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Controlled Exploration of Alternative Mechanisms in Cognitive Modeling

Rita Kovordányi (ritko@ida.liu.se)
Department of Computer and Information Science

Linköpings Universitet, SE-581 83 Linköping, Sweden

Abstract

Overt cognitive behavior arises through a complex interaction
between internal, not directly observable, cognitive mecha-
nisms. As there may be several ways of achieving the same
overt behavior, it is intrinsically difficult to find the “correct”
model. One way to proceed however is to uncover the causal
dependencies between a particular configuration of cognitive
mechanisms and simulated overt behavior. This can be
achieved in controlled simulation experiments where every
combination of potentially important cognitive mechanisms is
systematically tried out. To illustrate this point, we briefly de-
scribe an application of the two-level factorial simulation de-
sign on a modeling project in mental imagery. We conclude
by discussing the potential of the method as a tool for reliable
incremental model development.

Introduction
The general objective of modeling and simulation is often to
correctly predict real-world system performance. In addition
to this, cognitive modeling aims at discovering the true na-
ture of cognition (Kieras, 1987; Anderson, 1993; Newell,
1990; Kosslyn, 1980, 1994; Kosslyn et al., 1979). Ideally,
this would presuppose either that a cognitive model can be
rejected as invalid with respect to empirical data, or that a
cognitive model, or a particular cognitive mechanism, can
be singled out as being valid within a given theoretical set-
ting.

However, behavioral data often do not cover every neces-
sary aspect of a cognitive phenomenon or are qualitative in
nature, and may thus be consistent with a range of possible
accounts. This open-endedness poses a severe problem in
cognitive theory construction and model building, a problem
which is commonly known as the identifiability problem:
“The thorny issue of how we can know [that we have arrived
at] the correct theory” (Anderson, 1993, p. 10).

Several ways of dealing with this problem have emerged
during decades of modeling practice. First, the empirical
basis for model construction can be broadened to increase
the number of constraints and thereby pin down the gross
structure of possible cognitive models. Within the space of
possible models which is left, often ad hoc or heuristic
search is employed to find a model which satisfies the full
range of data (Kieras, 1985). In general, this method in-
creases the probability that the model found is also “correct”
in a broader sense.

Second, unified architectures of cognition are incremen-
tally constructed in a team effort and evolve through years of
development to accumulate a wide range of empirical data.
These architectures outline the main processing subsystems

and the flow of processing in the cognitive system, and in
this way support the development of specific, lower-level
models (Rosenbloom et al., 1993; Anderson, 1993).

Overt cognitive behavior arises from a complex interac-
tion between internal cognitive mechanisms. Even when
model development is guided by assumptions about the
overall cognitive architecture, it may be difficult to pin-point
which of several possible mechanisms is responsible for a
set of empirical observations. For example, should the em-
pirically observed reaction time and error-rate effects of
“attending” to visual stimuli be attributed to early or late
selection in the visual system, assuming that visual percep-
tion is implemented in a hierarchy of mutually interacting
stages of processing?

In general, there is a need to untangle the complex inter-
action between hypothetical cognitive mechanisms. On the
one hand, one would like to establish a causal link between
central mechanisms and their contribution to overall model
behavior. On the other hand, one would like to identify those
mechanisms, which either give rise to invalid behavior, or
do not significantly contribute to overall model performance.
Strictly speaking, this entails an experimentation with cog-
nitive models using an experimental design where every
cognitive mechanism in the chain or network of mechanisms
involved in a cognitive task is systematically varied so that
alternative implementations of individual mechanisms can
be fully cross-combined.

For practical reasons, high-dimensional experimental de-
signs are avoided in real-world, psychological experiments.
However, in general such practical limitations do not apply
to a computer simulation environment. Yet, the full factorial
design (cf. section on ‘The two-level factorial design’ be-
low) is not employed in cognitive modeling.

In a modeling project on mental imagery (Kovordányi,
1999b), we have adopted this approach and have systemati-
cally simulated alternative embodiments of a generic inter-
active activation model (McClelland, 1979; McClelland and
Rumelhart, 1981, 1994/1988; Rumelhart and McClelland,
1982). Based on our experience with this project, we would
like to point to the potentials of this method.

Simulating cognitive models in a controlled ex-
perimental setting

The advocated method for exploring cognitive models may
be conceived of as the equivalent of running a high-
dimensional real-world experimental design with a multi-
way analysis of co-variation (multi-way ANOVA). In this
sense, the space of cognitive models is used as a virtual en-



vironment for experimentation: The structure of this envi-
ronment is partially fixed by what we call the model frame-
work. “The independent variables” correspond to those as-
pects of the cognitive model which cannot be specified in
advance, but which may be potential determinants for the
model’s overall behavior. “The dependent variable” consti-
tutes a measure of model performance which, for purposes
of model validation, should correspond to experimentally
observed behavior in human subjects. Experimentation
through systematic model simulation aims to shed light on
how some of the “a priori” unknown aspects of the partially
specified model interact in affecting the model’s behavior,
and most importantly, whether a specific combination of
model properties produces valid model behavior.

The two-level factorial design
Systematic exploration of alternative model instances can be
organized according to a full two-level factorial design (Law
and Kelton, 1991; Box et al., 1978). This design emphasizes
that the question of which model parameters are causally
involved in a particular type of simulated behavior can be
answered only if all parameters have been fully cross-
combined. In order to keep down the computational cost of
exploring all parameters, parameter values are varied be-
tween a predetermined min- and max-value, in what is
called a two-level factorial design.

Note that, for the above reasons, if some model parame-
ters were to be fixed at a given “reasonable value” in order
to keep down simulation complexity, the power of the
simulation design would diminish. Strictly speaking, such
simulations cannot validate conclusions about which model
properties are causally involved in the simulated behavior.
Simply expressed, parameters may have been fixed at a
value where they in fact interact with the central parameters
of the model. Hence, for example, if no effect is obtained
when the value of one of the central parameters is varied,
this could in fact hide a significant negative effect, which is
positively modulated by a peripheral parameter, which has
been fixed.

Ideally, for a problem with k degrees of freedom, the
minimal number of simulations which needs to be run in
order to detect causal dependencies between model parame-
ters is 2k. However, if the number of simulations turn out to
be unmanageably large, a fractal two-level factorial design
may be the used instead of a full design (cf. Law and Kelton,
1991; Box et al., 1978). In these designs, peripheral pa-
rameters are not fixed at an ad hoc value, but are instead
defined dynamically to be a function of other, more central
parameters.

In addition to providing a minimally sufficient basis for
detecting causal relationships in the simulation results, using
a two-level factorial design renders the analysis of simula-
tion results computationally simple. A simulation where k
parameters are varied is captured in a design matrix of size
2k x k containing +s and –s representing low and high pa-
rameter values (cf. Law and Kelton, 1991; Box et al., 1978).
The way the matrix is set up, each row will represent a
unique combination of parameter values, which in turn cor-
responds to a particular simulation run. As the design matrix

is regular, it is easy to set up. In addition, once it is com-
puted, the same matrix can be used to control the simula-
tions and to conduct data analysis.

To illustrate the latter case, if the possible interaction be-
tween parameters p1, p3, and p7 are inquired, columns 1, 3,
and 7 of the design matrix are multiplied value-by-value,
and then multiplied with the set of simulation data. The ef-
fect of these multiplications is that the correct signs will be
added to the data column. A final summation of all the
signed entries in the data column, divided by 2k-1, where k
denotes the number of model parameters, yields the desired
mean interaction of the parameters involved (cf. figure 1).

run par 1 par 2 par 3 sim. result

1 – – – R1

2 – – + R2

3 – + – R3

4 – + + R4

5 + – – R5

6 + – + R6

7 + + – R7

8 + + + R8

Figure 1: Example of a two-level full factorial simulation
design matrix for three parameters. Each row in the matrix
denotes a unique combination of parameter values. The last

column in the design matrix designates the outcome of
simulating a model (instance) for that particular parameter

combination.

Our modeling project
In our investigation of mental imagery, a full two-level fac-
torial design was used where all parameters not inherently
dependent on each other were cross-combined (Kovordányi,
1999b, 2000). While variations in the effect of several possi-
ble factors, such as the effect of mental image fading, were
taken into account, simulation data analysis was centered
around uncovering the effect of focusing early versus late
selective attention on part of a mental image in a mental
image reinterpretation task. As the empirical results of Finke
and colleagues (Finke et al., 1989) and Peterson and col-
leagues (Peterson et al., 1992) used for model validation
were qualitative, no attempt was made to optimize the mod-
els towards these data (Kovordányi, 2000). Model validity
was instead defined qualitatively, and served as a means for
“filtering out” invalid model instances.

Parameterization of the model design space
The interactive activation model used in our project (cf.
Kovordányi, 1998, 1999a) drew its main architectural com-
ponents from the comprehensive model of mental imagery



forwarded by Kosslyn (1994; Kosslyn et al., 1979; Kosslyn
et al., 1990). This model framework enabled us to capture all
basic assumptions made at a higher, theoretical level, while
enabling a systematic search for algorithmic details, which
were left open by the theoretical and empirical basis.

How should an underconstrained model be partially speci-
fied so that it allows for a natural variation of model proper-
ties? One approach, used in our modeling project, is to set
up a generic model framework as a localist network, and let
each node in this network encode a holistic property or fea-
ture of the modeled phenomenon. In the case of visual per-
ception, one kind of holistic property would be, for example,
the individual line segments, which make up more complex
line drawings.

One example of localist networks is the interactive acti-
vation model developed by McClelland and Rumelhart
(McClelland, 1979; McClelland and Rumelhart, 1981,
1994/1988; Rumelhart and McClelland, 1982). In these
models, the localist nodes are arranged into reciprocally
connected layers of processing, thereby further increasing
the structure and penetrability of the model. Units within the
same processing layer are assumed to have the same inhibi-
tory/excitatory connection weights. In such a model frame-
work, model parameters can be naturally expressed as con-
nection weights, activation thresholds, resting levels, or sim-
ply as “control flags”. These flags could, for example, con-
trol whether an individual simulation run should be initiated
top-down or bottom-up in the interactive network.

Model parameters can arise naturally also in symbolic

models. Parameters in these models could be represented as
alternative (sets of) production rules, or simply alternative
definitions (fnc1 – fnc2) of a cognitive mechanism together
with some means for activating them at run-time. Hence, in
essence, any modularly built computational model can be
parameterized with a minimal overhead cost.

Simulations
Our model framework for mental imagery encompasses
three mutually interacting layers of processing (figure 2). At
the lowest level, the visual buffer contains detectors for ori-
ented line segments. At the next stage, these feature detec-
tors can evoke (and get feedback from) simple geometric
patterns, such as composite lines or triangles, which are
stored in visual long-term memory. At the highest level of
processing, geometric patterns are combined into abstract
concepts stored in amodal, associative long-term memory. In
addition to between-layer connections, there is lateral,
within-processing-level inhibition between mutually incon-
sistent (groups of) units. Interpretation in this system entails
the dynamic establishment of a correspondence between
low-level and higher-level representations.

We simulated mental and perceptual reinterpretation of
two composite line drawings from Finke and colleagues
(1989, exp. 1). Possible interpretations of these figures were
limited to a small set of predefined geometric forms and
abstract concepts. For example, possible interpretations of
the first figure, formed from an upper case ‘H’ superim-

α, γ

mental image
generation

response generation

visual buffer

pattern recognition

geometric interpr.

symbolic interpr.

outrate

δ

α,γ

perceptual input source

α,γ
δ

δ, α/γ

associative memory
δ

α,γδ

δ

δ

bow tiebutterflyX H

α,γ
δ

Figure 2: Communication and control structure of our model. Model parameters are shown as tags attached to the corre-
sponding connection or subsystem. Note that model performance is expected to depend not only on how parameters are
set, but also on whether the system is initiated top-down or bottom-up. These the two ways of initiating the system cor-

respond to mental imagery and visual perception, respectively.



posed on an upper case ‘X’, were limited to “four small
equilateral triangles”, “two large isosceles triangles”, “a
butterfly”, “a tilted hourglass” and “a bow-tie”.

As layers in the system were reciprocally interconnected,
simulations could be initiated either top-down or bottom-up.
This made it possible to compare reinterpretation

performance in visual perception and in mental imagery.
When simulations were run in mental mode, a chosen sym-
bolic concept was activated in associative long-term mem-
ory, and this activation was projected into the visual buffer,
where an activation pattern emerged which represented a
visual mental image. When simulation was run in perceptual
mode, visual input entered the system at the visual buffer,
and was forwarded through consecutive stages of process-
ing, and matched to geometric patterns and abstract con-
cepts. One of these patterns or concepts was selected for
verbal report.

Simulations were run through four phases: Mental image
generation, followed by mental image reinterpretation, con-
tinued with a corresponding perceptual image build-up of
the same line-figure, followed by perceptually based reinter-
pretation. Each simulation was run for 10 simulated seconds,
in discrete simulation steps of 50 ms.

Two configurations of the model framework were scruti-
nized: One where attentional selection occurred late, affect-

ing processing at the level of associative long-term memory,
and one where selection occurred early and directly affected
the contents of the visual buffer. For these model configura-
tions, the effect of focusing attention (versus not focusing
attention) was investigated, taking into account the interac-
tion effects that arose between this central, and other periph-
eral model parameters.

Data analysis
In our project, data analysis was based on semi-automatic
preparation of the raw simulation data. The prepared data
were then visualized. The aim was to facilitate the discovery
of significant parameter interactions, and in addition provide
a basis for estimating model validity for the different pa-
rameter combinations. Below we briefly describe the key
stages of this process.

Identification of interacting parameters
Activation levels of all response units in the interactive acti-
vation network were measured for each simulation run, that
is for each parameter combination (cf. Kovordányi, 1999b).
From these activation values the corresponding probability
for mental reinterpretation was calculated. Mental reinter-
pretation rates were considered valid if they qualitatively
matched the reinterpretation rates obtained by Finke and
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Figure 3: Example visualization of the simulation data. Data values are color-coded to support the understanding of
interaction patterns. The area of the square markers reflects the validity of the underlying parameter combinations.
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colleagues (1989, exp. 1), and Peterson and colleagues
(1992). This amounted to the satisfaction of the following
constraints: First, reinterpretation rates were required to be
lower for abstract, conceptual interpretations than for geo-
metric interpretations (cf. Finke et al., 1989). In addition,
interpretations obtained during mental imagery had to be
below those obtained during visual perception.

Second, reinterpretation rates were required to be qualita-
tively consistent with the findings of Peterson and col-
leagues (1992), which indicate that reinterpretation rates
increase after a de- and refocus of attention.

Calculation of parameter effects
The calculation of individual parameter effects and parame-
ter interactions was based on a design matrix of –s and +s,
representing high- and low parameter values (cf. figure 1).
In this matrix each column denoted a model parameter and
each row represented a specific parameter combination. A
measure of model performance, that is simulated mental
reinterpretation probability, was associated with each row in
the design matrix. In general, in order to obtain a parame-
ter’s average effect on overall model performance, those
rows in the model performance column of the design matrix
which correspond to a low parameter value are summed and
subtracted from those rows which correspond to high values.
Higher-order interaction effects can be obtained in a similar
manner (Law and Kelton, 1991; Box and Hunter, 1978).
Given the simulation design matrix, these calculations can
be expressed as a sequence of simple matrix operations.

High-dimensional visualizations
Those groups of interacting parameters whose modulating
effect exceeded 20% of the central parameter’s effect—in
our project this parameter denoted the focusing of atten-
tion—were prepared for subsequent visualization. Simula-
tion data was prepared in such a way that parameters which
exhibited a stronger mutual interaction with the central pa-
rameter would also be visualized closer to each other. This
grouping of more related parameters turned out to enhance
the understanding of interactions, since stronger interaction
patterns emerged as salient color-patches.

The visualizations (illustrated in figure 3) can be con-
ceived of as a high-dimensional cube of changes in model
performance, each dimension representing changes caused
by one of the interacting parameters. This cube can be sliced
and stacked recursively onto a two-dimensional plot (cf.
Bosan and Harris, 1996; Harris et al., 1994). Each x-y coor-
dinate in these plots denotes a specific combination of inter-
acting parameters. In our project, the direction of change in
model performance was coded along two different color
scales, and the magnitude of change was indicated by varia-
tions in hue within these scales, with deeper colors depicting
a larger change.

The amount of information contained in the visualizations
was further increased by the addition of information on
model validity. We let the relative area of each colored
square reflect the average validity of models corresponding
to the central parameter’s high value. In our case, this
amounted to selective attention being focused. As a result of

including model validity in the visualizations, simulation
data contributed to the visual appearance of the plot only to
the extent to which they were valid.

What type of results can be obtained?
Two categories of questions can be addressed using this
method. First, simulation results can be approached with a
particular hypothesis in mind, as was done in our project. In
this case, one would like to make sure that the main effect of
a particular embodiment of a cognitive mechanism, x+ (cor-
responding to parameter x at its high value), is as was pre-
dicted. For example: Do any of the interactions observed in
the simulation results change the fact that parameter x is
generally inhibitory? In addition, one would be interested in
mapping out the validity of models where cognitive mecha-
nism x+ is operating.

Second, simulation results can be openly explored, per-
haps focusing on the role of a few central parameters. In this
situation, one could, for example, be interested in finding out
which cognitive mechanisms work in concert and which
work against each other. In the first case the mechanisms
would affect model performance in the same direction. In
the latter case they would work in opposite direction, can-
celing out each other’s effect. In addition to mapping out
such interactions, one would be interested in which combi-
nation of mechanisms constitute valid models. This search
for valid models can be a powerful way of constraining the
space of possible models when several sources for validation
are used (for example, a small set of seemingly contradic-
tory experimental results).

Concluding discussion
The use of distinctive colors, the organization of the visuali-
zations’ layout according to the strength of interactions, to-
gether with the technique described above for indicating
model validity, turned out in practice to facilitate the under-
standing of the interaction patterns. Strong interactions
which also gave rise to valid performance tended to visually
coagulate into contiguous color-patches, which “popped-
out” from the background of empty squares, marking non-
valid cases.

The virtues of this combination of factorial simulation,
analysis and visualization method are, in our view, compel-
ling: Although the modeling framework is assumed to be
based on a firm empirical basis, model properties which are
not well-founded need not be specified in an ad hoc manner.

From a more theoretical perspective, conclusions which
can be drawn from a full-factorial investigation will ap-
proach the stringency of appropriately conducted “real-
world” experiments, with an inevitable difference: The va-
lidity of any results obtained will ultimately depend on the
validity of the modeling framework itself. Within this
framework, causal dependencies between hypothetical cog-
nitive mechanisms and overall model behavior can be cor-
rectly mapped out. As a result, the development of subse-
quent models and/or the construction of cognitive theories
can be guided in a stringent way.

As the method itself is qualitative in nature (parameters
are varied coarsely between a high and a low value), models



can be validated on the basis of qualitative empirical data.
Note that the objective with using this method is not primar-
ily to quantitatively adjust a model’s overt performance to
empirical data by manually tuning parameters, but instead to
single out a combination of internal cognitive mechanisms
as the probable cause of empirically observed human be-
havior.

In a longer perspective, this method can contribute to the
incremental development of more and more finely tuned
cognitive models. Starting with a firmly based, minimally
specified initial model framework, valid cognitive mecha-
nisms can be singled out and subsequently embedded into
the framework. Given these additional mechanisms, and/or
having refuted some peripheral model properties, the next
round of search can be narrowed down, and targeted at a
more detailed level. As each increment is reasonably well-
founded (validation is based on average simulation results),
model development can be more directed.
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