational thinking. 
Consequently, the present paper aims to deal with one speci-
fic problem in this domain: it investigates in what way the 
constraints of human cognitive architecture, particularly its 
working memory capacity (WMC), influence the learning of 
relational concepts (from here on, the process/ability 
referred to as relational learning).  

Working memory and relational learning 

Computational models of relational thinking (e.g., Chuder-
ski, Andrelczyk, & Smolen, 2013; Doumas, Hummel, & 
Sandhofer, 2008; Halford et al., 2010; Hummel & Holyoak, 
2003) as well as psychometric studies on reasoning and 
analogy making (e.g., Martinez et al., 2011) suggest that 
processing relations is grounded in working memory (WM). 
WM is a neurocognitive mechanism responsible for  mainte-
nance of a limited, but crucial for the current task/goal, 
amount of information, in an active and easily available 
state (Cowan, 2001). It thus allows for flexible manipulation 
of that information (Hummel & Holyoak, 2003; Oberauer, 
Süß, Wilhelm, & Sander, 2007), including binding of rela-
tional roles and corresponding objects, which is a necessary 
process for a relational representation to be constructed. 
People can hold in their WM up to, on average, as few as 
three or four chunks of information (Cowan, 2001; Luck & 
Vogel, 1997) and, probably, the similar number of bindings 
(Chuderski et al., 2013; Oberauer et al., 2007), though these 
values vary among individuals (approx. from 1 to 6). This 
clearly corresponds to the fact that accuracy of processing 
relations sharply decreases with increasing arity of relations, 
and few participants can cope with relations more complex 
than quaternary ones (Halford et al., 2010). 
 An interesting research question pertains to a problem of 
whether similar influence of WMC, as in abovementioned 
case of processing relations (e.g., during analogical mapping 
or inference), also takes place in case of relational learning, 
when people have to discover an (abstract) relation between 
related objects and construct a mental representation of the 
relational concept referring to that category.  
 A widely used paradigm of relational concept learning 
was proposed by Shepard, Hovland, and Jenkins (1961). 
They presented to participants series of eight three-feature 
geometric figures, each of which could take one out of two 
values on each featural dimension (shape, size, color), and 
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needed to be classified as belonging or not to a category de-
fined by an arbitrary rule of propositional logic (henceforth 
named a Boolean concept). Each decision was followed by a 
feedback information on whether an object was categorized 
correctly or not. Participants improved on that classification 
task, thus learning to some extent a hidden Boolean concept. 
The most important result suggested that the accuracy of 
categorization decreased as the number of features relevant 
for a concept increased from one to three. This observation 
was generalized beyond Boolean concepts domain by 
Halford et al. (1998), who defined relational complexity in 
terms of the number of entities (variables or dimensions of a 
relation, that is, its arity) that must be related in parallel, 
because their decomposition into a set of less complex 
relations would lead to the loss of the relation’s meaning. 

Moreover, accuracy of categorization decreased with 
increasing complexity (expressed by minimal description 
length, MDL; Feldman, 2000) of a logical rule associated 
with the three-feature concepts. However, as the MDL 
approach led to a problem of which logical operators should 
count as minimal (e.g., if we include exclusive disjunction, 
then MDL no longer predicts Shepard et al.’s data; see 
Goodwin & Johnson-Laird, 2011), later this approach was 
disputed. For example, Feldman (2006) proposed an alge-
braic complexity metric of discrete-value concept learning 
difficulty, which depends on the sum of a number of 
constant values of variables and the number of implications 
which derive values of one variable from values of another 
variable, into which a given concept can be decomposed. 
Kemp, Goodman, and Tenenbaum (2008) adopted this app-
roach to describe relational concepts beyond a Boolean 
domain. Those approaches nicely predicted observed data. 
Similarly good fit was obtained by a theory predicting that 
the number of all possible mental models (iconic-like repre-
sentations precisely corresponding to the structure of – 
themselves roughly represented – elements of a situation) 
which match a rule describing a concept (Goodwin & 
Johnson-Laird, 2011). 

In the present paper, we ask whether the effectiveness of 
relational learning can be predicted by WMC. Moreover, we 
test whether the link between those two variables, if any is 
found, depends on the abovementioned complexity of con-
cepts which are learned. Such a test may be very informa-
tive regarding the validity of existing models of relational 
learning, because, as we will see, some of them seem to 
yield opposite patterns of predictions on the strength of 
WMC-relational-learning link in the function of complexity. 

Although Halford et al. (1998) have not inferred such 
predictions directly from their theory (instantiated also in a 
computational model called STAR), closer inspection of this 
theory leads to the prediction that the critical value of 
relational complexity for learning relations should be four 
dimensions. For example, Halford, Baker, McCredden,  & 
Bain (2005) have shown that accuracy to understand stati-
stical interactions is quite high for two- and three-way 
interactions, while it radically falls down in the case of four-
way ones. As Halford et al. (2010) assume that the same 
constrains pertain to both processing and acquiring relations 
(both limits are grounded in the maximal size of a tensor 
that humans can mentally represent), learning bi- and ter-

nary relations should be relatively easy and not so much 
constrained by individual WMC, as the mean WMC is about 
four. In contrast, there should be substantial differences in 
learning quaternary relations, as people of WMC below four 
(i.e., one, two, or three) will not be able to learn them fully, 
while people of WM above that limit (i.e., of four, five or 
six slots) will have enough capacity to do that. So, the 
correlation between WMC and relational learning should be 
the strongest in case of the mean value of WMC. 

In contrast, a neurosymbolic model of the discovery of 
relations proposed by Doumas et al. (2008) assumes that in 
order to learn a relation, a cognitive system has to represent 
each role-filler pair as two separate neuronal oscillations, 
asynchronic, but peaking close in time. This implicates that 
for learning each dimension of a relation, the system needs 
two WM chunks, and only after having learned it, both a 
role and a filler can be compressed into one synchronized 
oscillation. So, even learning binary relations will consume 
WMC (i.e., four chunks) of a large part of participants, and 
their performance on binary relations should be particularly 
sensitive to individual differences in WMC. Learning ter-
nary (i.e., requiring six WM slots) or quaternary (i.e., occu-
pying eight slots) relations should be difficult for almost 
everyone’s WM, and – if nevertheless effective – will have 
to rely on mechanisms other than WM (e.g., relational 
knowledge accretion, compressing relations, etc.). 
 Interestingly, a recent study by Lewandowsky (2011), 
who examined correlations between each type of Shepard et 
al.’s concepts and WMC, has shown that the strength of 
such a correlation is basically the same in case of unary, 
binary and ternary concepts of such a kind.  This study 
suggests that a third possibility regarding the pattern of 
correlations between relational learning and WMC is 
possible, specifically that WMC influences learning rela-
tions of any complexity. However, three disputable aspects 
of the Lewandowsky’s study suggest that more data is 
needed before a decisive conclusion on WMC-relational 
learning link can be given.  

Firstly, the criterion for a successful learning of Shepard 
et al.’ concepts was that a certain number of correct 
classifications can be consecutively made by a participant. 
However, this does not guarantee that he or she really start-
ed to represent a relation underlying the concept, because 
due to a large number of classification trials a complex 
association, instead of a fully-blown relational representa-
tion, may be formed as well. So, in order to prevent such a 
case, participants should be able to explicitly report a rela-
tion to be found, as a necessary criterion for judging that a 
relational representation has indeed been learned.  

Secondly, with the use of Shepard et al.’s concepts, at 
most ternary relations can be investigated, what does not 
allow to directly test predictions derived from Halford et al. 
(1998, 2005, 2010). More complex relations, above and 
beyond binary features and three dimensions, are needed 
(e.g., Kemp et al., 2008). Optimally, participants should be 
required to learn quaternary relations, in which each 
variable depends on the values of three other variables. 

Finally, all existing studies (e.g., Goodwin & Johnson-
Laird, 2011; Halford et al., 2005; Kemp et al., 2008; Lewan-
dowsky, 2011) have investigated relational learning defined 
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as the rate of success in acquisition of a to-be-learned 
concept/rule. However, learning is a dynamic process, and 
its most important indicator is the increase of  knowledge 
one has gained, and not the total amount of knowledge 
(including the knowledge possessed before the study start-
ed) that one can display. So, the examination of the progress 
in the discovery of relations, and not only how one can 
discover them in general, as well as the testing of possible 
associations between the rate of that progress and WMC, 
can bring a vital insight about relational learning and its 
WM mechanisms. To our knowledge, no study so far add-
ressed all aforementioned issues in parallel. 
 In the remaining part of the paper, we present a direct 
examination of possible predictions on the link between 
WMC and relational learning, by applying to a large sample 
of participants a test that requires discovery of relational 
concepts differing in complexity. Each discovered concept 
must aptly describe six presented associated exemplars, 
while excluding three accompanying counterexamples. We 
also measured participants’ WMC with four versions of a 
well-established WM measure (a complex span task). We 
investigated the resulting correlations with the use of 
confirmatory factor analysis (CFA). Firstly, we correlated 
relational learning accuracy with WMC, in the function of 
the complexity of the former. Secondly, we tested the link 
between the latter and the improvement on learning, that is, 
when structurally identical relations must be discovered for 
the second time, but now governing new kind of stimuli. 
That is, we examined if the transfer of the effects of rela-
tional learning would be linked to WMC or not. 

A study 

Participants 

A total of 243 participants (142 women, mean age = 24.3 

years, SD age = 5.0, range 18 – 45 years) were recruited via 

publicly accessible social networking websites. Each person 

was paid 15 euro for their participation in the study. Data 

from six people were discarded because of theirs failure to 

provide even one elaborate description in the learning test. 

A test of relational concepts discovery 

The DREL (Discovery of RELations) paper-and-pencil test 

consists of two, letter and digit, parts. Each part includes 15 

items. Each item consists of six four-symbol strings, which 

are governed by a to-be-discovered relation, and another 

three strings, which form counterexamples for that relation, 

that is, the discovered relation must exclude all three 

counterexamples. A participant is required to write down a 

concise and abstract description of a relation that matches 

six positive exemplar strings. The counterexamples were 

introduced in order to prevent describing too general rela-

tions (e.g., all strings consist of four symbols). In each part 

of the test, there are five binary, five ternary, and five 

quaternary relations, and item positions for each complexity 

level with regard to the beginning of the test were balanced 

(the sequence of levels is: 3 2 4 2 3 4 3 4 2 4 3 2 4 2 3). 

In the first part of the test, symbols in each string are two 

different letters, and a relation governs the place of each 

letter relative to some number of remaining letters in a 

string. We assumed that in binary-relation items, the proper 

relation can be discovered using only pairwise comparisons 

of letters, so in each step of analysis of a string, a partici-

pant needs to maintain in WM only two representations. 

One example of a binary-relation item requires to discover a 

relation the same letters in the middle are different from the 

same two letters on the extremes: 

 

OEEO  LSSL  BVVB 

 

ZKKZ  NUUN YAAY 

 

RRVV  AKAK PPLL 

 

Counterexamples prevent people from proposing relations 

like there are always two exemplars of one letter and two – 

of the other letter. There is only one mental model corres-

ponding to binary relations (in case of this example: abba). 

 In the ternary-relation items, the proper relation can be 

discovered using comparisons of three letters in parallel, so 

in each step of analysis three representations have to be 

maintained in WM. An instance of ternary relation is one 

and only letter different from three other identical letters is 

always placed in the middle (corresponding models are: 

aaba and abaa). In the item presented below, a participant is 

expected to relate: a pair of two identical letters to another 

identical letter on the opposite, and both of them to one re-

maining different letter always placed in the middle: 

 

ZEZZ  LLUL  NRNN 

 

ASAA  JJWJ  PBPP 

 

OLLL  KKKN VVVB 

 

In the most difficult, quaternary-relation items, we assumed 

that all four letters have to be related in one step. An 

example relation is the first letter is different from the 

second one or the third one or both, and the third letter is 

different from the fourth one (three corresponding models: 

aaba, abab, and abba). The complexity of this relation is a 

result of introducing an inclusive disjunction x or y or both. 

A participant in this example is expected to simultaneously 

relate the first letter to the second, the first one to the third, 

and the third one to the fourth: 

 

GGRG NHNH FDDF 

 

BEEB  OOXO ACAC 

 

FFFF  NNNP  JJSS 

  

The only difference between the first and the second part of 

the test is that symbols are digits, and relations pertain to 
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their evenness or oddness. However, the abstract structure 

of relations of corresponding items in both tests is identical. 

For example, the digit version of aforementioned binary 

relation would be: two digits in the middle are both odd or 

both even, and in the former case two extreme digits are 

even, while in the latter case two extreme digits are odd. 

This part is more difficult, as the crucial feature (evenness/ 

oddness) is not linked to the appearance of a symbol, while 

the crucial feature of the letter part (identity/difference) is. 

 The scoring on the test depended on the abstractness on 

given descriptions. One point was scored if a described rela-

tion was correct and properly abstract (as in the examples), 

no matter what exact formulation were used by participants. 

Half point was scored if a description was correct, but it was 

not abstract enough, instead it was composed of particular 

subcategories of strings (usually corresponding to possible 

models), for example, in case of the ternary example, if a 

description was like there is either (a) one letter, then 

another is different, and then two last letters are the same as 

the first one, or (b) there are two same letters, then another 

is different, and then the last letter is the same as the two 

first ones. No score was given for incorrect descriptions, no 

matter if they excluded valid instances of strings or included 

counterexamples. Such a partial scoring resulted in much 

better reliability of the test (Cronbach’s α = .91) than did 

binary (correct/incorrect) scoring (α = .78). The dependent 

variables were total scores (in range 0 to 5) on each level of 

relational complexity, and the corresponding differences 

between scores on the second and first part of the test (i.e., 

indices of learning). 

Working memory tasks 

Four complex span tasks were designed following Conway 
et al. (2005). In general, a complex span requires memo-
rizing a sequence of a few stimuli, each of them followed by 
a simple decision task. In the present versions, each task re-
quired memorizing three to seven (set size) stimuli, present-
ed for 1.2 s apiece, out of nine possible ones for that task. 
After two two-stimuli training trials, three trials for each set 
size (in increasing order) were presented in each complex 
span task. The letter span task (sometimes called an opera-
tion span task) required memorizing letters, while deciding 
with a mouse button if intermittent simple arithmetical 
equations (e.g., 2 × 3 – 1 = 5?) are correct or not. The digit 
span consisted of memorizing digits, while checking if letter 
strings begin and end with the same letter. The spatial span 
task required memorizing locations of a red square in the 
3×3 matrix, while deciding which of two presented bars is 
larger (the difference was always 25%). In the figural span 
task, participants were instructed to memorize simple geo-
metric figures, while judging colors to be light (yellow or 
beige) or dark (brown or navy blue). The dual (decision) 
task in each WM test aimed to prevent the chunking of 
stimuli or the extensive use of phonological loop, which 
could obscure “real” WMC of individuals. The participants 
were instructed that they should recall as many stimuli as 
they can (in proper order), but that they should also try to be 
correct on the decision tasks. 

 The response procedure in each task consisted of a pre-
sentation of as many 3×3 matrices as was a particular set 
size, in the center of the computer screen, from left to right. 
Each matrix contained the same set of all nine possible sti-
muli for a task. A participant was required to point with the 
mouse those stimuli that were presented in a sequence, in 
the correct order (from left to right). Only choices that 
matched both the identity and ordinal position of a stimulus 
were taken as correct answers. The dependent variable for 
each complex span task was the proportion of correct 
choices to all stimuli presented in the task. All complex 
span tasks displayed high reliability (αs = .85 to .89). 

Procedure 

The presented study was a part of a larger project testing 
various cognitive abilities (WM, attention, reasoning), 
which included 17 computerized tasks applied in one four-
hr session, and 5 tests of relational thinking applied in ano-
ther four-hr session (sessions were administered in a random 
order), with a 1-hr break between the sessions. Complex 
span tasks were the 5

th
, 9

th
, 13

th
 and 16

th
 tasks in a row 

applied in the former session, while the DREL test was the 
first task in the latter session. Half hour was allowed for 
each part of the DREL test. 

Results 

Table 1 shows the descriptive statistics and correlations of 

all dependent variables. No variable deviated from the nor-

mal distribution. Correlations ranged from moderate (r = 

.21) to strong (r = .75). 

 

 

Task 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

1.DL2 –          

2.DL3 .46 –         

3.DL4 .36 .66 –        

4.DD2 .42 .45 .44 –       

5.DD3 .27 .46 .47 .65 –      

6.DD4 .23 .43 .52 .56 .75 –     

7.LSPAN .36 .39 .34 .37 .40 .31 –    

8.NSPAN .42 .37 .30 .38 .33 .26 .70 –   

9.SSPAN .21 .32 .23 .34 .34 .25 .57 .51 –  

10.FSPAN .24 .29 .23 .36 .32 .28 .65 .72 .59 – 

Mean 4.46 2.18 1.53 3.07 1.37 0.88 0.69 0.76 0.52 0.62 

SD 0.95 0.85 0.99 1.46 0.96 0.96 0.19 0.16 0.18 0.18 

Min. 0 0 0 0 0 0 0.05 0.09 0.05 0.13 

Max. 5 4 4.5 5 3.5 3 0.99 1.00 0.97 1.00 

Table 1: Correlation coefficients and descriptive statistics 

for all dependent variables in the study (N = 237). All 

correlations were significant at p = .001 level. Note: D – 

DREL test, L or D – its letter or digit version, 2, 3, or 4 – 

relational complexity level. SPAN – versions of complex 

span task, L – letter, N – number, S – spatial, F – figural. 
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Figure 1: The general structure of the CFA models linking 

the discovery of binary, ternary, and quaternary relations to 

WMC. Ovals represent latent variables (factors), while 

boxes stand for observed variables (measures). Arrows 

represent factor loadings, while a line stands for correlation. 

 

The two (test versions) by three (levels of complexity) 

ANOVA of the DREL test’s scores indicated that they were 

significantly higher in the letter version (M = 2.72) than in 

the digit version (M = 1.77), F(1, 236) = 316.93, p < .001, 

η
2
 = .57, and that they decreased with increasing relational 

complexity (MRC2 = 3.75, MRC3 = 1.74, and MRC4 = 1.20), 

F(2, 472) = 1523.80, p < .001, η
2
 = .87. Also, both factors 

interacted, F(2, 472) = 43.18, p < .001, η
2
 = .15, as the 

effect of complexity was more profound in the letter version 

than in the digit one. These data indicate that the DREL test 

seems to be a proper tool for measurement of how effect-

ively people discover relations, and that participants were 

sensitive to the complexity of the test’s items. 

 Then, we tested whether our participants improved at all 

in the digit version of the DREL test, by comparing their 

scores on that version to another 79 participants from a si-

milar study, who only attempted the digit version (i.e., they 

did not “train” on the letter version). This control group 

scored M = 1.34 per condition (comparing to M = 1.77 in 

the experimental group), that is, there was a highly 

significant learning effect, t(314) = 3.46, p < .001. 

Next, with CFA, we assessed the strengths of correlations 

between the latent variable reflecting WMC (loaded by four 

complex span tasks) and variables representing the effect-

iveness of the discovery of relational concepts, separately 

for each level of complexity. The structure common to three 

calculated models is shown in Fig. 1. Each model had a 

good fit, as estimated by Bentler’s comparative fit index 

(CFI; its widely accepted criterion value = .92) and the 

standardized root mean square residual (SRMSR; the 

criterion value = .05). For all models, CFIs surpassed .965, 

and SRMSRs were below .035. Complex span measures’ 

loadings on WMC variable were high (> .667, p < .001), as 

well as loadings of DREL measures (> .609, p < .001). This 

data indicates that the structure of models reflected very 

well the structure of correlations among variables. The com-

parison of correlations between both latent variables showed 

that there was no significant difference between the correl-

ations for binary (r = .663, SE = .068, p < .001) and ternary 

(r = .631, SE = .065, p < .001) relations (∆r = –.028, n.s.), 

while discovery of quaternary ones was more weakly correl-

ated with WMC (r = .477, SE = .071, p < .001) than disco-

very of both binary (∆r =  –.186., t[235] = 2.70; p = .004) 

and ternary relations (∆r =  –.154., t[235] = 2.30; p = .009). 

Finally, we tested another CFA model, which related the 

WMC variable to the index of learning that occurred from 

the letter to the digit version of the DREL test. Because the 

scores in quaternary conditions approached floor, and thus 

the difference between them might have poor psychometric 

parameters, we decided to aggregate indices of learning of 

ternary and quaternary relations. The model, presented in 

Fig. 2, had a very good fit (CFI = .979, SRMSR = .035). 

Most importantly, it suggests that the performance of 

participants displaying more capacious WM deteriorated 

less on the more abstract version of the test in comparison to 

less capacious participants (r = .207, p = .002), most 

probably due to a more effective process of the transfer of 

the abstract pattern of relations, which had been introduced 

in the letter part of the test, to its digit version. 

Discussion 

The newly designed DREL test appeared to be a very reliab-

le tool, and scores on DREL responded well to experimental 

manipulations. The significant drop of the DREL-WMC 

correlation only for quaternary relations (in comparison to 

binary and ternary ones) seems to provide more support for 

Doumas et al.’s (2008) model than to Halford et al.’s (1998) 

model. Moreover, not only quaternary relations were very 

difficult to learn (24.5% accuracy), as the latter model pre-

dicts, but also ternary relations were rarely found (34.8%), 

though according to that model they should well fit in WMC 

of most of participants. In contrast, people displayed fair 

performance only in cases of binary relations (75.0%), and 

that fact better corresponds to Doumas et al.’s (2008) 

assumption telling that during relational learning (but not 

when processing relations) even as few as two role-filler 

representations may occupy the whole available capacity. 

The study provided data convergent with Lewandowsky 

(2011) results, though moving beyond ternary relations to 

newly introduced quaternary condition suggests that rela-

tional learning is not uniformly linked to WMC with regard 

to the complexity of relations being learned. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The CFA model linking WMC to relational learn-

ing (a difference in scores between two parts of DREL). The 

same graphical symbols were used as in Fig. 1. 
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 It must be acknowledged, however, that due to the floor 

effect in the quaternary condition, a possible alternative 

explanation of the drop in the value of the DREL-WMC 

correlation coefficients might appeal to a possible worse 

psychometric usefulness of scores on quaternary relations. 

However, this is an unlikely explanation, because of rela-

tively low values of the 95% confidence intervals [.338 – 

.616] for that correlation, comparable to the respective 

intervals regarding binary and ternary conditions, indicating 

that all three correlation coefficients have been estimated 

with a similar precision. Nevertheless, in order to be able to 

draw firm conclusions on the issue of which model best 

explains WM contribution to relational learning, the present 

results should be replicated with a similar method, but one 

yielding relatively higher scores in the quaternary condition. 

 Another new result brought by the present study pertains 

to the fact that not only some general ability to discover 

relational concepts correlated – though with a varied 

strength depending on the complexity of those concepts – 

with WMC, but WMC predicted also the amount of transfer 

of relational knowledge from one task to another. Although 

whole our test was strongly dependent on WM resources, 

we accounted for this fact by subtracting the initial (i.e., ge-

neral) performance on the task, from the final performance, 

thus measuring the sheer increase in effectiveness of rela-

tional thinking during the coping with the test. It appeared 

that more capacious WM allows for better learning of 

abstract relational structures and more effective application 

of them to new, but analogous, situations. This observation 

seems to be an interesting challenge for existing models of 

analogy-making and relational learning, and has potentially 

profound practical (e.g., educational) implications. 

Summary 

This study provided another evidence for the thesis that 
mechanisms of WM impose substantial constraints on 
human complex cognition, especially its core component: 
relational thinking. Understanding those constraints by 
developing computational models of thinking within WM is 
one of the crucial current focuses in cognitive science. This 
study seems to contribute to those efforts by presenting data 
supporting those models (e.g., Doumas et al., 2008) which 
predict that WM resources may be exceptionally loaded 
during the acquisition of relations, in comparison to a lesser 
load predicted in situations requiring only transformations 
and manipulations of relational representations which have 
already been learned. 
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